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 23 

Abstract 24 

Type 1 diabetes (T1D) and other autoimmune diseases (AIDs) co-occur in families. We studied the 25 
aggregation of 50 parental AIDs with T1D in offspring and the contribution of a shared genetic background, 26 
which was partitioned into HLA and non-HLA variation. Leveraging nationwide registers of 7.2M Finns, 27 
including 58,284 family trios, we observed that 15 parental AIDs, such as coeliac disease and rheumatoid 28 
arthritis, were associated with an increased risk of T1D in offspring. The identified epidemiological 29 
associations were then tested by comprehensive genetic analyses performed on 470K Finns genotyped in 30 
the FinnGen study (12,563 trios). The within-family genetic transmission analysis further demonstrated that 31 
the aggregation of parental AIDs with offspring T1D could be partially explained by HLA and non-HLA 32 
polymorphisms in a disease-dependent manner. For example, the associations with offspring T1D for 33 
coeliac disease and psoriasis were mainly driven by HLA while autoimmune hypothyroidism and 34 
rheumatoid arthritis also had non-HLA contributors. We, therefore, proposed a novel parental polygenic 35 
score (PGS), integrating variations in both HLA and non-HLA genes, to understand the cumulative risk 36 
pattern of T1D in offspring. This raises an intriguing possibility of considering parental PGS, in conjunction 37 
with clinical diagnoses, to inform individuals about T1D risk in their offspring. 38 
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Type 1 diabetes (T1D) is an autoimmune disease (AID) characterized by a severe insulin deficiency 40 
resulting from the destruction of insulin-producing pancreatic beta cells. While the pathogenic mechanism 41 
remains largely unknown, T1D usually appears in genetically susceptible individuals1,2 and triggered by 42 
environmental exposures3,4 - mostly before 20 years of age, with incidence increasing from birth and 43 
peaking at age 10-14 during puberty5-7. Notably, in many populations such as Europeans, Asians, and Latins, 44 
genetic polymorphisms in human leukocyte antigen (HLA) genes were reported to account for up to half 45 
of the T1D heritability, for which the strongest effects were attributable to two HLA class II haplotypes, 46 
HLA-DR3-DQ2 and DR4-DQ88-14. In addition to the well-documented large-effect HLA contribution, non-47 
HLA susceptibility also plays a role2. Large-scale genome-wide association studies (GWAS) have 48 
identified dozens of independent non-HLA signals across the genome15-18, that together with HLA 49 
polymorphisms can be used to construct polygenic scores (PGS) to evaluate genetic predisposition of T1D 50 
prior to the disease onset19-21 as well as better differentiate T1D from other types of diabetes22-24.  51 

Interestingly, T1D tends to co-occur with some other AIDs, both in the same individuals and within families 52 
(Supplementary notes 1). Previous studies mainly explored the co-occurrence from two angles. A popular 53 
and straightforward one was to adopt a population-based design and epidemiological analysis for the risk 54 
of T1D among people whose relatives were diagnosed with some AIDs. We have provided a detailed review 55 
of these studies in Table S1. To obtain conclusive findings, a sufficient number of trios or families is 56 
needed25-27. Another set of studies attempted to leverage genetic information for a better understanding of 57 
T1D-AID aggregation among genetically related individuals28-30. In one such study, among the one-third of 58 
children with T1D who were found to have a relative affected by an AID, having HLA-DR3-DQ2 haplotype 59 
was associated with celiac disease (CD) in their extended family29. Whereas this type of studies mainly 60 
collected family history from questionnaires and focused only on HLA haplotype analysis due to data 61 
limitation, other studies systematically researched the disease associations of common variants in either 62 
HLA or non-HLA genes. Instead of individual-level data, many studies utilized publicly accessible 63 
summary statistics generated from population-based analyses. For example, a recent study captured 64 
intercorrelation of AIDs, such as T1D, rheumatoid arthritis (RA), and autoimmune hypothyroidism 65 
(HYPO), in two large HLA hotspots (locus 961 and 964)31. Further, GWAS revealed shared genetic 66 
susceptibility loci beyond the HLA regions for T1D and five other AIDs, including CD, RA, multiple 67 
sclerosis (MS), Crohn’s diseases, and systemic lupus erythematosus32.  68 

To date, there has been a lack of comprehensive investigation that combines the two angles and 69 
encompasses a wider range of AID spectrum than CD, RA, HYPO and MS. Meanwhile, it remains an 70 
enigma why individuals with similar genetic backgrounds can develop such heterogeneous diseases ranging 71 
from potentially lethal insulin deficiency to mild hypothyroidism - even among members of the same family 72 
who also tend to share the same environment. One way to approach this question is to combine evidence 73 
from population-based multi-generational cohorts and large-scale biobanks with high-resolution diagnostic 74 
data, preferably of the same population to avoid any bias or confounding caused by differences in across-75 
population socio-cultural contexts and clinical practices. In this study, we aim to comprehensively evaluate 76 
the genetic determinants of familial aggregation of T1D and other AIDs using the nationwide multi-77 
generational health registers of the whole Finnish population in FinRegistry33, as well as the genomic and 78 
family trio data available in Finnish biobanks through the FinnGen Study34. Considering the world’s highest 79 
incidence of T1D in Finland35, these detailed and structured data resources provide us a unique opportunity 80 
to quantify the associations between parental AIDs and offspring T1D, and more importantly, to answer 81 
three fundamental questions: 1) Which parental diagnoses of AIDs are associated with T1D in offspring? 82 
2) To what extent is the shared genetic background between AIDs and T1D driven by genetic components, 83 
separately for HLA and non-HLA variants? And, 3) Can AID-related genetic information in parents 84 
complement disease family history be used to estimate the risk of having a child developing T1D? 85 

 86 
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 87 

Figure 1: An overview of the study design and study populations. Panel A, the study population of 88 
FinRegistry (7.2 million individuals) represents every Finn alive in 2010 (5.3 million individuals) and their 89 
first-degree relatives. To maximize the coverage of diagnoses of AIDs for parents and T1D for children, 90 
we included only family trios with both parents born before 1976 and children between 1960-1999 (the 91 
follow-up time in 2019 was at least 45 years for parents and 20 years for children). The solid lines denote 92 
the birth year range of the study population and the dashed lines the years of follow-up. Among the 2.4 93 
million family trios, 14,571 had a child ever diagnosed with T1D (T1D trios), and for each of the T1D-trios, 94 
we matched three control trios based on sex, birth year, birthplace, and the number of siblings of the child, 95 
as well as birth years of both parents. In total, we included 14,571 T1D-trios and their matched 43,713 96 
control trios. Panel B, the study population of FinnGen includes 473.7K Finns enrolled in a nationwide 97 
network of Finnish biobanks, of which 12,563 family trios can be accurately constructed with available 98 
genomic information. FinnGen includes 3,370 T1D cases, 385,786 controls, as well as 1,129 T1D-trios and 99 
11,434 control trios. Panel C illustrates a matched case-control study conducted in the 58,284 FinRegistry 100 
family trios to examine the association between parents’ AID and the T1D status of offspring. The different 101 
symbols denote father, mother, and offspring, and colors the disease status (red, offspring with T1D; green, 102 
parents with AIDs; grey, individuals unaffected by T1D or other AIDs). Panel D depicts the examination 103 
of shared genetic components between T1D and other AIDs using population-based analyses (left panel 104 
with blue background) or trio-based family analyses (right panel with yellow background). A haplotype 105 
and PGS-based analysis of HLA variants conducted in 473.7K FinnGen participants (left); a genetic 106 
correlation analysis of the non-HLA variants utilized GWAS summary statistic data (middle); and a 107 
polygenic transmission disequilibrium test (pTDT) examined in FinnGen participants whether the AID-108 
associated common variants as a whole were over-transmitted from AID-unaffected parents to their T1D-109 
affected offspring (right). Panel E, the average AID PGS of the parents and its predictive performance of 110 
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T1D in offspring among 12,563 genotyped family trios in FinnGen. AID, autoimmune disease; T1D, type 111 
1 diabetes; HLA, human leukocyte antigen; PGS, polygenic score; GWAS, genome-wide association study. 112 

 113 
 114 
Results 115 
 116 
Study populations and disease diagnoses 117 
 118 
We leveraged nationwide socio-demographic and health registers of the entire Finnish population collected 119 
in the FinRegistry study33 (N = 7.2 million) and a subset of 473,681 genotyped Finns from the FinnGen 120 
study34 (Figure 1A and 1B). To avoid potentially biased estimates caused by incomplete medical records, 121 
we excluded individuals who had migrated in or out of Finland by 2019 (572,640 were excluded for 122 
FinRegistry and 9,196 for FinnGen). To have comparatively complete coverage of AID diagnoses for 123 
parents and T1D diagnoses for children, we considered parents born before 1976 and children born between 124 
1960 and 1999, corresponding to at least 20 years of follow-up for children by the end of 2019 (Figure 125 
S2.2). We defined T1D cases as those who had their first diagnosis recorded before the age of 40. In total, 126 
we included 14,571 T1D cases in FinRegistry (0.61%) and 3,668 in FinnGen (0.83%). To examine the 127 
association between AIDs in parents and T1D in offspring, as well as the extent to which genetic factors 128 
could contribute to the identified association, we constructed 2.4 million family trios in FinRegistry based 129 
on Finnish multi-generation registers and 12,563 genotype-inferred trios in FinnGen (Methods). Of these 130 
trios, 14,571 in FinRegistry and 1,129 in FinnGen had children with T1D.  131 

To have broad coverage of AIDs affecting different tissues or organ systems, we defined 50 AIDs or 132 
autoimmune-related disorders based on Finnish versions of the International Classification of Diseases 133 
(ICD) codes 8-10 (Supplementary notes 2.1). After excluding 13 AIDs with less than 50 parental cases in 134 
FinRegistry and 11 AIDs that were highly correlated with other AIDs (Table S2.1), we included 26 AIDs 135 
for further analyses: T1D, adrenocortical insufficiency (ADDISON), autoimmune hyperthyroidism 136 
(HYPER), autoimmune hypothyroidism (HYPO), autoimmune haemolytic anaemias (AIHA), allergic 137 
purpura, vitamin B12 deficiency anemia (B12A), idiopathic thrombocytopenic purpura (ITP), sarcoidosis, 138 
primary biliary cholangitis (PBC), celiac disease (CD), inflammatory bowel disease (IBD), IgA 139 
nephropathy, ankylosing spondylitis (AS), mixed connective tissue disease (MCTD), rheumatoid arthritis 140 
(RA), Sjögren’s syndrome (SjS), systemic sclerosis, Wegener granulomatosis (WG), systemic lupus 141 
erythematosus (SLE), Guillain-Barré syndrome (GBS), multiple sclerosis (MS), myasthenia gravis (MG), 142 
alopecia areata (AA), psoriasis, and vitiligo. The number of parental cases ranged from 55 for AIHA 143 
(corresponding to a prevalence of 0.05%) to 11,485 for HYPO (prevalence = 9.85%) (Table S2.1 and 144 
S3.1.1). 145 

We designed four sets of complementary analyses (Figure 1). We first examined the association between 146 
parental AID and offspring T1D risk in FinRegistry. For AIDs showing significant epidemiological 147 
associations, we explored the HLA-related associations with haplotype and PGS-based analyses in FinnGen, 148 
and the genome-wide non-HLA associations with a summary statistic-based genetic correlation analysis. A 149 
polygenic transmission disequilibrium test (pTDT) was then used to examine the within-family 150 
transmission of AID genetic signals from AID-unaffected parents to their T1D-affected and unaffected 151 
offspring. Lastly, we proposed a novel parental PGS method, integrating both HLA and non-HLA 152 
contributors, to assess the risk of developing T1D in offspring. 153 
 154 
 155 
 156 
 157 
 158 
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Epidemiological associations between parental AIDs and T1D in offspring  159 

We first wanted to examine the associations between parental AIDs and T1D in children using the large 160 
number of family trios available in the FinRegistry study. For each of the 14,571 trios with T1D-affected 161 
children, we employed a 1:3 matched case-control design considering the information of both the child (sex, 162 
birth year, birthplace, and number of siblings) and parents (birth year) (Methods and Figure 1C). For other 163 
available socio-demographic factors that were not used in matching, we saw limited differences between 164 
T1D trios and their matched controls (Table S3.1.2). Overall, children with T1D (42.2% [95% CI 41.4%, 165 
43.0%]) were more likely to have AID-affected parent(s) compared to those without T1D (31.9% [31.5%, 166 
32.3%]).  167 

Of 26 parental AIDs examined in FinRegistry, fifteen were associated with increased risk of T1D in 168 
offspring at a nominal P-value <0.05, and nine remained statistically significant after Bonferroni correction 169 
for multiple-testing (0.05/26 = 0.002) (Figure 2 and Table S3.2.1.1). The strongest association was seen 170 
for T1D (odds ratio (OR) [95% CI], 6.77 [5.44, 8.42], P=3.8×10-66), followed by CD (2.14 [1.90, 2.42], 171 
P=2.5×10-35), B12A (1.76 [1.54, 2.02], P=1.4×10-16), MCTD (1.54 [1.24, 1.92], P=8.5×10-5), HYPO (1.53 172 
[1.46, 1.60], P=4.8×10-73), RA (1.48 [1.37, 1.60], P=1.8×10-23), sarcoidosis (1.45 [1.28, 1.65], P=1.1×10-173 
8), HYPER (1.42 [1.20, 1.68], P=4.3×10-5), and SjS (1.33 [1.12, 1.59], P=1.6×10-3). In terms of sex, we 174 
didn’t observe significant differences either for parents or for offspring (Figure S3.2.2). However, as 175 
previously reported in the literature36-38, fathers with T1D had a higher risk of having children with T1D 176 
than mothers with T1D (7.49 [5.68, 9.86] vs. 5.71 [4.01, 8.13], Pdifference= 0.24), but this was not significant. 177 
We also noted that, a paternal history of T1D could significantly impact the onset age of T1D among boys, 178 
resulting in T1D being diagnosed 1.85 [0.29, 3.41] years earlier compared to having a T1D-unaffected 179 
father (P=0.02) (Supplementary notes 3.2.3). A sensitivity analysis restricted to early-onset T1D (before 180 
age 20) yielded stronger associations for parental early-onset T1D and parental SLE from the main analysis 181 
(before age 40). For example, the OR increased from 6.77 [5.44, 8.42] to 10.90 [7.90, 15.04] for parental 182 
early-onset T1D (Pdifference=0.02) and from 1.29 [0.96, 1.73] to 1.77 [1.24, 2.51] for parental SLE 183 
(Pdifference=0.18) (Table S3.2.1.2). 184 
 185 
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 186 
Figure 2: Epidemiological associations between parental AIDs and T1D in offspring ordered by P-value. 187 
Upper panel: Association (OR, and 95% CI) between parental AIDs and T1D in offspring using a matched 188 
case-control design in Finnish nationwide registry data (FinRegistry). Lower panel: number of T1D cases 189 
with parents having a given AID diagnosis. The dark green diamonds and bars indicate AIDs that are 190 
significantly associated with T1D after multiple testing corrections. AID, autoimmune disease; T1D, type 191 
1 diabetes; OR, odds ratio; CI, confidence interval. 192 
 193 
 194 

Shared genetic components from HLA and non-HLA variants at a population level 195 

Parents and offspring share many environmental exposures and genetic components. We next aimed to 196 
quantify the extent to which the identified epidemiological associations are attributable to a shared genetic 197 
background. Given that T1D is known to be impacted by both HLA and non-HLA variations2,8-18, we 198 
analyzed HLA and non-HLA regions separately at a population level (Methods). We first examined the 199 
association of the main T1D predisposing / protective HLA haplotypes with other AIDs to understand to 200 
what extent a single haplotype can drive the identified epidemiological associations. Next, we combined 201 
multiple HLA imputed alleles to create multi-allelic scores for HLA for each AIDs and examine the 202 
association with T1D. The analyses were conducted on 439,817 individuals from FinnGen (Figure 1B, 203 
Table S3.1.1). For non-HLA variations, we estimated genetic correlation between T1D and other AIDs 204 
using the latest GWAS summary statistics.  205 
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 206 

Shared effect of HLA haplotypes for T1D and other AIDs 207 

Given that for T1D, the strongest genetic associations are for Class II haplotypes, in particular HLA-DR3 208 
and DR4 haplotypes8-14,39, we constructed 19 DRB1-DQA1-DQB1 haplotypes based on 64 imputed alleles 209 
of these genes in FinnGen40 (Methods).  210 

We examined 19 haplotypes (frequencies > 0.5%, Table S3.3.1.1), of which six were strongly associated 211 
with T1D (P<1.0 ×10-50), with DRB1*04:01-DQA1*03:01-DQB1*03:02 (OR=7.54 [7.00, 8.13], P<1.0 212 
×10-602) conferring the strongest susceptibility and DRB1*15:01-DQA1*01:02-DQB1*06:02 (0.06 [0.04, 213 
0.07], P=2.0×10-106) the strongest protection (Table S3.3.1.2). We then tested the association of these six 214 
haplotypes with the 24 other included AIDs using logistic regression and considering the age, sex, and first 215 
ten principal components (PCs) as covariates (Figure 3A). Many of these T1D-associated haplotypes were 216 
also associated with other AIDs (P<1.0 ×10-4) (Table S3.3.1.3). For example, the T1D risk haplotype 217 
DRB1*03:01-DQA1*05:01-DQB1*02:01 increased the risk of both CD (15.83 [14.56, 17.20], P<1.0 ×10-218 
918) and autoimmune hyperthyroidism (2.42 [2.23, 2.63], P=6.3×10-100), and DRB1*04:01-DQA1*03:01-219 
DQB1*03:02 increased the risk of RA (1.93 [1.84, 2.02], P=5.1 ×10-174). Of note, opposite effects were 220 
seen for some AIDs: the strongest haplotype protecting against T1D (DRB1*15:01-DQA1*01:02-221 
DQB1*06:02) was the lead risk haplotype for MS41 (2.85 [2.60, 3.12], P=7.9×10-112) and the strongest T1D 222 
susceptibility haplotype (DRB1*04:01-DQA1*03:01-DQB1*03:02) protected against IBD (0.85 [0.80, 223 
0.90], P=4.7×10-8).  224 

 225 

Multi-allelic scores (PGS) of HLA alleles for AIDs and T1D 226 

Having observed that multiple HLA haplotypes could contribute to the susceptibility to T1D and other 227 
AIDs independently, we constructed polygenic HLA scores (HLA PGSs) to summarize the overall multi-228 
allelic HLA effects for each AIDs. Considering the widespread variation in HLA allele frequencies across 229 
populations42, we opted to construct HLA PGSs within the FinnGen samples 187 imputed Class I and Class 230 
II alleles using weighted ridge regression (Methods). We were able to construct reliable HLA PGSs 231 
(P≤0.05/26 and partial correlation |ρ|≥2% for predicting the susceptibility of the disease itself) in 23,336 232 
individuals for 14 AIDs (including T1D). Of these, HLA PGSs for 13 AIDs exhibited significant 233 
associations with T1D susceptibility after multiple-test correction (0.05/14 = 0.003), with exceptions for 234 
psoriasis (P=3.6×10-3) and AS (P=6.1×10-2) (Figure 3B and Table S3.3.2.1). Overall, the effects of AID 235 
HLA PGS on individuals’ own T1D risk were highly correlated with the effects of parental AIDs on 236 
offspring T1D obtained from our FinRegistry epidemiological analyses (ρ from a Spearman’s rank 237 
correlation = 0.63, P=6.1×10-4). Among all AIDs other than T1D (OR=5.33 [4.79, 5.93], P =3.74×10-207), 238 
strongest associations were seen for ADDISON (OR=2.30 [2.13, 2.49], P =4.2×10-100), RA (OR=2.10 [1.95, 239 
2.27], P=1.8×10-78), and CD (OR=2.07 [1.94, 2.22], P =2.4×10-96). Consistent with the HLA haplotype 240 
analysis, we observed negative associations with T1D for HLA PGS of IBD (OR=0.64 [0.60, 0.69], 241 
P=1.2×10-30) and MS (OR=0.81 [0.75, 0.88], P=2.4×10-7). These associations were further replicated with 242 
a distinct analytic approach - leave-one-group-out (LOGO) (Supplementary notes 2.3.2 and Table 243 
S3.3.2.2). 244 

 245 

Genome-wide non-HLA correlation between T1D and AIDs  246 
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In addition to the major HLA contributors, non-HLA variants identified in the GWAS studies are known 247 
to impact AID susceptibility as well. We, therefore, explored the shared correlation between T1D and other 248 
AIDs using a summary statistics-based method - LD score regression (LDSC)43,44, excluding the HLA 249 
regions (Methods). Significant positive genetic correlations (rg) were observed between T1D and ten AIDs 250 
(P<0.05/25 after Bonferroni correction) (Figure 3C), including HYPO, CD, RA, B12A, sarcoidosis, 251 
HYPER, vitiligo, PBC, MG, and SLE. The first six AIDs were also among the parental AIDs that exerted 252 
significant effects on offspring T1D in our FinRegistry epidemiological analyses (ρ from a Spearman’s 253 
rank correlation=0.30, P=0.15). The highest rg were seen for B12A (rg=0.48 [0.34, 0.63], P=6.4×10-11), 254 
followed by HYPO (0.43 [0.34, 0.51], P=2.9×10-23) and RA (0.43 [0.25, 0.61], P=3.9×10-6) (Table 255 
S3.3.3.1). Contrary to the negative HLA association, we did not observe a significant non-HLA genetic 256 
correlation between T1D and MS or between T1D and IBD. A sensitivity analysis excluding all 257 
chromosome 6 variants yielded similar estimates, suggesting that the observed non-HLA results were not 258 
driven by variants in highly linkage disequilibrium with HLA alleles (Table S3.3.3.2). 259 

In summary, both the HLA and non-HLA analyses recapitulated the multi-generational epidemiological 260 
effects observed in nationwide registers. While the results conferred that the risk of T1D was positively 261 
associated with the risk of many other AIDs regarding both HLA and non-HLA genetic variants (e.g., 262 
HYPO, CD, RA), the opposite held for MS and IBD concerning the HLA susceptibility whereas no genetic 263 
correlation was observed in non-HLA regions. 264 

 265 
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 266 

Figure 3: Shared genetic background between T1D and other AIDs, stratified by HLA and non-HLA 267 
variations at a population level. Panel A, HLA haplotypes strongly associated with T1D and their 268 
associations with other AIDs in FinnGen (3,668 T1D cases and 436,149 T1D controls). The strength of the 269 
association is shown as a heatmap with blue depicting a susceptible haplotype associated with the AID in 270 
question. The haplotypes are sorted by the P-value for T1D as shown on the left. Panel B, upper panel: 271 
association (OR, and 95% CI) between HLA PGSs for different AIDs and T1D in FinnGen. The dark blue 272 
squares indicate that HLA PGS for a given disease has a significant association with T1D after multiple 273 
testing corrections. “×” denotes that an HLA PGS could not be robustly constructed for that AID (Methods). 274 
Bottom panel: blue bars represent the number of individuals with the given disease. Panel C, upper panel: 275 
non-HLA based genetic correlations (rg and 95% CI) between AIDs and T1D using GWAS summary 276 

A

P-value ≤ 1e-4 P-value ≤ 0.05
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statistics from European populations. Bottom panel: the number of cases for the given disease. The dark 277 
orange squares or bars indicate that the AIDs have a significant rg with T1D after multiple testing 278 
corrections. T1D, type 1 diabetes; AID, autoimmune disease; HLA, human leukocyte antigen; OR, odds 279 
ratio; CI, confidence interval; PGS, polygenic score; rg, genetic correlation; GWAS, genome-wide 280 
association study.  281 
 282 
 283 
 284 
Transmitted and non-transmitted genetic liability within families 285 
 286 
Polygenic transmission disequilibrium for HLA and non-HLA genetic factors 287 
 288 
Following the population-based epidemiological evidence for clustering of other AIDs and T1D in the trios, 289 
and the genetic evidence for a shared genetic origin of the AIDs and T1D at a population level, we wanted 290 
to examine the transmission of the HLA and non-HLA within families using a polygenic transmission 291 
disequilibrium test (pTDT)45. The pTDT examines whether the AID risk variants are observed to be over-292 
transmitted (or under-transmitted) to the offspring with T1D (compared to the expected transmission rate) 293 
and thus it is immune to many of the potential confounders arising from population studies on unrelated 294 
individuals. We considered 12,563 trios (genotyped in FinnGen), of which 1,159 had offspring with T1D 295 
(9.2%). The prevalence of T1D in these trios was higher than expected in the general population because 296 
of the inclusion of several studies have specifically targeted individuals with T1D. We analyzed 10 AIDs 297 
with reliable PGSs (ρ≥2%) for both HLA and non-HLA genes and additional six diseases with only reliable 298 
PGSs for the HLA regions (Methods; Supplementary notes 3.3.2 and Table S3.4.1). For offspring with 299 
T1D, both HLA and non-HLA PGSs for T1D deviated significantly from their mid-parent value (1.23 [1.16, 300 
1.30], P=2.6×10-168 and 0.69 [0.62, 0.75], P=9.6×10-74) while no such deviation was observed in unaffected 301 
siblings (-0.06 [-0.13, 0.01], P=0.08 and 0.00 [-0.06, 0.05], P=0.88) (Figure 4 and Table S3.4.2). Overall, 302 
two major patterns were seen across the analyzed AIDs. The first group encompassed T1D, HYPO, RA, 303 
and SLE, for which significant over-transmission in offspring with T1D was seen for both HLA and non-304 
HLA PGSs. The second group exhibited significant transmission only for HLA but not non-HLA PGSs: 305 
while psoriasis exhibited significant over-transmission in offspring with T1D compared to unaffected 306 
siblings, IBD and MS had a significant under-transmission. Taking IBD as an example, among 2,040 307 
genotyped trios, 756 offspring with T1D presented under-transmitted HLA PGS (-0.38 [-0.45, -0.31], 308 
P=3.1×10-22) while their 1,269 unaffected siblings had comparable PGS to their parents (-0.01 [-0.08, 0.06], 309 
P=0.17). No diseases showed significant pTDT only regarding non-HLA PGS without a significant 310 
association for HLA-PGS.  311 

 312 
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 313 
 314 
Figure 4: Polygenic transmission disequilibrium tests (pTDT) assess whether AID PGSs transmitted to 315 
offspring significantly deviated from the parental PGS in T1D-affected offspring and their unaffected 316 
siblings. Deviations from parental PGS (mean and 95% CI) of 1 SD change in offspring PGS are shown 317 
separately for HLA and non-HLA PGSs, with the P value obtained from a two-sided t-test. Red color 318 
denotes offspring with T1D and gray unaffected siblings. AID, autoimmune disease; PGS, polygenic score; 319 
T1D, type 1 diabetes; CI, confidence interval; SD, standard deviation; HLA, human leukocyte antigen. 320 
 321 
 322 
 323 
Offspring T1D risk based on parental AIDs clinical history and genetic information 324 

The PGS for T1D has shown potential to predict disease susceptibility before its onset19-21. We asked 325 
whether T1D risk in offspring can be assessed using a couple’s genetic information before they plan to have 326 
a child, and how this compares to estimating the risk based on family history of T1D and other AIDs, as is 327 
currently being done in clinical practice. To address this question, we adopted a novel strategy to construct 328 
a full PGS (Full-PGS) by considering the contribution ratio of HLA PGS relative to non-HLA PGS 329 
(Methods; Supplementary notes 3.5). We tested eight AIDs (T1D, HYPO, RA, SLE, CD, psoriasis, IBD, 330 
and MS) with at least one reliable PGS in HLA regions or non-HLA regions for T1D prediction (|ρ|≥1%) 331 
(Table S3.5.1) using five-fold cross validation. By modelling the HLA and non-HLA variations separately 332 
and using imputed HLA alleles (187 alleles in 10 classical HLA genes rather than common genotyped 333 
SNPs), the Full-PGSs we proposed outperformed the standard SNP-based PGS methods such as PRS-CS46 334 
at an individual level (Table S3.6.1; Table S3.6.2) and when predicting T1D in offspring using AID-335 
specific parental PGS among the 12,563 FinnGen genotyped trios (Table S3.6.3; Figure S3.6.4).  336 

Having established that a parental Full-PGS for T1D was strongly associated with T1D risk in offspring 337 
(AUCmean=0.817), we tested whether the parental Full-PGSs for all the eight AIDs could add any additional 338 
information to the parental Full-PGS for T1D. However, limited difference was seen by integrating the PGS 339 
of eight AIDs (AUCmean: 0.817 vs 0.820, Pdifference=0.77). This suggested that, instead of a direct effect, the 340 
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impact of parental AID PGS on offspring T1D was most likely to be mediated through the genetic 341 
correlation between T1D and AID, and therefore provided limited additional information to the offspring 342 
T1D prediction when parental T1D PGS was already included and sufficiently accurate.  343 

We thus focused on parental Full-PGS for T1D and estimated the cumulative risk of T1D in offspring using 344 
a Cox proportional hazards model adjusted for the first 10 PCs and birthyear of the child among genotyped 345 
trios (Methods). When stratified PGS into four groups by percentiles (0-50th, 50-90th, 90-99th, 99-100th), 346 
we observed distinct trajectories in terms of T1D cumulative incidence rates (0.24%, 0.74%, 2.29%, 6.96% 347 
by age 20) (Figure 5A). That is, children whose parents were in the top percentile of T1D Full-PGS had a 348 
29-fold higher risk of developing T1D than children whose parents were within the bottom 50% of T1D 349 
Full-PGS. When further stratified by the sex of children (Figure 5B and 5C), the adjusted survival curves 350 
suggested that sons overall had a higher cumulative incidence than daughters across all PGS groups. For 351 
example, in the top T1D parental Full-PGS group, sons (11.48%) could have a 2-fold higher cumulative 352 
risk than daughters (5.29%) by age 20. Overall, the cumulative incidence curves of T1D started to level off 353 
around the age of 14 to 16.  354 

We then wanted to understand how informative the Full-PGS was compared to parental AID clinical 355 
history. In general, the offspring of T1D couples had a higher cumulative incidence of T1D risk (Figure 356 
5D) than T1D-unaffected couples and such differences were larger for boys (Figure 5E) than girls (Figure 357 
5F). Having either father or mother with T1D (prevalencefather = 0.22%, prevalencemother = 0.15%) resulted 358 
in a lower cumulative risk than having both parents in the top percentile of Full-PGS for T1D (1.49% and 359 
4.16% vs 6.95% by age 20 for children). Having both parents affected by T1D (a very rare event with only 360 
a prevalence of 8.5 per million) resulted in a higher cumulative risk (11.30%) than having parents in the 361 
top percentile of Full-PGS for T1D (6.95%). Among couples only affected by AIDs other than T1D, 362 
offspring also had a higher cumulative incidence of T1D than the general population (Fig. 5 G, H, and I) 363 
(0.96 % vs 0.48%), although the cumulative incidence would be smaller than that for the offspring from 364 
couples with physician-diagnosed T1D or couples in the top decile of the Full-PGS for T1D. 365 

 366 
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 367 
 368 
Figure 5: Adjusted survival curves from Cox proportional hazards models for cumulative incidence of T1D 369 
in offspring by age 20, stratified by parental full T1D PGS percentiles comprising both HLA and non-HLA 370 
variants (Panels A-C; 8,872 FinnGen genotyped trios), parents’ T1D status (Panels D-F; 3,048,812 371 
FinRegistry trios), parents’ other AIDs (Panels G-I; 3,037,723 FinRegistry trios after removing trios having 372 
parent(s) diagnosed with T1D), including T1D, autoimmune hypothyroidism, rheumatoid arthritis, systemic 373 
lupus erythematosus, coeliac disease, psoriasis, inflammatory bowel disease, and multiple sclerosis; The 374 
panels show pooled data for both sexes (left), daughters (middle), and sons (right). T1D, type 1 diabetes; 375 
AID, autoimmune disease; HLA, human leukocyte antigen; PGS: polygenic score. 376 
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Discussion 381 

In this study, we comprehensively explored the genetic determinants of the familial aggregation of T1D 382 
and other AIDs with data from high-dimensional nationwide registers and rich genetic information of the 383 
Finnish population. Our long follow-up (≥20 years) in offspring and the early age of T1D onset (median 384 
age = 12.7) allows us to maximize the number of T1D cases identified in the study. With systematically 385 
designed epidemiological and genetic analyses, we seek to answer three key but underexplored questions: 386 
which parental AIDs are related to T1D in offspring, to what extent the identified parental AID-offspring 387 
T1D association is attributable to genetic polymorphisms of HLA and non-HLA genes, and last, for any 388 
couples that are planning to have children, how well we could use their genetic information to evaluate the 389 
T1D risk of their offspring. 390 

The nationwide registers of 7.2 Finns collected in the FinRegistry study cover longitudinal health and 391 
sociodemographic information of 58,284 family trios which provides us a unique opportunity to perform a 392 
comprehensive exploration of 50 autoimmune diseases for their impacts on offspring T1D, on a scale and 393 
detailed level that could be difficult to achieve in questionnaire- or survey-based studies. This rich familial 394 
and health information enabled us to perform an efficient matched case-control design to better control for 395 
unmeasurable confounding factors than the standard unmatched design used in previous large population-396 
based studies25-27. In total, we detected ten parental AID-offspring T1D associations, including T1D, HYPO, 397 
CD, RA, HYPER, and B12A, that have previously been linked to T1D risk in offspring in large population-398 
based studies (Table S4), and more importantly, six novel associations encompassing AIHA, MCTD, MG, 399 
AA, psoriasis, and vitiligo. 400 

Following the epidemiological analyses, we leveraged the genetic information of 470K genotyped Finns 401 
enrolled in the FinnGen study to better understand the genetic causes of the observed family aggregations. 402 
Given that T1D is known to be impacted by both HLA and non-HLA variations2,8-18, we designed a set of 403 
genetic analyses in a hypothesis-free manner to separate the contributions from HLA and non-HLA regions 404 
for each analyzed AID. These genetic analyses were conducted both at a population level, studying the 405 
shared effects of HLA and non-HLA variations among unrelated individuals, and, within families using 406 
pTDT in 12,563 FinnGen family trios, which to the best of our knowledge, is the largest family-based 407 
genetic analysis performed for T1D and AIDs. Similar to the epidemiological family-based study that is 408 
widely accepted to yield less biased estimates than population-based studies, pTDT can condition out the 409 
impact of shared familial factors through within-family comparisons, allowing, for the first time, to examine 410 
under- or over-transmission of genetic risk factors for AIDs in individuals with T1D and their unaffected 411 
siblings. 412 

Generally, two major patterns were seen for the transmission of AID-associated variants to offspring with 413 
T1D, with one group encompassing T1D, HYPO, RA, and SLE showing significant over-transmission for 414 
both HLA and non-HLA variants, and another group comprising IBD, MS, CD, and psoriasis that exerted 415 
significant deviated transmission only for HLA. We noted that even among the disease group presenting 416 
over-transmission for both HLA and non-HLA, more significant transmission was seen regarding HLA 417 
compared to non-HLA. This is consistent with the previous studies which reported strong HLA associations 418 
for many AIDs2,47,48.  419 

Previous works over decades have shown evidence for variation in genes in both HLA and non-HLA 420 
regions being associated with and between AIDs, especially after the advances in the development of 421 
GWAS and multi-omics data in recent years47,49-51. Specifically, genes modulating adaptive immunity 422 
through T cell activation and signaling (e.g., PTPN2252,53, TAGAP54-57, CD22658-60), B cell activation (e.g., 423 
KIF5A/PIP4K2C61-63, IL1064-66), T helper cells (e.g., STAT1-STAT467-72, PRKCQ73-75), and regulatory T 424 
cells57,76-79, are involved. Variation has also been shown in genes impacting innate immunity, which may 425 
play an important role in viral or microbial infections through the pathogen recognition receptor pathways, 426 
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transcription factors, apoptosis, autophagy, and immune-complex clearance. A cross-disease genomic 427 
analysis of nine AIDs, such as T1D, RA, SLE, suggested that the top prioritized genes of each analyzed 428 
AID converged on the same common pathways relevant to T cell activation and signaling, although distinct 429 
genes were prioritized across diseases80. Many of these works indicated that T1D shared biological 430 
pathways with other AIDs, especially RA, CD, and SLE, which to some extent explained why they were 431 
tightly associated with T1D in our analyses. 432 

The interplay of HLA and non-HLA variants on disease susceptibility turned out to be complex and disease-433 
dependent. Especially, our HLA haplotype analysis showed that multiple T1D lead haplotypes exerted 434 
strong effects on other AIDs, but largely in a disease-dependent manner. The HLA effects regarding other 435 
AIDs and T1D might also be in opposite directions as illustrated by some HLA haplotypes. For example, 436 
being the most protective haplotype of T1D, DRB1*15:01-DQA1*01:02-DQB1*06:02 meanwhile strongly 437 
increased the risk of MS. This opposite pleiotropic HLA was consistantly observed by multi-allelic HLA 438 
PGS. However, in non-HLA regions, we observed no link between T1D and MS from either genetic 439 
correlation or pTDT. IBD had a similar pattern in these analyses.These findings, taken together, can point 440 
to potential explanations for the discrepancies observed between the epidemiological evidence of familial 441 
aggregation and the genetic results. In particular, our results suggest that HLA risk factors for IBD and MS 442 
are protective of T1D, while their non-HLA risk factors are not associated with T1D. The overall lack of 443 
familial aggregation suggested that this HLA protective effect could be counterbalanced by other non-444 
captured genetic effects or by environmental effects shared within the family.  445 

Most AIDs are more prevalent in women than in men and disease progression and severity could also differ 446 
between the two sexes37,81. T1D is an exception in that a slight majority of at least pediatric cases are boys 447 
and twice as many fathers than mothers of the patients with T1D also have T1D37,38. In this study, we also 448 
observed that among individuals with T1D, men had a higher risk of having offspring with T1D than women, 449 
while significant sex-specific associations affecting transmission were overall not observed among parental 450 
AIDs. Further, when at least one parent had T1D, especially if it was the father, the male offspring would 451 
have a higher risk of developing T1D than the female offspring. To date, the precise cause of a higher rate 452 
of T1D transmission from fathers than mothers has not been identified, but potential hypotheses largely 453 
revolve around in utero exposure to different aspects of maternal T1D and or its consequences e.g. exposure 454 
to maternal hyperglycemia, exogenous insulin, maternal islet antibodies, and maternal enterovirus 455 
antibodies38. It has also been proposed that a protective effect of maternal T1D could be mediated by an 456 
E. coli dominant maternal microbiome, which fosters the development of neonatal T cells in the infant82-85. 457 

Previous studies also showed that people with AIDs, are less likely to have children86. This is likely to 458 
reflect multiple factors, including a higher rate of miscarriage amongst women with AIDs including T1D, 459 
amongst whom the rate of miscarriage is 15-30% higher than in the background population 87-90. In some 460 
cases, individuals with AIDs may choose not have children due to a fear of transmitting disease to offspring. 461 
Being able to estimate early T1D risk trajectories for a couple’s offspring, utilizing their PGS and AID 462 
disease status, will equip them with more accurate information to make such decisions around family 463 
planning, and provide reassurance to those whose offspring have a low predicted risk of T1D. For 464 
individuals with offspring predicted to be at high risk of disease, recent advances in T1D research may 465 
mean that targeted screening and/or the option of early preventative therapies may be a realistic option.  466 

So far, we are not aware of any previous study using parental PGS in estimating an AID. We introduced a 467 
new approach to calculate PGSs for diseases that have a strong HLA signal, by training different models 468 
for HLA and non-HLA regions and combining them based on their expected contribution to the disease. 469 
We showed that parental PGS for T1D is strongly predictive of T1D risk before age of 20 and that parental 470 
PGS for other AIDs does not help in better predicting T1D. We showed that a T1D PGS that represents the 471 
genetic risk factors from parents is positively associated with developing T1D in offspring, especially sons. 472 
The cumulative risk trajectories start to plateau around the age of 14-16, especially for children with high 473 
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parental PGS (top 10%), which is consistent with the incidence peak at 10-14 years reported in previous 474 
studies5-7. The effect of high parental PGS on T1D risk in children was in many instances higher than a 475 
diagnosis of T1D in their mother or father. For example, having a mother with T1D resulted in a cumulative 476 
T1D risk of 1.49% by age 20, while the top 10% of parents with the highest PGS had a cumulative risk of 477 
2.88%. Considering that only 0.15% of mothers with children had T1D in Finland, the PGS provides 478 
additional value on top of family history. These results indicate the intriguing possibility of considering 479 
parental PGS, in conjunction with clinical diagnoses, to inform parents about T1D risk in their offspring.  480 

This study also has several limitations. One limitation was that AID diagnoses for some patients might not 481 
be well captured in the healthcare register. For example, the specific ICD-9 code for T1D was not 482 
implemented until 1987 although the Care Register for Finnish Health Care began as early as in 1969. 483 
Another limitation was that rather than being nationally representative, the amalgamated Finnish biobanks 484 
represent a collection of biobanks with diverse methods of data collection. Some of the diseases might have 485 
a higher prevalence in the Finnish biobanks compared to the nationally representative FinRegistry. 486 
Although these aspects might limit the generalizability of the results, we noted that our findings in the 487 
Finnish biobanks were consistent with those we observed from FinRegistry and matched well to previous 488 
studies26,29,31,80,81. Thirdly, rather than extending the analysis to siblings or other relatives, in this study, we 489 
focused on parents and offspring. We note the HLA and non-HLA association patterns with T1D across 490 
AIDs would be similar to what we observed here although the effect sizes would differ. Finally, while many 491 
risk factors (e.g., socioeconomic factors, genetic nurture) might have an impact on the development of T1D, 492 
our study mainly focused on family history of diseases and genetic factors by controlling these factors with 493 
delicate analytical designs.  494 

In conclusion, our results, while confirming the existence of general familial aggregation of AIDs and T1D, 495 
highlight a substantial heterogeneity in the impact of different AIDs on T1D. This heterogeneity is partially 496 
explained by different genetic effects within and outside the HLA regions and demonstrated two different 497 
transmission patterns regarding shared genetic liabilities in HLA and non-HLA. Overall, genetic effects 498 
inside and outside HLA regions are consistent with observational analyses, but in the case of IBD and MS 499 
we revealed unexpected divergence between the genetic effects and epidemiological observations. 500 
Investigating the mechanisms behind these findings may provide valuable insights into the origins of T1D 501 
and the etiology of the familial aggregations of AIDs. Moreover, the relative contribution of HLA and non-502 
HLA genetic risk can be leveraged to create powerful PGSs that can complement a family history of AIDs 503 
as a tool to inform parents about expected T1D risk in their offspring. 504 

 505 
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Registry and Clinical Biobank decision 18th June 2021, Arctic biobank P0844: ARC_2021_1001. 602 
 603 
 604 
 605 
 606 
Methods 607 

Data sources 608 

Most of our analyses were conducted by leveraging two large datasets in Finland – FinRegistry33 and 609 
FinnGen34 (Table S3.1.1).  610 

FinRegistry is a national registry database in Finland combining disease registries with comprehensive 611 
records on individuals’ demographics, socioeconomic status, death, drug purchases, prescriptions, and 612 
administrative information. It includes all the residents in Finland who were alive on 1st January 2010, and 613 
their first-degree relatives (in total approximately 7.2 million individuals). 572,640 individuals were 614 
excluded as they migrated in or out of Finland by 2019, remeining 3,412,326 individuals with both father 615 
and mother information. 616 

FinnGen (R11) is a national research project using samples and data from Finnish biobanks, compromising 617 
genome-wide genotype data and healthcare registry data for approximately 0.47 million Finnish biobank 618 
donors. After excluding 9,196 individuals who had migrated in or out of Finland by 2019, removing 10,588 619 
individuals without imputed HLA data and 8,627 individuals who have other missing values in the cohort, 620 
we included 3,668 T1D cases and 441,602 controls without T1D included in FinnGen and observed lifetime 621 
prevalence and number of cases in FinnGen for each selected AID. The study population features slightly 622 
more women (N=251,294, 56.4%). 623 

By using the datasets from the same country, we alleviate concerns about potential bias caused by 624 
differences in genetic background, healthcare system, or socio-cultural context. 625 

 626 

Finnish population-based case-control study 627 
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The epidemiology association between AIDs in parents and T1D in their children was investigated by a 628 
case-control study within FinRegistry. To include most of the individuals and their parents in this analysis, 629 
we selected all individuals born in Finland between 1960 and 1999 who had both father’s and mother’s 630 
information available. The follow-up period started either from the date they were born or from the year 631 
the codes for our selected diseases were included in national patient register and ended on 31 December 632 
2019, which is the latest follow-up date in FinRegistry. We then restricted our analysis to offspring whose 633 
father was born between 1917 and 1976 and whose mother was born between 1922 and 1976. Finally, we 634 
removed those individuals who died during the follow-up period.  635 

T1D cases were individuals diagnosed with T1D before the age of 40 years. For each trio with T1D-affected 636 
children, three controls without T1D diagnosis were matched by following variables: sex, birth year (five-637 
year bin, 8 levels), and birthplace for the child (19 levels), birth year of father (five-year bin, 12 levels), 638 
birth year of mother (five-year bin, 11 levels), and family size (represented by the number of siblings: 0, 1, 639 
2, 3, >=4). The differences in socio-demographic characteristics between cases and controls, including 640 
socio-economic status, marital status, number of offspring, occupation, education, and mother tongue, were 641 
further examined to ensure that the two groups were comparable. Cohen’s D91 (≥0.2) for ordinal 642 
characteristics such as number of siblings and number of children and Chi-squared test (P<0.05) for 643 
categorical variables such as education and marital status were used to test whether the differences are 644 
minor. 645 

Exposures of interest were all the parental endpoints related to AIDs mainly defined by Finnish versions 8-646 
10 of International Classification of Diseases (ICD) (Supplementary notes 2.1). AIDs with fewer than 50 647 
cases among parents in the final study population in the case-control study were filtered out from the list. 648 
We then excluded AIDs with an unclear definition or AID codes that were subtypes of other codes. The 649 
final AID list was used across all analyses in this study. 650 

A conditional logistic regression, adjusted by birth year, birth year of father, birth year of mother, and the 651 
exact number of siblings, was applied to estimate the effect of having a given AID in parents on the risk of 652 
developing T1D in offspring. Bonferroni multiple testing correction was applied, and only the diseases 653 
reached significant associations (P<=0.05/26) were included in the following analyses. To examine whether 654 
the identified associations are shared between father and mother, we used conditional logistic regression 655 
stratified by maternal AIDs status and paternal AIDs status. We also investigated whether parental AID 656 
status can influence the onset age of disease in offspring by regressing the age at onset of T1D in offspring 657 
on the AID status in their parents, with the same covariates described above adjusted. Statsmodels v.0.13.592 658 
and SciPy v.1.7.3 93 were used for the analyses in this section in the context of Python v.3.7.11.  659 

 660 

Shared genetic components at a population level 661 

To explore, to what extent, the familial aggregations between AIDs and T1D identified in the population-662 
based case-control study are contributed by genetic factors, we conducted three analyses in both HLA 663 
regions and non-HLA regions at individual level. Given the strong associations between HLA and AIDs4, 664 
we first performed an HLA haplotype analysis and an HLA-based PGS analysis using imputed HLA alleles. 665 
Then, we performed a genetic correlation analysis using variants in non-HLA regions. 666 

HLA haplotype analysis 667 

The HLA alleles were imputed by a population-specific reference panel using FinnGen data at the 668 
individual level37. We considered all the 187 unique available alleles on 10 classical genes in class I and II 669 
regions for analysis, including 27 alleles for HLA-A, 40 for HLA-B, 23 for HLA-C, 24 for HLA-DPB1, 15 670 
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for HLA-DQA1, 16 for HLA-DQB1, 33 for HLA-DRB1, and 3 each for HLA-DRB3, HLA-DRB4, and DRB5 671 
separately. According to previous studies8-10,36, several HLA haplotypes in Class II have been significantly 672 
associated with an increased risk of developing T1D and other AIDs. To understand whether HLA genetic 673 
liability to T1D is associated with other AIDs, we conducted a haplotype analysis (Figure S2.4.1) and only 674 
considered possible haplotypes from gene combination HLA-DRB1-DQA1-DQB1. We first removed 675 
individuals with any ambiguous genotypes in the given haplotype. We define an ambiguous genotype as a 676 
genotype with imputed allele dosage in [0.4, 0.6] or [1.4,1.6]. Next, we extracted the potential haplotypes 677 
using the expectation–maximization algorithm and removed those haplotypes whose frequency is less than 678 
0.005. We identified the most prevalent HLA haplotypes that were either positively or negatively associated 679 
with T1D using a haplotype score test (P<1.0 ×10-10), a statistical test to calculate the contribution of a 680 
specific haplotype on a certain phenotype when the linkage phase is unknown95. Multiple testing corrections 681 
were applied for haplotype selection. We then only selected the three haplotypes with the highest P-value 682 
and the three with the lowest. Afterward, a multivariate logistic regression was built to estimate the 683 
associations between the remaining haplotypes and AID status, adjusting for age, sex and the first ten 684 
principal components (PCs). Haplotype analysis was done in Python v.3.7.13 using statsmodels v.0.13.292 685 
and in R v.4.2.2 using gap v.1.3-196. 686 

 687 

HLA multi-allelic score 688 

To tackle the complex linkage disequilibrium (LD) structure amongst HLA alleles, we introduced a PGS 689 
method to construct PGS for T1D and other AIDs specific to HLA regions using FinnGen R11. To handle 690 
the downstream analyses in later Panels, we considered all individuals of genotyped family trios as our 691 
target population and the rest as a training set for weight calculation. 692 

In the training set, to account for the complex LD and high polymorphism among HLA alleles, we applied 693 
to calculate the weight for each HLA allele using weighted ridge classifiers with optimal regularization 694 
strength, which can address this problem by imposing a penalty on the size of the coefficients. For 695 
covariates, we adjusted for age, sex, and the first ten PCs. For the genotyped trios, we calculated PGS by 696 
summing up all the allele dosage multiplied by its weight from the corresponding training set. After PGS 697 
normalization, we first measured the partial correlation between each AID and its PGS. We dropped all the 698 
AIDs whose partial correlation with PGS for the AIDs themselves was lower than 2%, to filter out diseases 699 
with low sample sizes or with weak HLA signals. Next, we conducted logistic linear regression to examine 700 
the association between PGS and T1D. The Bonferroni correction was applied to account for false positives 701 
related to multiple comparisons. Weighted ridge regression and logistic regression were applied using 702 
sklearn v.1.0.2 and statsmodels v.0.13.292 in Python v.3.7.13 and partial correlation were calculated using 703 
ppcor v1.197 in R v.4.3.2.  704 

 705 

non-HLA genetic correlation 706 

To evaluate the genetic overlap between T1D and other AIDs due to shared non-HLA effects, we utilized 707 
largeset GWAS summary statistics from European ancestry individuals (Table S2.3.1) and estimated 708 
genetic correlation in non-HLA regions using linkage disequilibrium score regressions (LDSC), which 709 
capitalized the patterns of LD among common genetic variants of the whole genome except for the HLA 710 
regions43,44. To separate the contribution of HLA from non-HLA genetic signals, we excluded single-711 
nucleotide polymorphisms (SNPs) in the extended HLA regions on chromosome 6 (25–34 Mb). In a 712 
sensitivity analysis, we further examined whether the genetic correlations changed significantly while 713 
excluding all the SNPs on chromosome 6. We followed the suggested protocol for LDSC analyses from 714 
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https://github.com/bulik/ldsc and used the package LDSC v.1.0.143 in Python v.3.7.11. We considered 715 
HapMap398 SNPs and constructed LD structures with European ancestry samples in 1000 Genomes 716 
project99.  717 

 718 
Analyses of inter-generation cross-trait transmission via polygenic transmission disequilibrium test 719 

To understand the transmission of parental AIDs to T1D in offspring, we further estimated the contribution 720 
of parental transmitted and non-transmitted genetic liability to T1D in offspring in both non-HLA regions 721 
and HLA regions using data in FinnGen. While offspring are expected to receive, on average, half of their 722 
parents’ risk alleles for a disease, some will over or under-inherit alleles associated with the disease, which 723 
will impact their disease risk. To understand how much of the shared genetic liability is on average 724 
transmitted to the next generation, we applied a polygenic transmission disequilibrium test (pTDT) to assess 725 
whether the mean of the offspring PGS distribution is consistent with its parentally derived expected value42.  726 
 727 
To construct non-HLA PGS, we used the same GWAS summary statistics used in genetic correlation 728 
analysis and adopted PRS-CS46 (Table S2.3.2). We included 12,563 genotyped trios where both parents 729 
and at least one offspring were directly genotyped. We considered HLA PGSs and non-HLA PGSs that 730 
were robustly associated with the corresponding AID (P<0.05/19 and |ρ|>=2%) (Table S2.3.2). This 731 
resulted in ten diseases with both robust HLA PGS and non-HLA PGS: T1D, HYPO, CD, RA, SLE, 732 
sarcoidosis, psoriasis, IBD, MS, and AS, as well as additional six diseases for HLA PGS (B12A, HYPER, 733 
PBC, MCTD, SjS, and ADDISON) (Supplementary notes 3.3.2 and Table S3.3.4). 734 

For each remaining parental AD, we first removed genotyped families with affected parents and then 735 
subtracted mid-parent PGS for that AID from offspring PGS for the same disease. We normalized the 736 
obtained difference by dividing it by the standard deviation of the mid-parent distribution. For each child, 737 
we grouped his or her family trios according to whether this child was affected, so that we could compare 738 
how the mean PGS of children deviate from their mid-parent PGS in the affected sibling group and 739 
unaffected sibling group separately, as well as the difference between the two groups. We conducted pTDT 740 
using SciPy v.1.7.393 in Python v.3.7.13. 741 

 742 
 743 
Predicting T1D risk in offspring using parental PGS  744 

To assess how well parental PGSs could be linked to T1D in offspring, we designed several analyses to test 745 
the associations and predicting abilities. Considering the prediction performance of PGS for parental AIDs, 746 
we only focused on those AIDs that showed significance from previous PGS analyses in HLA regions and 747 
non-HLA regions. We introduced a new approach, Full-PGS, combining separately generated HLA and 748 
non-HLA PGSs.  749 

 750 

Full-PGS construction 751 

Theoretically, with pTDT, four patterns could be defined for parental AID - offspring T1D transmissions: 752 
1) both HLA PGS and non-HLA PGS over-/under-transmitted from unaffected parents to affected children; 753 
2) only HLA PGS over-/under-transmitted; 3) only non-HLA PGS over-/under-transmitted; 4) neither was 754 
transmitted. 755 
 756 
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We wondered whether we could improve PGS prediction across diseases by better considering genetic 757 
architecture of a target disease. For our target disease, T1D, we constructed HLA PGS and non-HLA PGS 758 
separately, and further considered the contribution ratio of HLA PGS relative to non-HLA PGS in a full 759 
PGS context. 760 
 761 
We proposed an equation to quantify the exact contribution of HLA PGS and non-HLA PGS (𝒓𝒂𝒕𝒊𝒐𝒏𝒆𝒘) 762 
for diseases following pattern 1 (𝑒𝑓𝑓𝑒𝑐𝑡$%& ≠ 0; 	𝑒𝑓𝑓𝑒𝑐𝑡'(')$%& ≠ 0), by taking HLA vs non-HLA 763 
contributions for both T1D and another AID into account.  764 
 765 

𝒓𝒂𝒕𝒊𝒐𝒏𝒆𝒘 =
2 × 𝑤$%&

2 × 𝑤$%& + 1 × 𝑤'(')$%&
: 

1 × 𝑤'(')$%&
2 × 𝑤$%& + 1 × 𝑤'(')$%&

 766 

 767 
Where the contribution ratio between HLA PGS and non-HLA PGS for T1D is 2:1, 𝑤$%& and 𝑤'(')$%& 768 
are the weight of HLA PGS and the weight of non-HLA PGS for the AID when predicting the AID itself, 769 
𝒓𝒂𝒕𝒊𝒐𝒏𝒆𝒘 denotes the contribution ratio between HLA PGS and non-HLA PGS when predicting T1D. 770 
 771 
For the diseases following pattern 2 (𝑒𝑓𝑓𝑒𝑐𝑡$%& ≠ 0; 	𝑒𝑓𝑓𝑒𝑐𝑡'(')$%& = 0), since only HLA PGS is 772 
assumed to be over-/under-transmitted, we only used HLA PGS for these diseases to predict T1D. 773 
 774 

𝒓𝒂𝒕𝒊𝒐𝒏𝒆𝒘 = 1: 0 775 
 776 
For the diseases following pattern 3 (𝑒𝑓𝑓𝑒𝑐𝑡$%& = 0; 	𝑒𝑓𝑓𝑒𝑐𝑡'(')$%& ≠ 0), similarly, we only considered 777 
non-HLA PGS for these diseases to predict T1D. 778 
 779 

𝒓𝒂𝒕𝒊𝒐𝒏𝒆𝒘 = 0: 1 780 
 781 
For the diseases following pattern 4 (𝑒𝑓𝑓𝑒𝑐𝑡$%& ≠ 0; 	𝑒𝑓𝑓𝑒𝑐𝑡'(')$%& ≠ 0),  neither HLA PGS nor non-782 
HLA PGS was used for T1D prediction. 783 
 784 

𝒓𝒂𝒕𝒊𝒐𝒏𝒆𝒘 = 0: 0 785 
 786 
In a scenario of cross-disease prediction, e.g., using PGS for RA to predict T1D, we conducted the analyses 787 
with the following steps: 1) assigned RA to one of the four groups according to its pTDT results, 2) 788 
quantified the contribution ratio between HLA PGS and non-HLA PGS using ρHLA PGS, ρnon-HLA PGS and the 789 
proposed equation, and 3) built a Full-PGS using HLA PGS, non-HLA PGS and the ratio of their 790 
contributions. 791 

We proposed that this equation could be extended to broader conditions for cross-disease prediction to fully 792 
utilize PGS information of a correlated disease to boost the prediction power of a target disease. 793 
 794 

𝒓𝒂𝒕𝒊𝒐𝒏𝒆𝒘 =

⎩
⎪
⎨

⎪
⎧
0: 0, 																																																																																			𝑒𝑓𝑓𝑒𝑐𝑡* = 0; 	𝑒𝑓𝑓𝑒𝑐𝑡+ = 0
1: 0, 																																																																																			𝑒𝑓𝑓𝑒𝑐𝑡* ≠ 0; 	𝑒𝑓𝑓��𝑐𝑡+ = 0
0: 1, 																																																																																			𝑒𝑓𝑓𝑒𝑐𝑡* = 0; 	𝑒𝑓𝑓𝑒𝑐𝑡+ ≠ 0

𝑤,* ×𝑤-*
𝑤,* ×𝑤-* +𝑤,+ ×𝑤-+

:
𝑤,+ ×𝑤-+

𝑤,* ×𝑤-* +𝑤,+ ×𝑤-+
, 𝑒𝑓𝑓𝑒𝑐𝑡* ≠ 0; 𝑒𝑓𝑓𝑒𝑐𝑡+ ≠ 0

 795 

 796 
where 𝑤*+ and 𝑤*, are the weights of two seperate components of the target disease under a presumed 797 
genetic architecture (e.g., partition into HLA variants vs non-HLA variants, or common variants vs rare 798 
variants), 𝑤-+ and 𝑤-,	are the weights of two separate components of the correlated disease, 𝒓𝒂𝒕𝒊𝒐𝒏𝒆𝒘 is 799 
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the contribution ratio between the two genetic components for the correlated disease when predicting the 800 
target disease. 801 
 802 

Impact of parental AID information and cumulative risk of T1D in children 803 

For each parental AID, we constructed a mid-parent Full-PGS using HLA PGS and non-HLA PGS 804 
considering their ratio for cross-disease prediction and examined the association with T1D in offspring. For 805 
comparisons, we ran additional models including only using parental diagnosis, only mid-parent PGS 806 
calculated by a traditional PGS approach that takes genome-wide variants altogether for calculation, e.g., 807 
PRS-CS46, or both HLA PGS and non-HLA PGS from our previous analyses, assumed to be at least as good 808 
as Full-PGS. We used AUC as a primary metric to evaluate model performances. To understand how much 809 
additive value parental PGS for other AIDs can be added to a T1D prediction model, we then compare a 810 
model with all mid-parent PGSs and one with only mid-parent T1D PGS. We evaluated the two models by 811 
comparing the AUCs among 12,563 genotyped trios in FinnGen. To avoid overfitting, the analyses were 812 
done using five-fold cross validation. 813 

We then conducted a Cox proportional hazards model to assess the T1D cumulative incidence risk in 814 
offspring before the age of 20 years, adjusting for birthyear and the first 10 PCs of offspring. To maximize 815 
the statistical power, we considered all the genotyped trios with children born between 1960-2010. Among 816 
the 8,827 trios we analyzed, 1,035 had a child with T1D (11.7%). We then grouped the trios by dividing 817 
the parental Full-PGS percentile into 0-50th, 50-90th, 90-99th, and 99-100th and estimated cumulative risk 818 
within each group given the mean of children’s birthyear and PCs. We also stratified the model by the sex 819 
of offspring. To make the result generalizable, we calibrated the FinnGen results based on the FinRegistry 820 
nationwide T1D prevalence among all children born between 1960-2010 (mean birthyear=1984; 821 
N=3,048,812; prevalence=0.6%).  822 

For the analyses in FinRegistry, we used the same cohort as we used for FinnGen calibration. We considered 823 
four groups: 1) parents without T1D, 2) maternal T1D only, 3) paternal T1D only, and 4) both parents with 824 
T1D among the whole study population. For the analyses excluding children with parental T1D, we 825 
considered four groups: 1) parents without AID, 2) only the mother had AID(s), 3) only the father had 826 
AID(s), and 4) both parents had AID(s). The parental AIDs in this analysis covered all the significant 827 
associations identified from the previous analyses. All the analyses in this session were done using 828 
statsmodels v.0.13.292 and sklearn v.1.0.2 in Python v.3.7.13 and survival v.3.5.7 in R v.4.3.2. 829 

 830 

Code availability 831 

Code for the complete analyses is available at https://github.com/dsgelab/parentalAIDs_T1D. 832 
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