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Development and severity of acohol use disorder (AUD) has been linked to variations in gut microbiota
and their associated metabolites in both animal and human studies. However, the involvement of the gut
microbiome in alcohol consumption of individuals with AUD undergoing treatment remains unclear. To
address this, stool samples (n=48) were collected at screening (baseline) and trial completion from a
single site of a multi-site double-blind, placebo-controlled trial of Zonisamidein individuals with AUD.
Alcohal consumption, gamma-glutamyl transferase (GGT), and phosphatidylethanol (PEth)levelswere
measured both at baseline and endpoint of 16-week trial period. Fecal microbiome was analyzed via 16S
rRNA sequencing and metabolome via untargeted LC-MS. Both sex (p = 0.003) and psychotropic
medication usage (p = 0.025) are associated with baseline microbiome composition. The relative
abundance of 12 genera at baseline was correlated with percent drinking reduction, baseline and endpoint
alcohol consumption, and changesin GGT and PeTH over the course of treatment (p.adj < 0.05). Overall
microbiome community structure at baseline differed between high and low responders (67-100% and O-
33% drinking reduction, respectively; p = 0.03). A positive relationship between baseline fecal GABA
levels and percent drinking reduction (R=0.43, p < 0.05) was identified by microbiome function
prediction and confirmed by ELISA and metabolomics. Predicted microbiome function and metabolomics
analysis have found that tryptophan metabolic pathways are over-represented in low responders. These
findings highlight importance of baseline microbiome and metabolites in acohol consumptionin AUD
patients undergoing zonisamide treatment.



Introduction

Alcohol use disorder (AUD) persists as amajor global public health challenge. AUD causes ahigh
disease burden accounting for over 5% of annual deaths globally.* Chronic heavy alcohol consumption
has been associated with higher risks of developing other chronic health conditions such as cancer,
dementia, digestive disorders, and liver disease.>® Currently, three are three FDA-approved drugs to treat
AUD, but their efficacy is limited. Several repurposed agents such as Zonisamide have shown to reduce
alcohol consumption and craving in clinical trials. ~° However, the degree of reduction in alcohol
consumption varies greatly among patients treated with the drug or placebo even after controlling for all
available factors. The act of taking placebo medication and meeting regularly with a healthcare provider
aone can significantly influence reduction in alcohol consumption.'® This differential response to

treatment is common in many clinical trials including AUD, but underlying causes remain elusive.

Recently, there has been growing interest in the bidirectional relationship between the devel opment,
progression, and treatment of AUD and the gut microbiome via the gut-brain axis. Both acute and chronic
alcohol consumption are linked to a shift in microbiome composition favoring an overrepresentation of
proinflammatory microbes and an underrepresentation of short-chain fatty acid-producing microbes.™ ™’
During periods of heavy acohol consumption, the production of short-chain fatty acids (SFCAs) are
significantly decreased.''**® These microbially-produced SCFAs influence various biological processes

19-23 \which are common comorbidities of AUD. Further, the

such as depression, anxiety, and craving,
administration of SCFAs has been shown to reduce drinking behavior in rodent models.?*2 The
microbiome and its metabolites are not only responsive to alcohol consumption but also able to influence
drinking behavior. The AUD-associated gut microbiome has been linked to increased alcohol
consumption,?”?® depression, anxiety, acohol craving, and possibility of relapse.”?*?® Manipulation of the
microbiome has been shown to modify alcohol consumption in both anima models and humans.
Antibiotic treatment increased binge drinking in mice®® but decreased binge drinking in rats.* In rats,
fecal microbiota transplantation from a cohol consuming donor rats increased voluntary drinking in naive
recipients, but this increase was subsequently reversed by antibiotic treatment.?” Fecal microbiota
transplantation from healthy donors without AUD to patients with AUD has proven to be a promising

route for treatment of AUD and AUD-associated health problems. %

The baseline gut microbiome has been found to play an important role in response to cancer therapy,*
nutritional intervention® and efficacity of SARS-CoV-2 vaccines.*** However, whether the importance
of baseline gut microbiome in alcohol drinking behavior in AUD patients undergoing treatment has not

been investigated. We hypothesize that the gut microbiome and metabolites at baseline before treatment



intervention are important factors influencing alcohol drinking behavior. To test this hypothesis, we
leverage a randomized, placebo-controlled, double-blind clinical trial (Clinical Trials.gov identifier:
NCT02900352) recently completely by our research team testing effect of Zonisamide treatment of heavy
drinking alcohalic civilians. Using 16S rRNA gene sequencing and untargeted metabolomics, we show
reduction in alcohol consumption between baseline and endpoint visits of the clinical trial is significantly
correl ated with composition of the baseline microbiome and levels of specific gut metabolite such as
GABA. Patients who achieved a high level of drinking reduction during the trial (high responders) had a
distinct gut microbiome profile and specific gut metabolic signatures related to tryptophan metabolism,
compared to patients who achieved alower level of drinking reduction (low responders). Our findings
highlight importance of baseline gut microbiome and metabolites in alcohol consumption and the

potential for development of microbiome signature to predict treatment response for AUD.



Results

Study participants

The demographic and clinical characteristics and relevant alcohol -related metadata of the 48 patients with
AUD included in the analysis are reported in Table 1. No significant differences in metadata distributions
were observed between the zonisamide and placebo treatment groups. Participants were overall 44%
female. Participant age ranged from 23 to 70 years with a median age of 56. More than half of the
participants identified as white/non-Hispanic. While a higher percentage of participants in the zonisamide
group dropped out of the study, there was a comparable number of completing participants in both
treatment groups. In total, 48 participants provided baseline stool samples. 32 participants completed the
study and have endpoint alcohol consumption and drinking reduction results. Of the completing

participants, 21 participants provided an endpoint stool sample.

From the entirety of the multi-site trial, mean drinks per day was significantly affected by zonisamide
treatment (Fz 1655 = 4.47, p=0.035) resulting in the placebo group reporting 0.72 (95% CI 0.54-0.93) more
drinks per day than the zonisamide group.® Zonisamide treatment was found to be more effective in male
participants with the zonisamide group reporting 43% fewer drinks per week than the placebo group.
Femal e participants did not show a significant difference in drinks per week between treatment group.
From the participants that provided stool samples used in this study, treatment (placebo group vs
zonisamide group) was not correlated with percent drinking reduction from average drinks per week at
baseline to average drinks per week over the last four weeks of the study reported at study endpoint
(ANOVA, p =0.3). Further, no significant correlation was found between percent drinking reduction and
any other study metadata except average drinks per week, which is used to calculate the percent drinking
reduction. Thus, treatment was not considered a confounding variable in the subsequent microbiome and

metabolomic analysis of stool samples.

Baseline microbiome composition is sex- and medication-linked

We first examined whether any demographic factors are associated with the baseline microbiome. Genus-
level composition did not vary between treatment groups or across the study duration (Supporting Figure
1). Alpha and beta diversity show no significant difference between groups (p > 0.1 for all comparisons,
Supporting Figures 2 & 3). Clear separation is observed in a PCoA plot of male and female microbiome
beta diversity (Fig 1a, 1c). This difference is confirmed by PERMANOVA analysis (p = 0.003, Figure 1a).
Linear discriminant analysis effect size analysis (LEfSe)* detected 13 genera showing significant
differences in relative abundance between female and mal e participants (Figure 1b). Bacteroides (LDA
Score = 4.46, p = 0.013) and Blautia (LDA Score = 4.46, p = 0.033) were the most overrepresented



generain female participants at baseline. Male participant microbiomes showed an overrepresentation of
Enterococcus (LDA Score = 3.81, p = 0.011) and \eillonella (LDA Score = 3.48, p = 0.025).

We also found the microbiome in psychotropic medication users clustered separately from non-usersin a
PCoA plot. Further, PERMANOVA analysis confirmed overall microbiome difference between these two
groups (p = 0.025, Figure 1¢). LEfSe analysis revealed that psychotropic medication promotes over-

representation of 11 genera (Figure 1d). Only 2 genera were over-represented in psychotropic medication

non-users.

Baseline microbiomeis associated with alcohol consumption

Results from the 32 participants that completed the study were used to explore correlation between
baseline microbiome and alcohol consumption at both baseline and endpoint as well as drinking reduction
over the course of the study after controlling for sex and psychotropic medication and adjusting for
multiple comparisons (Figure 2a). Eubacterium brachy group (p.adj = 0.05), Bilophila (p.adj = 0.09), and
Collinsella (p.adj = 0.06) were positively correlated with percent drinking reduction. Monoglobus (p.adj =
0.05), Roseburia (p.adj = 0.05), Lachnospiraceae ND3007 group (p.adj = 0.05), Subduogranulum (p. adj
=0.09), Akkermansia (p.adj = 0.08), and Faecalibaterium (p.adj = 0.06) were al negatively correlated

with percent drinking reduction.

In addition to self-reported alcohol consumption, serum biomarkers gamma-glutamyl transferase (GGT)
and phosphatidylethanol (PEth) were also measured at baseline and endpoint visits (Fig 2a). Correlations
between baseline microbiome and a cohol consumption-related biomarkers are largely unique from self-
reported endpoint average drinks per week and percent drinking reduction. Faecalibacterium (p.adj =
0.04) was negatively associated with baseline PEth and percent drinking reduction (p.adj = 0.06), but
positively correlated with endpoint average drinks per week (p.adj = 0.09). Clostridium sensu stricto 1was
positively correlated with baseline PEth (p.adj = 0.04) and negatively associated with endpoint average
drinks per week (p.adj = 0.09). Ruminococcus was positively correlated with baseline GGT (p.adj = 0.06).
It is of note that neither serum GGT and PEth levels nor baseline drinks per week were significantly
correlated with percent drinking reduction at thistrial site (Fisher’'s exact test, p >0.05 for all

comparisons).

Baseline microbiome composition differ s between high and low responders
Percent drinking reduction showed a high inter-subject variation (Figure 2b). To have a better

understanding the involvement of the microbiome in the “high vslow responders’, the spread of percent



drinking reduction across patients was broken into tertiles. Of the 32 completing participants, 10 had a
“high response” classified henceforth as percent drinking reduction of 67-100% (Figure 2b, blue circle).
Seven participants had a“low response” classified henceforth as percent drinking reduction of 0-33%
(Figure 2b, orange circle). High responders clustered separately from low responders from PCoA analysis
(Figure 2¢). Baseline microbiome composition varied significantly between the high and low responders
from PERMANOVA (p= 0.029). Alpha diversity was consistent between high and low responders
(Supporting Figure 4). Lef SE identified 7 generathat were significantly overrepresented in low
responders and 1 genus that was significantly overrepresented in high responders (Figure 2d). Many of
the generaidentified by Lef SE have previously been associated with alcohol consumption. CAG-56 is
significantly overrepresented in low responders (p.adj = 0.025) and shows a negative association trend
with percent drinking reduction (p.adj = 0.05). Eisenbergiella is overrepresented in high responder
baseline microbiome (p.adj = 0.034) and positively associated with percent drinking reduction (p.adj =
0.09).

Baseline GABA levelsin the stool are correlated with drinking reduction

The gut microbiome has been shown to modulate production of many neurotransmittersinvolved in AUD.
To understand the potential involvement of neuroactive potential of the gut microbiome in drinking
response, we predicted neuroactive compound production or degradation process based on the gut
microbiome using the gut-brain module (GBM) analysis. >~ We found a positive linear correlation
between percent drinking reduction and potentia for y-aminobutyric acid (GABA) degradation after
controlling for sex and psychotropic medication usage (Figure 3a, R = 0.439, p = 0.04, p.adj = 0.07).
GABA has been implicated in mediating craving and severity of alcohol use disorder and identified asa
potential target for intervention.>*>** Baseline stool GABA concentration was directly quantified via
ELISA to confirm the correlation observed from predicted GBM function. Stool GABA concentration
was found to be significantly positively correlated with drinking reduction (Figure 3b, R = 0.42, p = 0.04)
recapitulating the predicted metagenome functionality.

Baseline stool metabolomeis correlated with alcohol consumption

Given the strong assaciation between baseline stool GABA concentration and drinking reduction, we next
analyzed the baseline stool metabolome to determine additional correlations with alcohol consumption.
Baseline stool aiquots from 21 participants were subjected to untargeted metabolomicsvia LC-MS.
Annotated stool metabolite levels were used to explore correlations between baseline stool metabolites
and alcohol consumption collected as study metadata (Figure 3a). The metabolome was not significantly

associated with either sex or psychotropic medication usage. Allyl propionate, 3-D-galactosyl cholate,



glycyl-L-proline, GABA, and 2-pyrrolidone are all positively correlated with percent drinking reduction
with p.adj < 0.05. In addition to the consistent finding of the relationship between GABA and percent
drinking reduction (R = 0.470, p.adj = 0.05), 2-pyrrolidone, a biologically relevant cyclization product of
GABA,*” isalso positively correlated with percent drinking reduction (R = 0.434, p.adj = 0.05).

Stratifying the metabol ome results based on percent drinking reduction allowed us to determine
metabolites that varied between high and low responders. Of the 5,421 annotated metabolites, 1,788 had
CV < 20 and corresponding PubChem database entries and were used for subsequent analysis. 63
metabolites were found to differ between high and low responders after adjusting for multiple
comparisons (p.adj < 0.05, Kruskal-Wallis). We next performed metabolic pathway analysis using the
log2-fold change in low responders with respect to high responders and corresponding p-value after
adjusting for multiple comparisons (Kruskal-Wallis) (Figure 3b). Tryptophan catabolism is highly
significantly overrepresented in the low responder metabolome (p.adj = 1.2E-6, z-score = 1.069). Thisis
consistent with the predicted metagenome functional analysis that shows microbes with tryptophan
degradation functionality are enriched in low responders’ microbiome (Supporting Figure 5a, p.adj =
0.03). Cysteine degradation is highly significantly overrepresented in the high responder metabolome
(p.adj = 3.5E-4, z-score = -0.447) whereas cysteine synthesis is overrepresented in the low responder
metabolome (p.adj = 0.1, z-score = 2). Similarly, aanine synthesis is overrepresented in the high
responder metabolome (p.adj = 0.002, z-score = -1) while alanine metabolism and degradation are
overrepresented in the low responder metabolome (p.adj = 0.002, z-score = 1). The overall metabolomeis

not significantly different between high and low responders (Supporting Figure 5b).%



Discussion

In light of the recent interest in gut microbiome as both a diagnostic tool as well as a potential avenue for
treatment of AUD, we investigated the novel connection between baseline gut microbiome composition
and gut metabolitesin a zonisamide clinical trial. Across all participants, regardless of treatment, percent
drinking reduction was strongly correlated with baseline (ie before treatment) microbiome composition
and functionality. This difference appears to be driven by composition as opposed to microbial richness,
as adphadiversity isrelatively consistent across participants, but beta diversity differs widely. Individuals
with AUD are often reported to have lower alpha diversity as compared with healthy controls*®*’ but this
is not always the case.'*’ Thereis even | ess consensus on the relationship between AUD severity and

alphadiversity.

The variation in drinking reduction across patients from both placebo and treatment groups was binned
into tertiles to compare the highest and lowest responding participant microbiomes. Thereis a significant
difference in microbiota composition between patients that had a high response to the intervention (67-
100% reduction in drinking) and those that had alow response (0-33% reduction in drinking. At agenus
level, low responders had a higher relative abundance of Sutterella and Lachnoclostridium. Genera
positively correlated with drinking reduction in this study (Collinsella, Bilophila, and Eubacterium) have
been similarly found to be enriched in patients with AUD relative to healthy controls while Akkermansia
was depleted relative to healthy controls.”**’ In this study, we found that Akkermansia was negatively
correl ated with percent drinking reduction suggesting that alower abundance of Akkermansia may be

beneficial for reduced alcohol consumption.

Leclercq et al found a positive correlation between Akkermansia and quinolinic acid, a neurotoxic
tryptophan metabolite elevated during alcohol withdrawal.*® Tryptophan metabolism has been implicated
in systemic inflammation, depression, and craving in AUD.***° The potential involvement of
Akkermansia in the overrepresentation of tryptophan metabolism and the negative correlation between
Akkermansia rel ative abundance and percent drinking reduction further suggest that Akker mansia may be
detrimental in the heavy drinking. While Akkermansia has most often been discussed as a beneficial

microbe and target for probiotic supplementation,®>

recent study has indicated that Akkermansia may be
detrimental in the context of neuropsychiatric disorders.>**® The relationship between Akkermansia

abundance, tryptophan metabolism, and alcohol consumption is an area of potential future study.

Theideal composition of the gut microbiome is very difficult to conceptualize given the highly individual

and fluctuating nature of the gut microbiome. However, microbial metabolism of the collective gut



microbiome isrelatively conserved due to multiplicity of function and can lend insight into the various
metabolic niches that individual microbes may occupy. GABA is one such metabolite that is produced by
the gut microbiome and is also vital in the context of AUD. Microbial GABA production has an unclear
correlation to brain GABA concentrations.”® > Existing evidence suggests that the microbial GABA
production may contribute to circulating GABA levels, though it is believed that GABA itself does not
cross the blood brain barrier. Microbial GABA more likely indirectly influences the brain through the
vagus nerve without entering circulation. The GABA present in the gut may also arise from dietary
sources, but dietary GABA isrelatively low. GABA remains a strong target for AUD interventions.
Several medications that act directly or indirectly on GABA or glutamate receptors have been approved
for treatment of AUD.>***** Zonisamide itself is a GABAergic medication typically used in treating
epilepsy.% In our study, we consistently identified the positive correlation between GABA and drinking
reduction using three independent approaches, suggesting importance of gut-derived GABA in association
with alcohol consumption. Looking at the baseline microbiome production of GABA before starting

either placebo or a GABAergic treatment can provide valuable information.

Sex and psychotropic medication usage are significantly correlated with the composition of the baseline
microbiome. Sex-linked dimorphism in gut microbiome compoasition is well-established in both human
and animal models.***" The male microbiome typically has an increased relative abundance of
Bacteroidetes when comparing among healthy weight individuals,® but Haro et al found areversal of this
trend with increasing BM1.%® Similarly, Dong et al found a significant increase in Bacteroides and Blautia
abundance in women with BMI > 25 as compared with those under BMI 25.% Given that the cohort in
this study has a median BMI of 28.7, it is vital to consider the effects of western diet and obesity on the
expected sex-linked gut microbiome composition. Additionally, non-antibiotic medications are known to
alter the gut microbiome, though thereis not yet a clear consensus on the shifts caused by medication. ®"°
The correlations found in this study suggest that a microbiome closer to that found in healthy controls
might not necessarily be reflective of apositive intervention outcome. Our results suggest that regardless
of other contributing factors such as sex, medication usage, or study treatment (placebo or zonisamide)

baseline microbiome may play an important role in intervention outcome at an individual level.

This study presents several limitations. Small sample size is a consistent issue in microbiome-related
work given the large intra-individual variation in microbiome composition. Further, analysis of feca
metabolites without measurement of circulating metabolite concentrations limits the ability to draw
conclusions between microbiome function and host processes. Future studies with large sample size from

multiple clinical sites are warranted to verify the relationship between baseline microbiome and alcohol



consumption. Lastly, the study is an association study, and we cannot conclude a causal relationship
between the baseline microbiome and alcohol drinking reduction. Animal studies such as fecal microbiota
transplantation will alow to gain mechanistic understanding on contribution of the baseline microbiome

in reducing alcohol consumption.

In conclusion, our study identified important associations between baseline gut microbiome and gut-
derived GABA with acohol consumption reduction in aclinical trial. Screening baseline microbiome
composition and metabolites may hold significant value as a predictive tool in clinical settings to better
personalize intervention and improve reduction in acohol consumption, durability of behavioral changes,

and ultimately patient outcome.



M ethods

Human Trial

Patients were recruited from the community at three sites (two in Connecticut and onein Virginia) as part
of a double-blind, randomized, placebo-controlled study investigating the use of zonisamide in reducing
drinking (Clinica Trials.gov identifier: NCT02900352). Inclusion criterialimited patients to ages 21-70
who had regular heavy drinking, a current DSM-5 diagnosis of acohol use disorder, and a desire to
reduce or stop drinking. Potential patients who were currently lactating or with clinically significant
physical disease, seizure disorder, use of any medications that could affect drinking or cause harm,
schizophrenia, bipolar disorder, substantial risk of suicide or violence, opioid or benzodiazepine
dependence were excluded. Women of child-bearing age were required to practice areliable method of
birth control. Patients gave written consent to participate in the study and were financially compensated.
Patients were randomized into treatment and control groups matching for sex and current psychotropic
drug usage. The treatment group received flexibly titrated zonisamide over 7 weekly visits starting at 100
mg daily and increasing over the 8 weeks to a 500 mg daily maximum/200 mg daily minimum for the
remaining 8 weeks of the study. Medical management® served as a psychosocial intervention platform.
Timeline Follow-back Method”” was used to measure self-reported drinking including number of drinking
days during the 90-day pretreatment period and at each visit. Non-fasting serum PEth and GGT was
measured at baseline, midpoint, and endpoint visits to validate self-reported drinking.

Fisher's exact test was used to test the difference in demographic and clinical categorical variables
between zonisamide and placebo groups (Table 1). Kruskal-Wallis rank sum test was used for testing
continuous demographic and clinical variables. Percent drinking reduction was quantified as the
difference between self-reported drinks per week at baseline and average drinks per week over the last
four weeks of the study as calculated at study endpoint divided by the baseline self-reported drinks per
week.

16SrRNA Seguencing of Stool Samples

Stools were collected by participants at UConn Health site and stored on ice up to 24 h prior to baseline
and 16-week (endpoint) visits. Stool aliquots were prepared upon receipt at the clinical research center at
UConn Health and stored at -80_ until the time of analysis. Microbial DNA was isolated from stool
samples using the PowerSoil DNA Isolation kit (Qiagen) following manufacturer’s instructions. Bacterial
16S ribosomal RNA (rRNA) gene sequencing was performed on V4 hypervariable regions using 515F (5'-
GTGYCAGCMGCCGCGGTAA-3") and 806R (5'- GGACTACNVGGGTWTCTAAT-3') primers to



prepare an amplicon library that was purified using Zymo Select-a-Size MagBeads (Zymo), quantified
(Qubit 2.0 fluorimeter, Invitrogen), and pooled with equal masses added from each sample. Two
additional cleanup steps were performed on the initial pool again using Zymo Select-a-Size MagBeads
(Zymo). The pooled and purified library was sequenced on the Illumina MiSeq platform (I1lumina) using
2 x 250 bp, 500 cycles kits.

16SrRNA Data Processing and Analysis

Raw 16S rRNA sequencing reads were initially processed by bcl2fastg2 (v2.20) and RTA (v1.18.54.4)
software (I1lumina). Demultiplexed fastQ files were imported into the QIIME2 pipeline (version
2022.11).”®" The DADA2% plugin was used to denoise reads and remove chimeras using the consensus
method. Forward and reverse reads were truncated at position 250. All other parameters were set to
default. Samples were rarified to a sampling depth of 8800 reads/sample prior to aphaand beta diversity
analyses. The phylogeny was inferred using the align-to-tree-mafft-fasttree pipeline in QIIME2.
Taxonomy was assigned with pre-trained naive Bayesian classifier based on the SILVA reference database

V138.1 using the g2-feature-classifier plugin with a 0.5 confidence value cut-off.

Subsequent analysis of 16S rRNA sequencing datawas donein R (version 4.3.1) using RStudio interface
(version 2023.06.1).* and Qiime2R* and phyloseq® packages. ASV counts were aggregated at various
taxonomic levels (ie genus-level) and converted to relative abundance using the phyl oseq® and
MicroViz* packages. PERMANOVA (permutational multivariate analysis of variance) was performed
using the Adonis function in vegan package® to evaluate differences in beta diversity across metadata
variables. Principa coordinate analysis and visualization with 90% confidence intervals (stat_ellipse,
ggplot2®) were generated using microViz,* ggplot2,% and tidyverse® packagesin R. 7’ " Correlations
between genus-level relative abundance and metadata variables were tested using multiple linear
regression controlling for sex and psychotropic medication usage and adjusting p-values for multiple
comparisons using false discovery rate. An adjusted p-value <0.1 was considered statistically significant.
Linear discriminant analysis Effect Size (LEfSe)*® was performed using the corresponding galaxy module

with a significance cutoff of p-value <0.05.

Gut-Brain Module AnalysisBased on 16S Data

The ASVs for samples of interest was exported from R and used for subsequent phylogenetic
investigation of communities by reconstruction of unobserved states (PICRUSt) using PICRUSt2.%3% The
PICRUSE2 pipeline was run using picrust2_pipeline.py and add_descriptions.py. The resultant unstratified
KO metagenome predictions and their associated descriptions was subsequently used for predictive



functional analysis via gut-brain modules.>® Correlations between number of hits in each module and
metadata variables were tested using Spearman’s rank correlation with a significance cutoff of p-value
<0.05 after adjusting for sex and psychotropic medication usage and controlling for multiple comparisons.
Wilcoxon rank-sum tests were performed to compare the differences number of hitsin each module
between high-responder (67-100% drinking reduction) and low-responder (0-33% drinking reduction)
patients with a significance cutoff of p-value <0.05 after adjusting for sex and psychotropic medication

usage and controlling for multiple comparisons.

Untargeted L C-M SAnalysis of Stool M etabolome

~20 mg aliquots of stool samples from 21 participants that provided both baseline and endpoint stools
were subjected to untargeted LC-M S metabolomic analysis. Stool samples were homogenized in
homogenization buffer (80% methanol in PBS with 1.8105 mM “*Cs-lactate and 142 pM **Cs-glutamic
acid) prior to the addition of 800 uL homogenization buffer. Homogenized samples were incubated 30
min at -200 and subsequently sonicated for 30 min on ice. Debris was pelleted via centrifugation and 800
uL supernatant was dried under vacuum (CentriVap Concentrator, Labconco). The dried residue was
suspended in 150 uL 40% PBS/60% acetonitrile. A quality control sample was pooled from all study

samples.

The untargeted LC-M S metabol omic method was adapted from previously published methods.®*** In
summary, each sample was injected twice (10 uL for negative ionization mode, 4 pL for positive
ionization mode) onto an XBridge BEH Amide column (150 x 2.1 mm, 2.5 um particle size, Waters)
maintained at 400. Samples were maintained in an autosampler at 40. Mobile phase flow rate was 0.3
mL/min and was composed of MP A (5% acetonitrile in water, 10 mM ammonium acetate and ammonium
hydroxide) and MP B (95% acetonitrile in water, 10 mM ammonium acetate and ammonium hydroxide).
The mobile phase gradient is as follows: 1 min isocratic elution, 90% MP B; 10 min ramp to 40% MP B;
4 min hold at 40% MP B; ramp to 90% MP B prior to next injection. Untargeted data was collected from
70 to 1050 m/z using Thermo Vanquish UPLC-Exploris 240 Orbitrap M S instrument (Thermo Scientific)

eguipped with an electrospray ionization source.

Data were processed using Thermo Compound Discover 3.3 software (Thermo Scientific) for peak
picking, alignment, and normalization. Only peaks with CV <20% across quality control pools appearing
in >80% of all sampleswereincluded in all subsequent analysis. Identifications and annotations used
available datafor retention time, exact mass, and fragmentation & isotopic patterns. Data extraction

absolute intensity threshold was 1,000 and mass accuracy limit was 5 ppm. Peaks in the obtained MS



spectrawere annotated using an extensive in-house library of ~600 agueous metabolites in addition to the
HMDB library, LIPID MAPS database,**** METLIN database,”®" ChemSpider database™ and
commercial databases (mzCloud (HighChem LLC), Metabolika (Thermo Scientific)). Annotated
metabolites were used for downstream analysisin R, MetaboAnalyst,” and Ingenuity Pathway Analysis
(Qiagen). Correlations between normalized peak intensity and metadata variables were tested using
Spearman’s rank correlation coefficient. P-values were corrected for multiple comparisons using false
discovery rate. A subset of annotated metabolites with CV > 20 that were accessible in the PubChem
database (n = 1789) were used for IPA analysis. Log2-fold change of metabolitesin low-responders with
respect to high-responders and corresponding p-values (Kruskal-Wallis) were provided to Qiagen IPA
software.

Stool GABA Quantitation

~100 mg aliquats of stool samples from 31 participants that completed the study were analyzed for
GABA content using ELISA kit (LDN, Nordhorn, Germany) following manufacturer’sinstructions. Stool
was thawed and homogenized in 300 pL lysis solution (0.01N HCI, 1 mM EDTA, & 4 mM sodium
metabisulfite) (Thermo Fisher Scientific). Homogenized fecal slurry was clarified by centrifugation at
50009 for 10 min at 4[1 prior to subsequent use. In brief, clarified fecal slurry and standards (provided by
LDN) were extracted, derivatized, and incubated with antiserum. Derivatized samples and standards were
subjected to a quantitative ELISA read at 450 nmin a 96-well plate reader (iMark, Biorad). Absorbance
of derivatized standards was used to generate a standard curve that was used to quantify the experimental
samples. Correlation between percent drinking reduction and stool GABA content was tested using

Spearman’s rank correlation coefficient.
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Figure L egends

Table 1: Demographic and clinical metadata for participantsin our study.

Figure 1: Associations between baseline gut microbiome and clinical characteristics of the
participantsin the study. (a) Baseline microbiome composition varies based on sex with male and
femal e participants clustering separately in the PCoA plot (p = 0.003 by PERMANOVA based on Bray-
Curtis dissmilarity). (b) 13 genera overrepresented in male or femal e participant microbiomes. (C)
Baseline microbiome composition a so varies based on psychotropic medication usage (PERMANOVA, p
=0.025). (d) 13 genera overrepresented in psychotropic medication users and non-users.

Figure 2: Basdline gut micr obiome composition is associated with drinking reduction. (a) Genus-
level relative abundance is correlated with percent drinking reduction over the study duration, baseline
and endpoint alcohol consumption, and al cohol -related biomarkers PEth & GGT. Colors of the heatmap
represent correlation coefficients derived from the multiple linear regression analysis. An adjusted p value
isdenoted in the cell of the heatmap if the adjusted p valueislessthan 0.1 for agiven correlation

analysis. (b) Percent drinking reduction is largely varied across participants and can be broken into
tertiles. (c) The highest (percent drinking reduction 67-100%) and lowest (percent drinking reduction O-
33%) tertiles cluster separately in the PCoA plot (PERMANOVA p = 0.029). (d) 8 generasignificantly
overrepresented in the high- and low-responder groups.

Figure 3: Baseline gut metabolites are associated with percent drinking reduction and changein
alcohol-related biomarkers. (2) GABA degradation potential asidentified from predictive gut-brain
module analysis shows a positive linear relationship with percent drinking reduction controlling for sex
and psychotropic medication usage (R = 0.439, p.adj = 0.07). (b) Thisrelationship is recapitul ated by
direct measurements of stool GABA by an ELISA assay (R = 0.42, p = 0.04). (c) The stool metabolites
are correlated with percent drinking reduction, changesin alcohol -related biomarkers PEth and GGT.
Colors of the heatmap represent correlation coefficients derived from the multiple linear regression
analysis. An adjusted p value is denoted in the cell of the heatmap if the adjusted p valueislessthan 0.1
for agiven correlation analysis. (d) Baseline stool metabolic pathways associated with high- and |ow-
responders. Log2-fold change of metabolites that are significantly different between high- and low-
responders were used to construct metabolic pathways using Qiagen |PA software. Dat color indicates the
group: ablue dot indicates that the pathway is overrepresented in high responders, orange indicates
overrepresentation in low responders. Dot size corresponds to pathway z-score magnitude (ie larger dot
size corresponds to higher pathway representation).

Supplementary Figures

Supporting Figure 1: The averaged relative abundance of the gut microbiome at the genuslevel in
zonisamide and placebo groups at baseline and end point.

Supporting Figure 2: (a-b) PCoA plots and PERMANOVA analysis indicate the overall gut microbiome
community structure of participants remain the same before and after treatment in the two groups. (c-d)
PCoA plots and PERMANOVA analysis indicate the overall gut microbiome community structure of
participants of the two groups is similar at baseline or at end point.

Supporting Figure 3: Alphadiversity measures as described by observed OTUs and Shannon diversity
do not differ between treatment groups at baseline and endpoint visits.



Supporting Figure 4: Alphadiversity measures as described by observed OTUs and Shannon diversity
do not differ between high-(67-100% drinking reduction) and low-responder (0-33% drinking reduction)
groups.

Supporting Figure 5: (a) Tryptophan degradation identified by the gut-brain module analysisis
overrepresented in the low-responder group at both baseline and endpoint controlling for sex and
psychotropic medication usage (p.adj = 0.03). (b) The overall stool metabolome does not vary between
high- and low-responder groups at baseline and endpoint.
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Variable Overall, N = 48! Placebo, N = 24 Treated, N = 24 p-value
Completed study, n (%) 0.122
Completed 32(67%) 19 (79%) 13 (54%)
Dropped out 16 (33%) 5 (21%) 11 (46%)
Sex, n (%) 0.22
Male 27 (56%) 11 (46%) 16 (67%)
Female 21 (44%) 13 (54%) 8(33%)
Age, Median (IQR) 56 (50, 63) 54 (49, 59) 61 (52, 64) 0.103
Race, n (%) 0.22
White/Hispanic 4 (8.3%) 0 (0%) 4(17%)
White/Non-Hispanic 39 (81%) 21(88%) 18 (75%)
Black/Hispanic 1(2.1%) 1(4.2%) 0 (0%)
Black/Non-Hispanic 4(8.3%) 2(8.3%) 2(8.3%)
BMI, Median (IQR) 28.7(25.3,32.5) 29.6(26.5,33.2) 27.9(23.7,31.6) 03
Prescribed Psychotropic Medication, n (%) 21 (44%) 11 (46%) 10 (42%) >0.9
Smoker, n (%) 8 (17%) 4 (17%) 4(17%) >0.9
PEth, Median (IQR) 388 (145, 550) 350 (129, 609) 418 (225, 489) 08
GGT, Median (IQR) 41 (28, 84) 44 (29, 87) 40 (26, 57) 0.6
Total drinks in the 90 days prior to screening, Median (IQR) 457 (302, 557) 394 (269, 590) 483 (358, 540) 0.6
Average drinks per week at screening, Median (IQR) 36 (24, 43) 31 (21, 46) 38(28,42) 0.6
Average drinks per week during last 4 weeks of study, Median (IQR) 15(7,28) 10 (4, 26) 20 (14, 28) 0.2
Percent drinking reduction, Median (IQR) 57 (34, 87) 61 (36,91) 52 (29, 62) 0.2

n (%); Median (IQR)



