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Development and severity of alcohol use disorder (AUD) has been linked to variations in gut microbiota 
and their associated metabolites in both animal and human studies. However, the involvement of the gut 
microbiome in alcohol consumption of individuals with AUD undergoing treatment remains unclear. To 
address this, stool samples (n=48) were collected at screening (baseline) and trial completion from a 
single site of a multi-site double-blind, placebo-controlled trial of Zonisamide in individuals with AUD. 
Alcohol consumption, gamma-glutamyl transferase (GGT), and phosphatidylethanol (PEth)levels were 
measured both at baseline and endpoint of 16-week trial period. Fecal microbiome was analyzed via 16S 
rRNA sequencing and metabolome via untargeted LC-MS. Both sex (p = 0.003) and psychotropic 
medication usage (p = 0.025) are associated with baseline microbiome composition. The relative 
abundance of 12 genera at baseline was correlated with percent drinking reduction, baseline and endpoint 
alcohol consumption, and changes in GGT and PeTH over the course of treatment (p.adj < 0.05). Overall 
microbiome community structure at baseline differed between high and low responders (67-100% and 0-
33% drinking reduction, respectively; p = 0.03). A positive relationship between baseline fecal GABA 
levels and percent drinking reduction (R=0.43, p < 0.05) was identified by microbiome function 
prediction and confirmed by ELISA and metabolomics. Predicted microbiome function and metabolomics 
analysis have found that tryptophan metabolic pathways are over-represented in low responders. These 
findings highlight importance of baseline microbiome and metabolites in alcohol consumption in AUD 
patients undergoing zonisamide treatment. 
  



Introduction 

Alcohol use disorder (AUD) persists as a major global public health challenge. AUD causes a high 

disease burden accounting for over 5% of annual deaths globally.1,2 Chronic heavy alcohol consumption 

has been associated with higher risks of developing other chronic health conditions such as cancer, 

dementia, digestive disorders, and liver disease.3–6 Currently, three are three FDA-approved drugs to treat 

AUD, but their efficacy is limited. Several repurposed agents such as Zonisamide have shown to reduce 

alcohol consumption and craving in clinical trials. 7–9 However, the degree of reduction in alcohol 

consumption varies greatly among patients treated with the drug or placebo even after controlling for all 

available factors. The act of taking placebo medication and meeting regularly with a healthcare provider 

alone can significantly influence reduction in alcohol consumption.10 This differential response to 

treatment is common in many clinical trials including AUD, but underlying causes remain elusive. 

 

Recently, there has been growing interest in the bidirectional relationship between the development, 

progression, and treatment of AUD and the gut microbiome via the gut-brain axis. Both acute and chronic 

alcohol consumption are linked to a shift in microbiome composition favoring an overrepresentation of 

proinflammatory microbes and an underrepresentation of short-chain fatty acid-producing microbes.11–17 

During periods of heavy alcohol consumption, the production of short-chain fatty acids (SFCAs) are 

significantly decreased.11,16,18 These microbially-produced SCFAs influence various biological processes 

such as depression, anxiety, and craving,19–23 which are common comorbidities of AUD. Further, the 

administration of SCFAs has been shown to reduce drinking behavior in rodent models.23–26 The 

microbiome and its metabolites are not only responsive to alcohol consumption but also able to influence 

drinking behavior. The AUD-associated gut microbiome has been linked to increased alcohol 

consumption,27,28 depression, anxiety, alcohol craving, and possibility of relapse.7,24–28 Manipulation of the 

microbiome has been shown to modify alcohol consumption in both animal models and humans. 

Antibiotic treatment increased binge drinking in mice29 but decreased binge drinking in rats.30 In rats, 

fecal microbiota transplantation from alcohol consuming donor rats increased voluntary drinking in naïve 

recipients, but this increase was subsequently reversed by antibiotic treatment.27 Fecal microbiota 

transplantation from healthy donors without AUD to patients with AUD has proven to be a promising 

route for treatment of AUD and AUD-associated health problems.23,29  

 

The baseline gut microbiome has been found to play an important role in response to cancer therapy,31 

nutritional intervention32 and efficacity of SARS-CoV-2 vaccines.33,34 However, whether the importance 

of baseline gut microbiome in alcohol drinking behavior in AUD patients undergoing treatment has not 

been investigated. We hypothesize that the gut microbiome and metabolites at baseline before treatment 



intervention are important factors influencing alcohol drinking behavior. To test this hypothesis, we 

leverage a randomized, placebo-controlled, double-blind clinical trial (ClinicalTrials.gov identifier: 

NCT02900352) recently completely by our research team testing effect of Zonisamide treatment of heavy 

drinking alcoholic civilians. Using 16S rRNA gene sequencing and untargeted metabolomics, we show 

reduction in alcohol consumption between baseline and endpoint visits of the clinical trial is significantly 

correlated with composition of the baseline microbiome and levels of specific gut metabolite such as 

GABA. Patients who achieved a high level of drinking reduction during the trial (high responders) had a 

distinct gut microbiome profile and specific gut metabolic signatures related to tryptophan metabolism, 

compared to patients who achieved a lower level of drinking reduction (low responders). Our findings 

highlight importance of baseline gut microbiome and metabolites in alcohol consumption and the 

potential for development of microbiome signature to predict treatment response for AUD. 



Results 

Study participants 

The demographic and clinical characteristics and relevant alcohol-related metadata of the 48 patients with 

AUD included in the analysis are reported in Table 1. No significant differences in metadata distributions 

were observed between the zonisamide and placebo treatment groups. Participants were overall 44% 

female. Participant age ranged from 23 to 70 years with a median age of 56. More than half of the 

participants identified as white/non-Hispanic. While a higher percentage of participants in the zonisamide 

group dropped out of the study, there was a comparable number of completing participants in both 

treatment groups. In total, 48 participants provided baseline stool samples. 32 participants completed the 

study and have endpoint alcohol consumption and drinking reduction results. Of the completing 

participants, 21 participants provided an endpoint stool sample.  

 

From the entirety of the multi-site trial, mean drinks per day was significantly affected by zonisamide 

treatment (F(3,1655) = 4.47, p=0.035) resulting in the placebo group reporting 0.72 (95% CI 0.54-0.93) more 

drinks per day than the zonisamide group.35 Zonisamide treatment was found to be more effective in male 

participants with the zonisamide group reporting 43% fewer drinks per week than the placebo group. 

Female participants did not show a significant difference in drinks per week between treatment group. 

From the participants that provided stool samples used in this study, treatment (placebo group vs 

zonisamide group) was not correlated with percent drinking reduction from average drinks per week at 

baseline to average drinks per week over the last four weeks of the study reported at study endpoint 

(ANOVA, p = 0.3). Further, no significant correlation was found between percent drinking reduction and 

any other study metadata except average drinks per week, which is used to calculate the percent drinking 

reduction. Thus, treatment was not considered a confounding variable in the subsequent microbiome and 

metabolomic analysis of stool samples. 

 

Baseline microbiome composition is sex- and medication-linked 

We first examined whether any demographic factors are associated with the baseline microbiome. Genus-

level composition did not vary between treatment groups or across the study duration (Supporting Figure 

1). Alpha and beta diversity show no significant difference between groups (p > 0.1 for all comparisons, 

Supporting Figures 2 & 3). Clear separation is observed in a PCoA plot of male and female microbiome 

beta diversity (Fig 1a, 1c). This difference is confirmed by PERMANOVA analysis (p = 0.003, Figure 1a). 

Linear discriminant analysis effect size analysis (LEfSe)36 detected 13 genera showing significant 

differences in relative abundance between female and male participants (Figure 1b). Bacteroides (LDA 

Score = 4.46, p = 0.013) and Blautia (LDA Score = 4.46, p = 0.033) were the most overrepresented 



genera in female participants at baseline. Male participant microbiomes showed an overrepresentation of 

Enterococcus (LDA Score = 3.81, p = 0.011) and Veillonella (LDA Score = 3.48, p = 0.025).  

 

We also found the microbiome in psychotropic medication users clustered separately from non-users in a 

PCoA plot. Further, PERMANOVA analysis confirmed overall microbiome difference between these two 

groups (p = 0.025, Figure 1c). LEfSe analysis revealed that psychotropic medication promotes over-

representation of 11 genera (Figure 1d). Only 2 genera were over-represented in psychotropic medication 

non-users. 

 

Baseline microbiome is associated with alcohol consumption  

Results from the 32 participants that completed the study were used to explore correlation between 

baseline microbiome and alcohol consumption at both baseline and endpoint as well as drinking reduction 

over the course of the study after controlling for sex and psychotropic medication and adjusting for 

multiple comparisons (Figure 2a). Eubacterium brachy group (p.adj = 0.05), Bilophila (p.adj = 0.09), and 

Collinsella (p.adj = 0.06) were positively correlated with percent drinking reduction. Monoglobus (p.adj = 

0.05), Roseburia (p.adj = 0.05), Lachnospiraceae ND3007 group (p.adj = 0.05), Subduogranulum (p. adj 

= 0.09), Akkermansia (p.adj = 0.08), and Faecalibaterium (p.adj = 0.06) were all negatively correlated 

with percent drinking reduction. 

  

In addition to self-reported alcohol consumption, serum biomarkers gamma-glutamyl transferase (GGT) 

and phosphatidylethanol (PEth) were also measured at baseline and endpoint visits (Fig 2a). Correlations 

between baseline microbiome and alcohol consumption-related biomarkers are largely unique from self-

reported endpoint average drinks per week and percent drinking reduction. Faecalibacterium (p.adj = 

0.04) was negatively associated with baseline PEth and percent drinking reduction (p.adj = 0.06), but 

positively correlated with endpoint average drinks per week (p.adj = 0.09). Clostridium sensu stricto 1was 

positively correlated with baseline PEth (p.adj = 0.04) and negatively associated with endpoint average 

drinks per week (p.adj = 0.09). Ruminococcus was positively correlated with baseline GGT (p.adj = 0.06). 

It is of note that neither serum GGT and PEth levels nor baseline drinks per week were significantly 

correlated with percent drinking reduction at this trial site (Fisher’s exact test, p >0.05 for all 

comparisons).  

 

Baseline microbiome composition differs between high and low responders  

Percent drinking reduction showed a high inter-subject variation (Figure 2b). To have a better 

understanding the involvement of the microbiome in the “high vs low responders”, the spread of percent 



drinking reduction across patients was broken into tertiles. Of the 32 completing participants, 10 had a 

“high response” classified henceforth as percent drinking reduction of 67-100% (Figure 2b, blue circle). 

Seven participants had a “low response” classified henceforth as percent drinking reduction of 0-33% 

(Figure 2b, orange circle). High responders clustered separately from low responders from PCoA analysis 

(Figure 2c). Baseline microbiome composition varied significantly between the high and low responders 

from PERMANOVA (p= 0.029). Alpha diversity was consistent between high and low responders 

(Supporting Figure 4). LefSE identified 7 genera that were significantly overrepresented in low 

responders and 1 genus that was significantly overrepresented in high responders (Figure 2d). Many of 

the genera identified by LefSE have previously been associated with alcohol consumption. CAG-56 is 

significantly overrepresented in low responders (p.adj = 0.025) and shows a negative association trend 

with percent drinking reduction (p.adj = 0.05). Eisenbergiella is overrepresented in high responder 

baseline microbiome (p.adj = 0.034) and positively associated with percent drinking reduction (p.adj = 

0.09).  

 

Baseline GABA levels in the stool are correlated with drinking reduction 

The gut microbiome has been shown to modulate production of many neurotransmitters involved in AUD. 

To understand the potential involvement of neuroactive potential of the gut microbiome in drinking 

response, we predicted neuroactive compound production or degradation process based on the gut 

microbiome using the gut-brain module (GBM) analysis. 37–39 We found a positive linear correlation 

between percent drinking reduction and potential for γ-aminobutyric acid (GABA) degradation after 

controlling for sex and psychotropic medication usage (Figure 3a, R = 0.439, p = 0.04, p.adj = 0.07). 

GABA has been implicated in mediating craving and severity of alcohol use disorder and identified as a 

potential target for intervention.2,40–44 Baseline stool GABA concentration was directly quantified via 

ELISA to confirm the correlation observed from predicted GBM function. Stool GABA concentration 

was found to be significantly positively correlated with drinking reduction (Figure 3b, R = 0.42, p = 0.04) 

recapitulating the predicted metagenome functionality. 

 

Baseline stool metabolome is correlated with alcohol consumption 

Given the strong association between baseline stool GABA concentration and drinking reduction, we next 

analyzed the baseline stool metabolome to determine additional correlations with alcohol consumption. 

Baseline stool aliquots from 21 participants were subjected to untargeted metabolomics via LC-MS. 

Annotated stool metabolite levels were used to explore correlations between baseline stool metabolites 

and alcohol consumption collected as study metadata (Figure 3a). The metabolome was not significantly 

associated with either sex or psychotropic medication usage. Allyl propionate, β-D-galactosyl cholate, 



glycyl-L-proline, GABA, and 2-pyrrolidone are all positively correlated with percent drinking reduction 

with p.adj < 0.05. In addition to the consistent finding of the relationship between GABA and percent 

drinking reduction (R = 0.470, p.adj = 0.05), 2-pyrrolidone, a biologically relevant cyclization product of 

GABA,45 is also positively correlated with percent drinking reduction (R = 0.434, p.adj = 0.05). 

 

Stratifying the metabolome results based on percent drinking reduction allowed us to determine 

metabolites that varied between high and low responders. Of the 5,421 annotated metabolites, 1,788 had 

CV < 20 and corresponding PubChem database entries and were used for subsequent analysis. 63 

metabolites were found to differ between high and low responders after adjusting for multiple 

comparisons (p.adj < 0.05, Kruskal-Wallis). We next performed metabolic pathway analysis using the 

log2-fold change in low responders with respect to high responders and corresponding p-value after 

adjusting for multiple comparisons (Kruskal-Wallis) (Figure 3b). Tryptophan catabolism is highly 

significantly overrepresented in the low responder metabolome (p.adj = 1.2E-6, z-score = 1.069). This is 

consistent with the predicted metagenome functional analysis that shows microbes with tryptophan 

degradation functionality are enriched in low responders’ microbiome (Supporting Figure 5a, p.adj = 

0.03). Cysteine degradation is highly significantly overrepresented in the high responder metabolome 

(p.adj = 3.5E-4, z-score = -0.447) whereas cysteine synthesis is overrepresented in the low responder 

metabolome (p.adj = 0.1, z-score = 2). Similarly, alanine synthesis is overrepresented in the high 

responder metabolome (p.adj = 0.002, z-score = -1) while alanine metabolism and degradation are 

overrepresented in the low responder metabolome (p.adj = 0.002, z-score = 1). The overall metabolome is 

not significantly different between high and low responders (Supporting Figure 5b).31 



Discussion 

In light of the recent interest in gut microbiome as both a diagnostic tool as well as a potential avenue for 

treatment of AUD, we investigated the novel connection between baseline gut microbiome composition 

and gut metabolites in a zonisamide clinical trial. Across all participants, regardless of treatment, percent 

drinking reduction was strongly correlated with baseline (ie before treatment) microbiome composition 

and functionality. This difference appears to be driven by composition as opposed to microbial richness, 

as alpha diversity is relatively consistent across participants, but beta diversity differs widely. Individuals 

with AUD are often reported to have lower alpha diversity as compared with healthy controls46,47 but this 

is not always the case.17,27 There is even less consensus on the relationship between AUD severity and 

alpha diversity.  

 

The variation in drinking reduction across patients from both placebo and treatment groups was binned 

into tertiles to compare the highest and lowest responding participant microbiomes. There is a significant 

difference in microbiota composition between patients that had a high response to the intervention (67-

100% reduction in drinking) and those that had a low response (0-33% reduction in drinking. At a genus 

level, low responders had a higher relative abundance of Sutterella and Lachnoclostridium. Genera 

positively correlated with drinking reduction in this study (Collinsella, Bilophila, and Eubacterium) have 

been similarly found to be enriched in patients with AUD relative to healthy controls while Akkermansia 

was depleted relative to healthy controls.46,47 In this study, we found that Akkermansia was negatively 

correlated with percent drinking reduction suggesting that a lower abundance of Akkermansia may be 

beneficial for reduced alcohol consumption. 

 

Leclercq et al found a positive correlation between Akkermansia and quinolinic acid, a neurotoxic 

tryptophan metabolite elevated during alcohol withdrawal.48 Tryptophan metabolism has been implicated 

in systemic inflammation, depression, and craving in AUD.48–50 The potential involvement of 

Akkermansia in the overrepresentation of tryptophan metabolism and the negative correlation between 

Akkermansia relative abundance and percent drinking reduction further suggest that Akkermansia may be 

detrimental in the heavy drinking. While Akkermansia has most often been discussed as a beneficial 

microbe and target for probiotic supplementation,51–53 recent study has indicated that Akkermansia may be 

detrimental in the context of neuropsychiatric disorders.54,55 The relationship between Akkermansia 

abundance, tryptophan metabolism, and alcohol consumption is an area of potential future study. 

 

The ideal composition of the gut microbiome is very difficult to conceptualize given the highly individual 

and fluctuating nature of the gut microbiome. However, microbial metabolism of the collective gut 



microbiome is relatively conserved due to multiplicity of function and can lend insight into the various 

metabolic niches that individual microbes may occupy. GABA is one such metabolite that is produced by 

the gut microbiome and is also vital in the context of AUD. Microbial GABA production has an unclear 

correlation to brain GABA concentrations.56–58 Existing evidence suggests that the microbial GABA 

production may contribute to circulating GABA levels, though it is believed that GABA itself does not 

cross the blood brain barrier. Microbial GABA more likely indirectly influences the brain through the 

vagus nerve without entering circulation. The GABA present in the gut may also arise from dietary 

sources, but dietary GABA is relatively low. GABA remains a strong target for AUD interventions. 

Several medications that act directly or indirectly on GABA or glutamate receptors have been approved 

for treatment of AUD.2,40,43,59 Zonisamide itself is a GABAergic medication typically used in treating 

epilepsy.60 In our study, we consistently identified the positive correlation between GABA and drinking 

reduction using three independent approaches, suggesting importance of gut-derived GABA in association 

with alcohol consumption. Looking at the baseline microbiome production of GABA before starting 

either placebo or a GABAergic treatment can provide valuable information. 

 

Sex and psychotropic medication usage are significantly correlated with the composition of the baseline 

microbiome. Sex-linked dimorphism in gut microbiome composition is well-established in both human 

and animal models.61–67 The male microbiome typically has an increased relative abundance of 

Bacteroidetes when comparing among healthy weight individuals,65 but Haro et al found a reversal of this 

trend with increasing BMI.63 Similarly, Dong et al found a significant increase in Bacteroides and Blautia 

abundance in women with BMI ≥ 25 as compared with those under BMI 25.68 Given that the cohort in 

this study has a median BMI of 28.7, it is vital to consider the effects of western diet and obesity on the 

expected sex-linked gut microbiome composition. Additionally, non-antibiotic medications are known to 

alter the gut microbiome, though there is not yet a clear consensus on the shifts caused by medication. 69–75 

The correlations found in this study suggest that a microbiome closer to that found in healthy controls 

might not necessarily be reflective of a positive intervention outcome. Our results suggest that regardless 

of other contributing factors such as sex, medication usage, or study treatment (placebo or zonisamide) 

baseline microbiome may play an important role in intervention outcome at an individual level. 

 

This study presents several limitations. Small sample size is a consistent issue in microbiome-related 

work given the large intra-individual variation in microbiome composition. Further, analysis of fecal 

metabolites without measurement of circulating metabolite concentrations limits the ability to draw 

conclusions between microbiome function and host processes. Future studies with large sample size from 

multiple clinical sites are warranted to verify the relationship between baseline microbiome and alcohol 



consumption. Lastly, the study is an association study, and we cannot conclude a causal relationship 

between the baseline microbiome and alcohol drinking reduction. Animal studies such as fecal microbiota 

transplantation will allow to gain mechanistic understanding on contribution of the baseline microbiome 

in reducing alcohol consumption.  

 

In conclusion, our study identified important associations between baseline gut microbiome and gut-

derived GABA with alcohol consumption reduction in a clinical trial. Screening baseline microbiome 

composition and metabolites may hold significant value as a predictive tool in clinical settings to better 

personalize intervention and improve reduction in alcohol consumption, durability of behavioral changes, 

and ultimately patient outcome.  



Methods 

 

Human Trial 

Patients were recruited from the community at three sites (two in Connecticut and one in Virginia) as part 

of a double-blind, randomized, placebo-controlled study investigating the use of zonisamide in reducing 

drinking (ClinicalTrials.gov identifier: NCT02900352). Inclusion criteria limited patients to ages 21-70 

who had regular heavy drinking, a current DSM-5 diagnosis of alcohol use disorder, and a desire to 

reduce or stop drinking. Potential patients who were currently lactating or with clinically significant 

physical disease, seizure disorder, use of any medications that could affect drinking or cause harm, 

schizophrenia, bipolar disorder, substantial risk of suicide or violence, opioid or benzodiazepine 

dependence were excluded. Women of child-bearing age were required to practice a reliable method of 

birth control. Patients gave written consent to participate in the study and were financially compensated. 

Patients were randomized into treatment and control groups matching for sex and current psychotropic 

drug usage. The treatment group received flexibly titrated zonisamide over 7 weekly visits starting at 100 

mg daily and increasing over the 8 weeks to a 500 mg daily maximum/200 mg daily minimum for the 

remaining 8 weeks of the study. Medical management76 served as a psychosocial intervention platform. 

Timeline Follow-back Method77 was used to measure self-reported drinking including number of drinking 

days during the 90-day pretreatment period and at each visit. Non-fasting serum PEth and GGT was 

measured at baseline, midpoint, and endpoint visits to validate self-reported drinking.  

Fisher’s exact test was used to test the difference in demographic and clinical categorical variables 

between zonisamide and placebo groups (Table 1). Kruskal-Wallis rank sum test was used for testing 

continuous demographic and clinical variables. Percent drinking reduction was quantified as the 

difference between self-reported drinks per week at baseline and average drinks per week over the last 

four weeks of the study as calculated at study endpoint divided by the baseline self-reported drinks per 

week. 

 

 

16S rRNA Sequencing of Stool Samples 

Stools were collected by participants at UConn Health site and stored on ice up to 24 h prior to baseline 

and 16-week (endpoint) visits. Stool aliquots were prepared upon receipt at the clinical research center at 

UConn Health and stored at -80� until the time of analysis. Microbial DNA was isolated from stool 

samples using the PowerSoil DNA Isolation kit (Qiagen) following manufacturer’s instructions. Bacterial 

16S ribosomal RNA (rRNA) gene sequencing was performed on V4 hypervariable regions using 515F (5'- 

GTGYCAGCMGCCGCGGTAA-3') and 806R (5'- GGACTACNVGGGTWTCTAAT-3') primers to 



prepare an amplicon library that was purified using Zymo Select-a-Size MagBeads (Zymo), quantified 

(Qubit 2.0 fluorimeter, Invitrogen), and pooled with equal masses added from each sample. Two 

additional cleanup steps were performed on the initial pool again using Zymo Select-a-Size MagBeads 

(Zymo). The pooled and purified library was sequenced on the Illumina MiSeq platform (Illumina) using 

2 × 250 bp, 500 cycles kits. 

 

16S rRNA Data Processing and Analysis 

Raw 16S rRNA sequencing reads were initially processed by bcl2fastq2 (v2.20) and RTA (v1.18.54.4) 

software (Illumina). Demultiplexed fastQ files were imported into the QIIME2 pipeline (version 

2022.11).78,79 The DADA280 plugin was used to denoise reads and remove chimeras using the consensus 

method. Forward and reverse reads were truncated at position 250. All other parameters were set to 

default. Samples were rarified to a sampling depth of 8800 reads/sample prior to alpha and beta diversity 

analyses. The phylogeny was inferred using the align-to-tree-mafft-fasttree pipeline in QIIME2. 

Taxonomy was assigned with pre-trained naïve Bayesian classifier based on the SILVA reference database 

V138.1 using the q2-feature-classifier plugin with a 0.5 confidence value cut-off.  

 

Subsequent analysis of 16S rRNA sequencing data was done in R (version 4.3.1) using RStudio interface 

(version 2023.06.1).81 and Qiime2R82 and phyloseq83 packages. ASV counts were aggregated at various 

taxonomic levels (ie genus-level) and converted to relative abundance using the phyloseq83 and 

MicroViz84 packages. PERMANOVA (permutational multivariate analysis of variance) was performed 

using the Adonis function in vegan package85 to evaluate differences in beta diversity across metadata 

variables. Principal coordinate analysis and visualization with 90% confidence intervals (stat_ellipse, 

ggplot286) were generated using microViz,84 ggplot2,86 and tidyverse87 packages in R. 77 78 Correlations 

between genus-level relative abundance and metadata variables were tested using multiple linear 

regression controlling for sex and psychotropic medication usage and adjusting p-values for multiple 

comparisons using false discovery rate. An adjusted p-value <0.1 was considered statistically significant. 

Linear discriminant analysis Effect Size (LEfSe)36 was performed using the corresponding galaxy module 

with a significance cutoff of p-value <0.05. 

 

Gut-Brain Module Analysis Based on 16S Data 

The ASVs for samples of interest was exported from R and used for subsequent phylogenetic 

investigation of communities by reconstruction of unobserved states (PICRUSt) using PICRUSt2.38,39 The 

PICRUSt2 pipeline was run using picrust2_pipeline.py and add_descriptions.py. The resultant unstratified 

KO metagenome predictions and their associated descriptions was subsequently used for predictive 



functional analysis via gut-brain modules.56 Correlations between number of hits in each module and 

metadata variables were tested using Spearman’s rank correlation with a significance cutoff of p-value 

<0.05 after adjusting for sex and psychotropic medication usage and controlling for multiple comparisons. 

Wilcoxon rank-sum tests were performed to compare the differences number of hits in each module 

between high-responder (67-100% drinking reduction) and low-responder (0-33% drinking reduction) 

patients with a significance cutoff of p-value <0.05 after adjusting for sex and psychotropic medication 

usage and controlling for multiple comparisons. 

 

Untargeted LC-MS Analysis of Stool Metabolome 

~20 mg aliquots of stool samples from 21 participants that provided both baseline and endpoint stools 

were subjected to untargeted LC-MS metabolomic analysis. Stool samples were homogenized in 

homogenization buffer (80% methanol in PBS with 1.8105 mM 13C3-lactate and 142 μM 13C5-glutamic 

acid) prior to the addition of 800 μL homogenization buffer. Homogenized samples were incubated 30 

min at -20� and subsequently sonicated for 30 min on ice. Debris was pelleted via centrifugation and 800 

μL supernatant was dried under vacuum (CentriVap Concentrator, Labconco). The dried residue was 

suspended in 150 μL 40% PBS/60% acetonitrile. A quality control sample was pooled from all study 

samples. 

 

The untargeted LC-MS metabolomic method was adapted from previously published methods.88–92 In 

summary, each sample was injected twice (10 μL for negative ionization mode, 4 μL for positive 

ionization mode) onto an XBridge BEH Amide column (150 x 2.1 mm, 2.5 µm particle size, Waters) 

maintained at 40�. Samples were maintained in an autosampler at 4�. Mobile phase flow rate was 0.3 

mL/min and was composed of MP A (5% acetonitrile in water, 10 mM ammonium acetate and ammonium 

hydroxide) and MP B (95% acetonitrile in water, 10 mM ammonium acetate and ammonium hydroxide). 

The mobile phase gradient is as follows: 1 min isocratic elution, 90% MP B; 10 min ramp to 40% MP B; 

4 min hold at 40% MP B; ramp to 90% MP B prior to next injection. Untargeted data was collected from 

70 to 1050 m/z using Thermo Vanquish UPLC-Exploris 240 Orbitrap MS instrument (Thermo Scientific) 

equipped with an electrospray ionization source. 

 

Data were processed using Thermo Compound Discover 3.3 software (Thermo Scientific) for peak 

picking, alignment, and normalization. Only peaks with CV <20% across quality control pools appearing 

in >80% of all samples were included in all subsequent analysis. Identifications and annotations used 

available data for retention time, exact mass, and fragmentation & isotopic patterns. Data extraction 

absolute intensity threshold was 1,000 and mass accuracy limit was 5 ppm. Peaks in the obtained MS 



spectra were annotated using an extensive in-house library of ~600 aqueous metabolites in addition to the 

HMDB library, LIPID MAPS database,93,94 METLIN database,95–97 ChemSpider database98 and 

commercial databases (mzCloud (HighChem LLC), Metabolika (Thermo Scientific)). Annotated 

metabolites were used for downstream analysis in R, MetaboAnalyst,99 and Ingenuity Pathway Analysis 

(Qiagen). Correlations between normalized peak intensity and metadata variables were tested using 

Spearman’s rank correlation coefficient. P-values were corrected for multiple comparisons using false 

discovery rate. A subset of annotated metabolites with CV > 20 that were accessible in the PubChem 

database (n = 1789) were used for IPA analysis. Log2-fold change of metabolites in low-responders with 

respect to high-responders and corresponding p-values (Kruskal-Wallis) were provided to Qiagen IPA 

software. 

 

Stool GABA Quantitation 

~100 mg aliquots of stool samples from 31 participants that completed the study were analyzed for 

GABA content using ELISA kit (LDN, Nordhorn, Germany) following manufacturer’s instructions. Stool 

was thawed and homogenized in 300 μL lysis solution (0.01N HCl, 1 mM EDTA, & 4 mM sodium 

metabisulfite) (Thermo Fisher Scientific). Homogenized fecal slurry was clarified by centrifugation at 

5000g for 10 min at 4� prior to subsequent use. In brief, clarified fecal slurry and standards (provided by 

LDN) were extracted, derivatized, and incubated with antiserum. Derivatized samples and standards were 

subjected to a quantitative ELISA read at 450 nm in a 96-well plate reader (iMark, Biorad). Absorbance 

of derivatized standards was used to generate a standard curve that was used to quantify the experimental 

samples. Correlation between percent drinking reduction and stool GABA content was tested using 

Spearman’s rank correlation coefficient. 
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Figure Legends 
 
Table 1: Demographic and clinical metadata for participants in our study. 
 
Figure 1: Associations between baseline gut microbiome and clinical characteristics of the 
participants in the study. (a) Baseline microbiome composition varies based on sex with male and 
female participants clustering separately in the PCoA plot (p = 0.003 by PERMANOVA based on Bray-
Curtis dissimilarity). (b) 13 genera overrepresented in male or female participant microbiomes. (c) 
Baseline microbiome composition also varies based on psychotropic medication usage (PERMANOVA, p 
= 0.025). (d) 13 genera overrepresented in psychotropic medication users and non-users. 
 
Figure 2: Baseline gut microbiome composition is associated with drinking reduction. (a) Genus-
level relative abundance is correlated with percent drinking reduction over the study duration, baseline 
and endpoint alcohol consumption, and alcohol-related biomarkers PEth & GGT. Colors of the heatmap 
represent correlation coefficients derived from the multiple linear regression analysis. An adjusted p value 
is denoted in the cell of the heatmap if the adjusted p value is less than 0.1 for a given correlation 
analysis. (b) Percent drinking reduction is largely varied across participants and can be broken into 
tertiles. (c) The highest (percent drinking reduction 67-100%) and lowest (percent drinking reduction 0-
33%) tertiles cluster separately in the PCoA plot (PERMANOVA p = 0.029). (d) 8 genera significantly 
overrepresented in the high- and low-responder groups. 
 
Figure 3: Baseline gut metabolites are associated with percent drinking reduction and change in 
alcohol-related biomarkers. (a) GABA degradation potential as identified from predictive gut-brain 
module analysis shows a positive linear relationship with percent drinking reduction controlling for sex 
and psychotropic medication usage (R = 0.439, p.adj = 0.07). (b) This relationship is recapitulated by 
direct measurements of stool GABA by an ELISA assay (R = 0.42, p = 0.04). (c) The stool metabolites 
are correlated with percent drinking reduction, changes in alcohol-related biomarkers PEth and GGT. 
Colors of the heatmap represent correlation coefficients derived from the multiple linear regression 
analysis. An adjusted p value is denoted in the cell of the heatmap if the adjusted p value is less than 0.1 
for a given correlation analysis. (d) Baseline stool metabolic pathways associated with high- and low-
responders. Log2-fold change of metabolites that are significantly different between high- and low-
responders were used to construct metabolic pathways using Qiagen IPA software. Dot color indicates the 
group: a blue dot indicates that the pathway is overrepresented in high responders, orange indicates 
overrepresentation in low responders. Dot size corresponds to pathway z-score magnitude (ie larger dot 
size corresponds to higher pathway representation). 
 
Supplementary Figures 
 
Supporting Figure 1: The averaged relative abundance of the gut microbiome at the genus level in 
zonisamide and placebo groups at baseline and end point.  
 
Supporting Figure 2: (a-b) PCoA plots and PERMANOVA analysis indicate the overall gut microbiome 
community structure of participants remain the same before and after treatment in the two groups. (c-d) 
PCoA plots and PERMANOVA analysis indicate the overall gut microbiome community structure of 
participants of the two groups is similar at baseline or at end point.  
 
Supporting Figure 3: Alpha diversity measures as described by observed OTUs and Shannon diversity 
do not differ between treatment groups at baseline and endpoint visits. 
 



Supporting Figure 4: Alpha diversity measures as described by observed OTUs and Shannon diversity 
do not differ between high-(67-100% drinking reduction) and low-responder (0-33% drinking reduction) 
groups. 
 
Supporting Figure 5: (a) Tryptophan degradation identified by the gut-brain module analysis is 
overrepresented in the low-responder group at both baseline and endpoint controlling for sex and 
psychotropic medication usage (p.adj = 0.03). (b) The overall stool metabolome does not vary between 
high- and low-responder groups at baseline and endpoint. 




















