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Abstract 

 

Oral epithelial dysplasia (OED) poses a significant clinical challenge due to its potential for 

malignant transformation and the lack of reliable prognostic markers. Current grading systems 

for OED may not be reliable for prediction of malignant transformation and suffer from 

considerable inter- and intra-rater variability, potentially leading to suboptimal treatment 

decisions. Recent studies have highlighted the potential prognostic significance of peri-

epithelial lymphocytes (PELs) in malignant transformation, with suggestions that intra-

epithelial lymphocytes (IELs) may also play a role. In this study, we propose a novel artificial 

intelligence (AI)  based  IEL score from Haematoxylin and Eosin (H&E) stained Whole Slide 

Images (WSIs) of OED tissue slides. We further determine the prognostic value of our IEL 

score on a large digital dataset of 219 OED WSIs (acquired using three different scanners), 

compared to pathologist-led clinical grading. Notably, despite IELs not being incorporated into 

the current WHO grading system for OED, our findings suggest that IEL scores carry 

significant prognostic value that were shown to further improve both the Binary/WHO grading 

systems in multivariate analyses. This underscores the potential importance of IELs, and by 

extension our IEL score, as prognostic indicators in OED. Further validation through 

prospective multi-centric studies is warranted to confirm the clinical utility of the proposed IEL 

score and its integration into existing grading systems for OED. 

 

Keywords: Oral Epithelial Dysplasia, Precancer, Malignant Transformation, Computational 

Pathology, Artificial Intelligence. 
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1. Introduction 

Head and neck cancer encompasses a diverse group of malignancies originating from the 

upper aerodigestive tract, including the oral cavity, nasal cavity, pharynx, larynx, salivary 

glands and sinuses [1]. Among these, oral squamous cell carcinoma (OSCC) stands as one 

of the most prevalent subtypes, predominantly affecting the oral mucosa and accounting for 

a significant proportion of head and neck cancer cases [1]. OSCC arises from the squamous 

epithelial cells lining the oral cavity and is strongly associated with risk factors such as 

tobacco use, alcohol consumption, and human papillomavirus (HPV) infection [2]. 

Characterised by aggressive local invasion and potential for regional and distant metastasis, 

OSCC poses considerable challenges in diagnosis and management. Combination therapy 

approaches including surgery, radiation therapy, and chemotherapy are often employed [3], 

which even if successful, are associated with functional problems including masticatory, 

speech and swallowing impairments, drastically affecting quality of life [4]. Prognosis for 

advanced stage OSCC is poor, having a five-year survival rate of just 40% [5]. This 

drastically increases with early diagnosis to 80-90% [5], highlighting the huge benefits of 

early detection. 

Oral cancer lesions are typically preceded by a pre-cancerous state, a group of lesions 

termed oral potentially malignant disorders (OPMDs) including homogeneous/non-

homogeneous leucoplakia (white/white-red speckled lesions) or erythroplakia (red lesions) 

[2,6]. Biopsies of the lesions enable microscopic examination by histopathologists to 

determine the presence or absence of pre-cancer (oral epithelial dysplasia or OED) or 

cancer. Lesions of the oral mucosa exhibiting dysplasia are statistically more likely to 

transition into OSCC than non-dysplastic lesions [7]. 

The histopathological grading of Haematoxylin and Eosin (H&E) stained tissue using the 

World Health Organisation (WHO, 2017 [8]) classification system remains the current 

accepted practice for diagnosis and risk stratification of OED lesions. This system 

categorises OED into three grades: mild, moderate, and severe, based on the presence, 
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severity, and location of various cytological and architectural histological features (28 in total 

[9,10]). However, this approach has been widely criticised for its significant intra- and inter-

observer variability and its limited predictive ability for malignant transformation risk, which 

can impact patient management. An alternate binary grading system has been proposed to 

address the WHO grading shortcomings, and to improve the reproducibility of grading 

[11,12]. This system classifies lesions as either low- or high-risk based on the number of 

cytological and architectural features outlined in the WHO criteria. Mahmood et al. [13] 

showed the utlity of various of these pathologist-assigned histological features in prognostic 

models. However, overall, studies have shown that both the three-tier and binary grading 

systems suffer from significant variability and unreliability [14,15]. This underscores the need 

for more objective and reproducible methods and features (markers) for grading OED that 

can better predict the risk of malignant transformation. 

Recent advancements in digital pathology have facilitated the digitisation of histology slides 

into whole slide images (WSIs) through high-resolution digital scanners. This has spurred 

significant growth in computational pathology [16,17]. Concurrently, the evolution of new 

deep learning techniques has complemented both pathology and radiology, enabling the 

automation of pipelines and demonstrating the potential of deep learning in predicting patient 

outcomes [16–18]. In the emerging area of computational pathology, deep learning has been 

applied to automatically segment epithelium across various histology images (e.g., oral, 

cervical, prostate) [19–23] and to further segment and classify individual nuclei within WSIs 

[24,25]. In the context of OED, our previous work has used deep learning to segment 

dysplasia [19] and also the oral epithelium into sub-regions: the lower basal layer, the middle 

epithelial layer, and the superior keratin layer [20,21]. These methods have even been used 

to predict OED malignant transformation, based on either deep [26] or nuclear features 

[20,27]. Thus, deep learning tools offer a potential avenue for reducing grading variability 

while ensuring consistency across sites in informing treatment decisions [28,29]. 
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Computational pathology has not only allowed researchers to replicate and automate 

pathology workflows, but also to aid in biomarker discovery. Bashir et al. [26] developed a 

pipeline to predict malignant transformation in OED. In doing so they discovered a positive 

association between an increased presence of peri-epithelial lymphocytes (PELs) and 

transformation. Further, Shephard et al.’s [20] work also suggested the potential association 

between both PELs and intra-epithelial lymphocytes (IELs) and OED malignant 

transformation. These studies highlight the need for further exploration and validation of the 

role of IELs in OED. 

IELs are small, round mononuclear white blood cell lymphocytes found within the epithelial 

layer in the paracellular space between epithelial cells [30]. They are found in the skin and 

within the epithelial layer lining the intestine, lungs, reproductive tract and oral cavity, and 

are typically thought to be T lymphocytes [30,31]. In the gastrointestinal (GI) tract, they are 

components of gut-associated lymphoid tissue. Within normal mice, there is one IEL per 5-

10 epithelial cells in the small intestine. In human duodenal biopsies, healthy individuals 

usually have less than 5-10 IELs per 100 epithelial cells; however, this number can increase 

significantly, and is a hallmark of coeliac disease [31]. In the oral cavity, the inflammatory 

response and the role of IELs is poorly understood [32]. As yet, neither PELs nor IELs are 

used as markers within the WHO or binary grading system. 

While the role of lymphocytes in cancer immunity is well-documented, their significance in 

dysplasia remains underexplored. Therefore, we present an in-depth exploration of IELs 

within OED, and investigate the prognostic value of a digital IEL score. This approach aligns 

with other automated methods within the computational pathology community, such as 

Tumour-Infiltrating Lymphocyte (TIL) scoring [33] and Mitosis Counting (MC) [34]. We aim to 

elucidate the prognostic utility of AI-generated IEL scores in OED, utilising advanced image 

analysis techniques to quantify lymphocytic infiltration within the epithelium. Through 

comprehensive evaluation of the correlation between IEL scores and clinical outcomes using 

a relatively large dataset (in the context of OED), we explore the potential of the proposed 
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IEL score as a prognostic indicator. In the spirit of reproducibility, we also release the full 

inference pipeline for generating our AI-generated IEL scores, based on H&E-stained WSIs 

from oral tissue sections, adamshephard/oed_iel_scoring (github.com). 

 

2. Materials and Methods 

2.1 Study Data 

The study data consisted of a retrospective cohort of histology tissue sections (dating 2008 to 

2016 with minimum five-year follow-up data) collected from the Oral and Maxillofacial 

Pathology archive at the School of Clinical Dentistry, University of Sheffield, UK. After 

microscopic inspection of the tissue sections by a Consultant Pathologist (SAK), newly cut 4 

µm sections of the selected cases were obtained from formalin fixed paraffin embedded blocks 

and stained with H&E for analysis. Ethical approval was obtained by the NHS Health Research 

Authority West Midlands (Ref: 18/WM/0335) and experiments were conducted in compliance 

with the Declaration of Helsinki. 

In total, 219 slides were collected from 188 patients. The slides were digitised to high-

resolution WSIs at 40× objective power using one of three scanners: NanoZoomer S360 

(Hamamatsu Photonics, Japan; 0.2258 mpp), Aperio CS2 (Leica Biosystems, Germany; 

0.2520 mpp), Pannoramic 1000 (P1000, 3DHISTECH Ltd, Hungary; 0.2426 mpp). Clinical 

data for the cohort included patient age (at time of diagnosis), sex, intraoral site, OED grade 

(using binary and WHO 2017 systems) and transformation status. Transformation was defined 

as the progression of a dysplastic lesion to OSCC at the same clinical site within the follow-

up period, and time to transformation was measured in months. To ensure diagnostic 

consistency, all cases were evaluated by at least two certified pathologists (PMS, PMF, KH, 

DJB), who provided an initial diagnosis based on the WHO grading system (between 2008-

2016). To confirm the WHO (2017) grade and assign binary grades, the cases were blindly 

re-evaluated by SAK and a clinician with a specialist interest and expertise in OED analysis 
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(HM). In total, 42 patients (49 WSIs) developed malignant transformation. An overview of the 

dataset is given in Table 1.  

 

2.2 Deep Learning Framework  

2.2.1 Dysplasia and Nuclear Segmentation 

Since dysplastic changes may not be widespread across the entire tissue section in a slide, 

the first step of the AI pipeline involved identification and localisation of the dysplastic tissue 

regions for semantic segmentation. To achieve this, we used a pretrained Transformer [19] 

(based on Trans-UNet [35]) that automatically detects and segments the different dysplastic 

regions in a H&E-stained oral tissue WSIs. Further, an additional pretrained CNN-based 

HoVer-Net+ model [20,21] was used to segment the epithelium and the individual nuclei 

across each WSI. This model classifies nuclei within the epithelium as being “epithelial” or 

“other” nuclei. In OED tissue, aside from epithelial nuclei, only lymphocytes are expected to 

be in the epithelium. Thus, we classify these “other” nuclei as IELs. 

2.2.2 Intra-Epithelial Lymphocyte (IEL) Scoring 

For IEL scoring, we counted the number of IELs within the dysplasia regions alone, and we 

used these counts to generate the following IEL scores: 

1) The IEL Index (II) – the number of IELs per unit area of dysplasia, within the entire 

dysplastic region of the WSI 

2) The IEL Peak Index (IPI) – the maximum number of IELs per unit area of dysplasia 

in any given area of dysplasia (here, chosen to be a patch of size 512 x 512, at 1.0 

mpp resolution) 

3) The IEL Count (IC) – the number of IELs per 100 dysplastic epithelial cells, in 

any given area of dysplasia (here, chosen to be a patch of size 512 x 512, at 1.0 

mpp resolution) 

4) The IEL Peak Count (IPC) – the maximum number of IELs per 100 dysplastic 

epithelial cells, within the entire dysplastic region of the WSI 
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In Figure 1, we provide an overview of the proposed analytical pipeline used to generate our 

IEL scores. 

 

2.3 Statistical Analysis 

Survival analyses were conducted to assess the prognostic significance of the IEL scores in 

predicting transformation-free survival. Cases were split into low- and high-risk groups based 

on whether their IEL score was lesser/greater than the mean IEL score. We used the mean 

IEL score, owing to the imbalance in the number of cases transforming to malignancy (22%), 

and therefore did not necessarily require a 50-50 split in low-/high-risk groups. Kaplan-Meier 

curves were generated, and long-rank tests were used to determine the statistical significance 

of this stratification (for IEL scores, WHO and binary grades). We used concordance index (C-

index) to measure the rank correlation between the scores and patients’ survival time. A 

univariate Cox proportional hazards model was employed to determine the prognostic utility 

of the IEL scores compared to the WHO grade, binary grade, sex, age and lesion site, to 

predict transformation-free survival. Transformations were right censored at eight years. We, 

therefore, additionally used the hazard ratio (HR) and p-value generated from the univariate 

analyses as further metrics for evaluation. For reporting, we focus on the p-value from the 

proportional hazard model analyses, over that of the log-rank test, since both tests share the 

same assumptions, but Cox PH models allow for the use of continuous exposure variables 

[36]. However, for completeness we also provide the log-rank p-value with the Kaplan-Meier 

curves. 

Finally, we performed post-hoc analyses to compare the AI-assigned IEL scores between 

cases that exhibited transformation and those that did not, using two-tailed t-tests to determine 

statistical significance. We calculated effect sizes for these tests (Cohen’s d). We additionally 

did these analyses for both WHO and binary grades. 
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3. Results 

3.1 Survival Analyses 

We compared the various digital methods for IEL scoring to the other grading systems through 

Kaplan-Meier curves (see Figure 2), to demonstrate their prognostic utility. The binary grading 

scheme showed the clearest separation between low- and high-risk cases (C-index = 0.74, p 

< 0.001). For ease of comparison, we divided the WHO grades into two groupings: WHO G1, 

where mild cases were compared against moderate and severe cases combined; and WHO 

G2, where mild and moderate cases combined were compared against severe cases. The 

WHO G1 grouping showed a clear separation between cases (C-index = 0.67, p < 0.001), 

whereas the WHO G2 grouping showed less clear stratification (C-index = 0.62, p < 0.001). 

We introduced four different IEL scores in this work. Cases were split into low- and high-risk 

groups based on the IEL score, according to the mean IEL score. Interestingly, the IEL scores 

generated based on the number of IELs per 100 dysplastic epithelial cells (i.e., IC and IPC; as 

opposed to per unit area), gave the best separation between low- and high-risk cases. Both 

the IC and IPC scores gained the highest C-index of 0.67 (both p < 0.001), out of the IEL 

scores, whilst the II score gained a C-index of 0.63 (p = 0.003), and the IPI score gained a C-

index of 0.61 (p = 0.015).  

See Table 2 for the results from the univariate Cox proportional hazard models based on the 

clinical and digital parameters/scores. As can be observed in this table, sex, age, and lesion 

site appear to have no significant effect. One can also see high hazard ratios (HRs) for the 

binary grade and WHO grades. The HRs for the IEL scores are lower than that of the individual 

grades while still being somewhat significant, with IC having the highest HR = 1.65 and 

showing significance (p < 0.001). We additionally show the multivariate analyses in Table 3, 

comparing the effect of combining the above clinical and digital parameters on transformation-

free survival. Within this analysis, we initially see that the IPC appeared to give some additional 

prognostic information (HR = 1.36, p = 0.003) when compared to the IC score (HR = 1.46, p 

= 0.002). Interestingly, we additionally, found that the WHO grade (HR = 0.68, p = 192) 
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provided no additional prognostic utility when compared to the Binary grade (HR = 13.88, p < 

0.001). In contrast, when we instead added the IC and IPC scores to both the Binary grade 

and WHO grade Cox PH models, both the C-index increased when compared to the univariate 

models, and the IC/IPC score were additionally shown to be significant with a high HR. Thus, 

these analyses demonstrate the prognostic utility of the IC and IPC scores, and the potential 

utility of adding IEL information to the grading system. 

 

3.2 Post-hoc Analyses 

For our post-hoc analysis, we compared the various IEL scores in cases that transformed to 

malignancy against those that did not (see Figure 3). Across all four digital IEL scores, we 

found significantly higher scores for cases that transformed. We also found the largest 

difference between groups in the IC (d = 0.71, p < 0.001) and IPC scores (d = 0.75, p < 0.001), 

further supporting the results of the univariate analyses. In contrast, the II and IPI scores 

generally had lower effect sizes, but remained significant (IC: d = 0.42, p = 0.005; and ICI: d 

= 0.33, p = 0.007).  

For the IC and IPC scores, we additionally showed how the scores varied by grade (see Figure 

4). Our IEL scores correlate well with the binary grade, showing high-risk cases to have 

generally higher IC (d = 0.18, p = 0.04) and IPC scores (d = 0.55, p = 0.003). However, the 

effect sizes are only small-to-moderate in size, suggesting that the IEL scores are bringing 

new prognostic information, that isn’t necessarily incorporated by the binary grade. This further 

supports the multivariate analysis results. For the WHO grade, we see that more severe cases 

generally have higher IEL scores, however, these differences were not found to be significant 

for the IC score. With the IPC score, severe cases were found to have significantly higher IPC 

scores than mild cases (d = 0.59, p = 0.008). 

Finally, we additionally visualise some of the results of this study, comparing cases that did 

transform with both high and low IC (and IPC) values, respectively, to a case that did not 

transform with a low IC (and IPC; see Figure 5). These images also show the hotspots used 
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to generate the IPC scores. Overall, we see the hotspots tend to focus on the basal layer of 

the epithelium, which tend to have the highest density of IELs. Visibly, the case with higher 

IC/IPC appears to have many more IELs than the other cases with low scores.  

 

4. Discussion 

In this study, we investigated the prognostic potential of IELs derived from digital pathology 

in OED, a precursor lesion to OSCC. We highlighted the challenges associated with the 

current diagnostic and prognostic methods for OED, emphasising the need for more 

objective and reproducible approaches to predict the risk of malignant transformation. We 

addressed this gap by employing advanced deep learning techniques to automate the 

segmentation of dysplastic regions and IELs within oral tissue WSIs, and introduced four IEL 

scores as potential prognostic indicators, namely the II, IPI, IC, and IPC. Finally, we tested 

the prognostic utility of these scores in various survival models.  

Our findings demonstrated the promising prognostic utility of the proposed digital IEL scores 

in predicting transformation-free survival in OED patients. Notably, the IEL scores generated 

based on the number of IELs per dysplastic epithelial cells (i.e., IC and IPC scores) showed 

the strongest association with clinical outcomes, as evidenced by their higher concordance 

indices and significant separation of low- and high-risk cases. The success of the count-

based scores (i.e., IC and IPC) is perhaps unsurprising as they mimic the IEL scores used 

previously in the literature, typically seen in duodenal biopsies for studying coeliac disease 

[37,38]. We additionally suggest that the IC was more prognostic when compared to the IPC, 

as any spurious IEL detections by the deep learning models, could result in a substantially 

higher (or indeed lower) IEL score in any given patch, resulting in an incorrect hotspot region 

for calculating the IPC. By contrast, incorrect detections would be diluted in the IC. 

Comparison with traditional grading systems revealed that the binary grading scheme 

demonstrated clearer stratification of risk groups compared to the WHO grading system. 
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However, the inclusion of digital IEL scores provided additional prognostic information 

beyond both grading systems, as evidenced by the multivariate analyses. Furthermore, post-

hoc analyses illustrated the significance of IEL scores in distinguishing between cases that 

progressed to malignancy and those that did not, with higher IEL scores consistently 

observed in transformed cases. 

These findings suggest that incorporating digital IEL scores into existing grading systems 

could enhance their predictive accuracy and improve risk stratification in OED. Additionally, 

our study highlights the potential of computational pathology and deep learning techniques 

in identifying novel prognostic biomarkers and refining diagnostic and therapeutic strategies 

in head and neck cancer. 

The potential positive association between inflammatory response and malignant 

transformation in OED is an interesting finding, challenging the conventional notion of 

immune cell infiltration being a favourable prognostic factor, which is often seen in cancer. 

However, we suggest that our finding may not be counterintuitive, with a higher immune 

response in dysplasia being indicative that a mechanism may already be underway (unseen 

on the simple H&E slide) in the action of transforming the OED lesion into cancer. 

Furthermore, these results are consistent with previous studies that have observed a higher 

abundance of immune cells, including both IELs and PELs, in more dysplastic OED cases. 

Gannot et al. [39] noted increased immune cell infiltration in tongue lesions progressing to 

OSCC. Similarly, both Fitzpatrick et al. [40] and Hidalgo et al. [32]  found a substantial 

number of OED cases to have band-like inflammatory cell infiltrate underlying the epithelium 

(i.e., PELs) and infiltrating the epithelium (i.e., IELs). However, the role of these immune 

cells is still subject to debate, with studies suggesting that severe dysplasia often become 

progressively infiltrated with immune suppressive myeloid cells and regulatory T cells (Treg), 

with Treg infiltration associated with an increased risk of malignant progression [41,42]. Yet, 

despite this, OED lesions are often strongly infiltrated with CD8+ T lymphocytes, that may 

act to reverse this immunosuppressive microenvironment [42,43]. Recent evidence has 
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suggested a higher density of PELs in cases undergoing malignant transformation [26]. This 

was further supported by Shephard et al. [20], who additionally found a potential association 

between both PELs and IELs and malignant transformation.  

The authors recognise some limitations regarding this study. Despite the work being based 

of a sizeable OED cohort (indeed one of the largest known digital OED cohorts to date), the 

dataset used was still relatively small. Moreover, all data was collected retrospectively from a 

single centre, and thus may be subject to certain biases. Further validation in larger, 

multicentric cohorts is warranted to confirm the generalisability and robustness of our 

findings. Additionally, the mechanistic underpinnings of the observed associations between 

IEL infiltration and malignant transformation in OED warrant further investigation.  

In conclusion, our study contributes to the growing body of evidence supporting the role of 

immune cell infiltration as a potential prognostic indicator in OED. By elucidating the 

molecular mechanisms underlying the interactions between immune cells and dysplastic 

epithelial cells, we may uncover new avenues for personalized diagnostic and therapeutic 

strategies in head and neck oncology. 
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8. Tables 

 

Table 1. Overview of OED samples included in this study. 

Characteristic  

OED Cases, n 219 

OED Slides, n 188 

Median Age* (IQR) 63 (53 – 73) 

Sex, n (%)  

     Female 95 (43) 
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     Male 124 (57) 

Site, n (%)        

      Buccal Mucosa 29 (13) 

      Tongue 97 (44) 

      Floor of Mouth 41 (19) 

      Other 52 (24) 

WHO grade, n (%)  

     Mild 79 (36) 

     Moderate 77 (35) 

     Severe 63 (29) 

Binary grade, n (%)  

     Low-risk 134 (61) 

     High-risk 85 (39) 

Transformation, n (%) 49 (22) 

Median Transformation-free Survival Months (IQR) 78 (60 – 108) 

Scanner, n (%)  

     Aperio CS2 41 (19) 

     NanoZoomer S360 98 (45) 

     P1000 80 (37) 

Note. All provided statistics are at the slide-level. 
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* Median age at OED diagnosis. 

 

Table 2. Univariate analysis of clinical and digital parameters. 

Parameter HR [95% CI] p C-Index 

Sex 0.97 [0.55 – 1.70] 0.916 0.50 

Age 1.00 [0.98 – 1.02] 0.783 0.51 

Site 0.97 [0.73 – 1.28] 0.819 0.53 

WHO Grade 2.39 [1.63 – 3.49] < 0.001 0.70 

    WHO G1 8.06 [2.90 – 22.44] < 0.001 0.67 

    WHO G2 2.56 [1.46 – 4.50] 0.001 0.62 

Binary Grade 8.20 [4.08 – 16.46] < 0.001 0.74 

IEL Scores    

    II 1.35 [1.06 – 1.72] 0.013 0.63 

    IC 1.65 [1.35 – 2.03] < 0.001 0.67 

    IPI 1.26 [0.99 – 1.61] 0.057 0.61 

    IPC 1.52 [1.29 – 1.80] < 0.001 0.67 

Note. Reported metrics are from a univariate Cox proportional hazards model. HR is the 

hazard ratio, where the 95% confidence interval (CI) is given in brackets. WHO G1 is mild vs 

moderate/severe cases. WHO G2 is mild/moderate vs severe cases.  

 

Table 3. Multivariate analysis of clinical and digital parameters. 

Parameter HR [95% CI] p 

C-Index = 0.70   
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   IC 1.46 [1.15 – 1.86] 0.002 

   IPC 1.36 [1.11 – 1.68] 0.003 

C-Index = 0.74   

   Binary Grade 13.88 [4.83 – 39.91] < 0.001 

   WHO Grade 0.68 [0.38 – 1.22] 0.192 

C-Index = 0.76   

   WHO Grade 2.41 [1.64 – 3.55] < 0.001 

   IC 1.66 [1.34 – 2.05] < 0.001 

C-Index = 0.81   

   Binary Grade 9.15 [4.50 – 18.63] < 0.001 

   IC 1.88 [1.48 – 1.39] < 0.001 

C-Index = 0.76   

   WHO Grade 2.23 [1.52 – 3.29] < 0.001 

   IPC 1.45 [1.21 – 1.74] < 0.001 

C-Index = 0.80   

   Binary Grade 7.15 [3.51 – 14.55] < 0.001 

   IPC 1.30 [1.10 – 1.55] < 0.001 

C-Index = 0.81   

   Binary Grade 8.92 [4.24 – 18.79] < 0.001 

   IC 1.84 [1.37 – 2.48] < 0.001 

   IPC 1.03 [0.80 – 1.33] < 0.001 

Note. Reported metrics are from a multivariate Cox proportional hazards model. HR is the 

hazard ratio, where the 95% confidence interval (CI) is given in brackets. 
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9.  Figures 

 

 

Figure 1. Overview of the pipeline used to generate IEL scores. An input WSI first goes 

through the Trans-UNet model for dysplasia segmentation. Following this, we perform 

nuclear segmentation using HoVer-Net+. We then generate the II and IC scores based on 

the IELs and epithelial nuclei detected in the dysplastic regions. For the IPL and IPC scores 

we find the window with the highest value for that score, using a sliding window approach. 
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Figure 2. Kaplan Meier survival curves for pathologist grades (left) compared to the IEL 

scores (right). 

 

 

Figure 3. Boxplots showing the distribution of IEL scores in OED cases that did (red) and did 

not (green) transform to malignancy. 

 

 

 

Figure 4. Boxplots showing the distribution of IEL scores (IC and IPC) in OED cases according 

to grade. For binary grade, low-risk cases are green and high-risk are red. For the WHO grade, 

mild cases are green, moderate orange, and severe are red. 
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Figure 5. Visualisation of segmented nuclei within the dysplastic epithelium. Each panel shows a different WSI with the nuclear detections 

overlaid, where green dots are epithelial nuclei, and red dots are IELs. We additionally display the IC and IPC score for each slide, and the 

hotspot used to generate the IPC score. Panel A) shows a WSI that both the IC and IPC scores were low for, that did transform (i.e. a false 

negative). B) shows a WSI where the scores were high, and it transformed  (i.e., a true positive); whilst C) shows a WSI where the scores were 

low, and it did not transform (i.e. a true negative). Within these analyses the cutoff values for the IC and IPC scores were 9.87 and 79.02, 

respectively. 

 

 


