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ABSTRACT  

INTRODUCTION 

Existing dementia prediction models using non-neuroimaging clinical measures have been 

limited in their ability to identify disease. This study used machine learning to re-examine the 

diagnostic potential of clinical measures for dementia.  

METHODS 

Data was sourced from the Australian Imaging, Biomarkers, and Lifestyle Flagship Study of 

Ageing (AIBL) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Clinical 

variables included 21 measures across medical history, hematological and other blood tests, 

and APOE genotype. Tree-based machine learning algorithms and artificial neural networks 

were used.  

RESULTS 

APOE genotype was the best predictor of dementia cases and healthy controls. Our results, 

however, demonstrated that there are limitations when using publicly accessible cohort data 

that may limit the generalizability and interpretability of such predictive models. 

DISCUSSION 

Future research should examine the use of routine APOE genetic testing for dementia 

diagnostics. It should also focus on clearly unifying data across clinical cohorts. 
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1. BACKGROUND 

More than 55 million people worldwide have dementia, a number that is rapidly rising by 

an additional 10 million cases yearly [1]. Dementia is the leading cause of disability among 

older adults over the age of 65 and costs the global economy more than $1.3 trillion USD 

annually [1]. The timely diagnosis of dementia is essential to ensure that patients and their 

families can access early support and interventions, thereby improving quality of life, 

prolonging independence, and reducing the healthcare burden [2]. Improving dementia 

diagnostic capabilities and rates, therefore, is an urgent priority [1, 3].  

The recent advent of increased computational power and of ‘big data’ from large clinical 

cohorts has led to an increase in machine learning models for developing diagnostic tools to 

identify dementia. Most current models have relied on neuroimaging from magnetic 

resonance imaging (MRI) and positron emission tomography (PET) scans [4, 5]. Despite 

showing a high level of performance and predictive power, practicality constraints limit the 

day-to-day clinical usefulness of such models. Importantly, neuroimaging is difficult for 

many patients to access to due factors including health insurance status, out-of-pocket costs 

that limit their affordability, and if the patient lives rurally or in a major metropolitan area [2, 

6, 7]. Additionally, waitlists for neuroimaging can be upwards of several months and require 

specialist services for processing and interpretation, leading to delays in dementia diagnosis 

[7]. These issues were further highlighted by the recent Alzheimer’s Association Primary 

Care Physician Dementia Care Training Survey that found more than half of primary care 

physicians feel they do not have the local specialist resources to meet patient demand [8]. In 

line with these practical constraints, machine learning models based on diagnostic imaging 

have had limited utility in real world clinical applications [6].  

Primary care physicians are essential for patient triage, diagnosis, and management [2]. 

Therefore, from a practical perspective, machine learning-based dementia diagnostic models 

should focus on the predictive power of easy-to-obtain clinical measures. Indeed, previous 

studies have used machine learning to look at the diagnostic utility of routine clinical 

measures including, for example, the Cardiovascular Risk Factors, Aging, and Dementia 

(CAIDE) [9], Study on Aging, Cognition and Dementia (AgeCoDe) [10], Australian National 

university Alzheimer’s Disease Risk Index (ANU-ADRI) [11], Rapid Assessment of 

Dementia Risk (RADaR) for older adults [12], and Brief Dementia Screening Indictor 

(BDSI) [13]. There are limitations, however, to these models. First, some models used 
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clinical variables that were used to define a dementia patient relative to a healthy control, 

including the Mini-Mental State Exam (MMSE) and Clinical Dementia Rating (CDR) scores 

[14, 15]. In machine learning models, this constitutes “data leakage” where an experimental 

group label (e.g. dementia defined by MMSE <24) is also included as a characteristic 

(MMSE scores per person) in the model. This leads to an artificially improvement in model 

performance while significantly limiting generalizability and interpretability. Second, 

although these models report a high specificity (identification of true healthy controls) and 

negative predictive value (NPV; ratio of true healthy controls to all healthy controls 

identified), they report very low sensitivity (identification of true dementia patients) and 

positive predictive value (PPV; ratio of true dementia patients to all dementia patients 

identified [9, 14, 16, 17]. Reported sensitivities and PPVs ranged from 0.1-0.47, indicating 

that models using clinical measures can readily identify a healthy person but are unable to 

identify someone with dementia. In direct support of this, a recent study confirmed that these 

existing dementia prediction models missed 84-91% of patients with incident dementia 

therefore demonstrating little, if any, clinical utility for dementia diagnostics [18]. This 

underlies the need for the development of sensitive prediction models that identify patients 

with dementia.  

In this context, using two large cohorts from Australia (the Australian Imaging 

Biomarkers and Lifestyle Flagship Study of Ageing; AIBL) and the US (Alzheimer’s Disease 

Neuroimaging Initiative; ADNI), the primary aim of this study was to use several different 

machine learning models to re-examine the diagnostic potential of easy-to-obtain clinical 

measures for dementia in older adults over age 65.  

 

2. MATERIAL AND METHODS 

2.1. Data and participants  

The data used in the present study was obtained from two publicly available 

databases: ADNI and AIBL (https://ida.loni.usc.edu/) and the data was downloaded on 

October 10, 2023. Participants included those enrolled in ADNI and AIBL who were 

identified as either a healthy control or diagnosed dementia patient (probable Alzheimer’s 

disease (AD)) at their baseline visit and assessments. ADNI participant characteristics have 

been described elsewhere [19]. In brief, those with a dementia diagnosis were identified as 
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having subjective memory complaints, an MMSE range of 20-26, and CDR of >0.5 [19]. 

AIBL participant characteristics have also been described elsewhere [20]. Here, participants 

were identified as having dementia (probable AD) as defined by National Institute of 

Neurological and Communicative Diseases and Stroke/Alzheimer’s Disease and Related 

Disorders Association (NINCDS-ADRDA) criteria [21]. AIBL study methodology has been 

reported previously [20]. Unlike ADNI, AIBL included participants who expressed a concern 

about their memory function or had memory complaints in response to being asked “Do you 

have difficulties with your memory” in the healthy control group. This resulted in 

approximately 50% of the healthy control group made up of those who had subjective 

concerns about their memory [20]. Participants in both the ADNI and AIBL cohorts that were 

diagnosed with mild cognitive impairment (MCI) were excluded from the current study as 

MCI doesn’t necessarily progress to dementia.  

Prior to undertaking any analysis, we limited both datasets to participants over age 65 

to capture older adults who were more likely to have age-associated dementia, rather than 

early onset. We identified that there was a statistical difference in the ages between the ADNI 

and AIBL cohorts with average participant ages of 76 and 74 years, respectively (Wilcoxon 

test; W = 346983, p = 3.17e-11). To remove this age bias between the cohorts, we created a 

random sample of 150 ADNI participants within the age range of 80-96 and removed them to 

eliminate this statistical difference. After doing this, the average age was an equal 74 across 

both the ADNI and AIBL cohorts. Table 1 shows the demographic and clinical characteristics 

of the participants included in this study after controlling for age.  
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Table 1. Demographic and clinical characteristics of the ADNI and AIBL cohorts included in 
the current study.  

 ADNI AIBL 
Dementia Healthy 

control 
Dementia Healthy 

control 
Total N 476 292 107 524 
Sex (M:F) 257:185 

34 (Unk) 
133:153 
6 (Unk) 

48:59 
 

223:301 

Age 75 (8) 74 (6) 77 (9) 73 (8) 
APOE 
Genotype 

e2,e2 0 3 0 2 
e2,e3 12 45 7 75 
e2,e4  12 4 2 10 
e3,e3 128 173 23 307 
e3,e4 242 60 55 113 
e4,e4 82 7 20 17 

Medical 
History 
(Yes:No) 

Psychiatric 204:272 75:217 33:74 100:424 
Neurologic 148:328 85:207 27:80 49:475 
Cardiovascular 336:140 203:89 44:63 226:298 
Hepatic 16:460 13:279 3:104 20:504 
Musculoskeletal 316:160 208:84 42:65 283:241 
Endocrine-Metabolic 208:268 

 
121:171 16:91 101:423 

Gastrointestinal 203:273 144:148 27:80 145:379 
Renal-Genitourinary 227:249 121:171 0:107 30:494 
Malignancy 106:370 72:220 16:91 90:434 

Hematological 
Tests 

Red blood cell count (RBC) 4.7 (0.5) 4.6 (0.6) 4.5 (0.4) 4.5 (0.5) 
White blood cell count (WBC) 6.3 (1.9) 6.3 (2.1) 5.8 (1.7) 5.6 (1.8) 
Platelets  230.0 

(81.0) 
241.5 
(76.0) 

237.0 
(62.5) 

216.0 
(67.0) 

Hemoglobin  13.95 
(1.35) 

13.80 
(1.60) 

13.8 (1.25) 14.0 
(1.40) 

Mean corpuscular hemoglobin 
(MCH) 

30.0 (2.0) 30.0 
(2.0) 

 31.2 (1.6) 31.3 
(1.8) 

Mean corpuscular hemoglobin 
concentration (MCHC) 

33.0 (1.0) 33.0 
(1.0) 

34.0 (0.8) 33.9 
(0.8) 

Other Blood 
Tests 

Vitamin B12 449.0 
(271.0) 

456.5 
(331.8) 

448.0 
(244.6) 

428.3 
(237.9) 

Serum glucose  96.0 (17.0) 96.0 
(15.0) 

90.1 (11.7) 90.1 
(12.6) 

Cholesterol (high performance) 194.0 
(55.2) 

193.5 
(48.5) 

216.5 
(56.1) 

204.9 
(50.3) 

Urea nitrogen  18.0 (7.0) 18.0 
(6.0) 

34.8 (9.3) 36.6 
(12.0) 

Creatinine 1.0 (0.3) 0.9 (0.3) 0.8 (0.2) 0.8 (0.2) 
For continuous features (age and tests), the median and interquartile range (in brackets) are 
shown.  
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2.2. Feature selection (predictors) 

We first ensured that the features (or predictive variables) used in our models matched 

across the ADNI and AIBL cohorts. Common features across both cohorts included 

apolipoprotein E (APOE) genotype, nine medical history questions, and test results from six 

hematological and five blood tests. These features along with the median and interquartile 

range (IQR) across participants and cohorts are shown in Table 1. Although both cohorts had 

data for MMSE and CDR, these were not used as features due to the potential for data 

leakage and artificial inflation of model performance, as discussed in the Background. We 

also had to remove two variables from our analyses: thyroid stimulating hormone test 

(AXT117) and a health history of smoking (MH16SMOK). Both variables were removed due 

to too many participants missing data for these. Thyroid stimulating hormone test results 

were missing for 45% of the ADNI cohort and smoking history was missing for 42% of the 

AIBL cohort. For the remaining variables, we imputed the missing values where required 

using the group median value. Of note, neither ADNI nor AIBL specify the units of 

measurement for the hematological and other blood tests. It is not clear, therefore, if the units 

of measurement are the same across them. We therefore treat these variables as reported in 

their respective publicly available datasets (e.g. no conversions).     

 

2.3. Statistical analyses  

 To evaluate the diagnostic potential of easy-to-obtain clinical measures for dementia, 

we used several machine learning algorithms including tree-based algorithms (classification 

and regression trees (CART), random forest, gradient boosting machines (GBM), and 

extreme gradient boosting (XGBoost) and artificial neural networks. Datasets (ADNI only, 

AIBL only, or a combined ADNI and AIBL) were split into a 70% training dataset and a 30% 

held-out testing dataset. Machine learning models were built, fine-tuned, and validated on the 

training datasets using five-fold cross-validation repeated five times. Where required due to 

class imbalances of the output variable, an oversampling technique was used. Here, the 

underrepresented class was randomly resampled to ensure that the algorithms received 

approximately the same number of classes. For all algorithms, a fine-tuning grid method was 

used where we estimated all possible combinations of parameters within the predetermined 

ranges (see Supplementary Table 1 for hyperparameters). All analyses were done in R 

(version 4.3.1, R Core Team, 2023) using ‘caret’ package [22].  
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2.4. Model evaluation  

 The performance of the machine learning models was evaluated using a 30% held-out 

dataset. For each model, we report several metrics including: sensitivity (correctly identified 

dementia cases), positive predictive value (PPV also known as precision; number of dementia 

cases / total number of predicted dementia cases (true and false)), specificity (correctly 

identified healthy controls), negative predictive value (NPV; number of healthy controls / 

total number of predicted healthy controls (true and false)), and AUC (ability to distinguish 

dementia cases and healthy controls). The main performance indicators we used in the 

present study were sensitivity and PPV. Using these metrics is important because it reduces 

the likelihood of a dementia case being identified as a healthy control (false negative) and 

provides the probability that a person with a positive result indeed has dementia [23]. Further, 

as shown by others, multifactorial dementia prediction models with a high level of specificity 

in the absence of sensitivity are unable to identify the majority of dementia cases [18]. Where 

sensitivities and PPVs were similar (<0.2 difference) between two models, we also 

considered specificity and NPV when identifying the top performing model, as we 

acknowledge that dementia prediction models still need reasonable metrics for identifying 

true healthy controls.  

 To evaluate the relative contribution of features to overall performance of our models 

we performed a SHAP (SHapley Additive exPlanations) analysis. This feature importance 

selection method allowed us to assign an importance value for each input variable (feature) 

for our predictions [24], thus demonstrating which variables are the most important for 

dementia prediction. SHAP was done in R using package ‘shapviz’.  

 

3. RESULTS 

3.1. APOE genotype shows the highest utility for a dementia diagnosis using a merged 

ADNI-AIBL cohort 

 We first merged the ADNI and AIBL cohorts into a single large dataset to test the 

diagnostic potential of 21 easy-to-obtain clinical measures for dementia. This merged dataset 

was then randomly split into a 70% training and validation set and a 30% unseen testing 

dataset. With APOE genotype included as a feature, model sensitivity ranged from 0.63 to 

0.83 and PPV ranged from 0.69 to 0.82 (Table 2). The neural network had the highest 
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sensitivity of 0.83 and a PPV of 0.73 with a specificity of 0.66 and NPV of 0.78. Specificity 

and NPV was generally higher than sensitivity and PVV, ranging from 0.66 to 0.86 and 0.73 

to 0.78, respectively (Table 2). To identify which of the 21 features (clinical measures) were 

contributing the most to our models’ performance, we used a SHAP analysis. This showed 

that APOE genotype had the highest contribution to our models’ ability to predict a dementia 

diagnosis (Figure 1A,B). Further, the high positive SHAP value indicated that APOE 

genotype was the most valuable for identifying a dementia patient (sensitivity and PPV; 

Figure 1B). The urea nitrogen test (RCT6), was shown to be a second, albeit lesser, 

contributor to model performance (Figure 1A,B). Unlike APOE genotype, urea nitrogen was 

more important for identifying a healthy control (specificity and NPV; Figure 1B). 

Importantly, the urea nitrogen finding may be consequence of differences in the median 

between ADNI and AIBL (approximately 18 and 35, respectively). We were unable to 

determine if this may be reflective of unit of measure differences between ADNI and AIBL, 

as these data were not reported. 

 To further demonstrate that APOE genotype is essential for the models’ predictive 

performance, we repeated all analyses but excluded APOE genotype from our selected 

features (20 features instead of 21). As expected, performance significantly decreased across 

all models (Table 2). Without APOE genotype, sensitivity and PPV ranged from 0.57 to 0.73 

and 0.64 to 0.77, respectively. Although specificity remained relatively high, ranging from 

0.60 to 0.81, NPV generally decreased across the models, with a range of 0.61 to 0.79. Urea 

nitrogen took the place of APOE genotype as the top contributor to model performance 

(Figure 1C,D). As before, urea nitrogen was more important for identifying a healthy control 

(specificity and NPV; Figure 1D), suggesting that this may contribute to the higher specificity 

of our models without APOE genotype. Though again, it’s unclear if this is due to median 

differences between ADNI and AIBL.  
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Table 2. Diagnostic performance of algorithms on a unified ADNI-AIBL dataset with and without APOE genotype as a feature.   

 Sensitivity Specificity PPV (precision) NPV AUC 

APOE No APOE APOE No APOE APOE No APOE APOE No APOE APOE No APOE 

Classification and regression 
trees (CART) 

0.71 0.57 0.85 0.79 0.81 0.76 0.77 0.61 0.84 0.68 

Random forest 0.69 0.58 0.86 0.77 0.82 0.71 0.75 0.66 0.87 0.75 
Shrinkage discriminant 
analysis (SDA) 

0.68 0.61 0.85 0.80 0.82 0.75 0.74 0.67 0.84 0.76 

General linear model 0.67 0.61 0.84 0.81 0.79 0.76 0.74 0.67 0.84 0.77 
K nearest neighbour 0.63 0.61 0.78 0.75 0.69 0.64 0.73 0.73 0.68 0.72 
Gradient boosting machines 
(GBM) 

0.72 0.61 0.85 0.81 0.81 0.76 0.74 0.67 0.87 0.75 

Extreme gradient boosting 
(XGBoost) 

0.70 0.59 0.85 0.81 0.81 0.77 0.77 0.65 0.86 0.75 

Neural network 0.83 0.73 0.66 0.60 0.73 0.65 0.78 0.79 0.75 0.72 
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Figure 1. Feature importance using SHAP analysis in our models. (A,C) Absolute SHAP value for the 
top 15 features in models with and without APOE genotype, respectively. (B,D) Heat map of relative 
contribution of each feature in models with and without APOE genotype, respectively. Negative 
values = healthy control and positive values = dementia. Abbreviations: BAT126: vitamin B12; 
HMT3: red blood cell count; HMT7: white blood cell count; HMT13: platelets; HMT40: hemoglobin; 
HMT100: mean corpuscular hemoglobin; HMT102: mean corpuscular hemoglobin concentration; 
MH2NEURL: medical history neurologic; MH4CARD: medical history cardiovascular; 
MH12RENA: medical history renal-genitourinary; MHPSYCH: medical history psychiatric; RCT6: 
urea nitrogen; RCT11: serum glucose; RCT20: cholesterol (high performance); RCT392: creatinine.  

 

3.2. Multivariate dementia prediction models perform poorly when using either the 

ADNI or AIBL datasets as training and testing 

 To further identify if our multivariate prediction models of dementia are 

generalizable, we separated the dataset back into the ADNI and AIBL cohorts and re-tested 

our models. In the first experiment, we trained and validated our 21-feature models 
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(including APOE genotype) on ADNI and then tested them on AIBL and, in the second, we 

performed the reverse. When we trained our models using the ADNI dataset, they lost 

dementia diagnostic utility. Here, our sensitivity substantially decreased to a range of 0.25 to 

0.36 however our PPV remained higher and ranged from 0.62 to 0.78 (Table 3). Specificity, 

on the other hand, was very high with a range of 0.90 to 0.93, similar to existing dementia 

diagnostic models. NPV was lower and highly variable, ranging from 0.47 to 0.97 (Table 3). 

There were two top performing models: CART and GBM. Both had sensitivities of 0.35, 

PPVs of 0.72, specificities of 0.93 and NPVs of 0.73.  

Interestingly, training our models on the AIBL dataset and testing them on the ADNI 

dataset improved their predictive power. In this instance, sensitivity and PPV improved to a 

range of 0.61 to 0.89 and 0.45 to 0.99, respectively (Table 3). Our specificity and NPV, 

however, decreased to a range of 0.37 to 0.61 and 0.47 to 0.97, respectively (Table 3). CART 

and GBM were again the equally the top performing models with sensitivities of 0.83, 

specificities of 0.61, PPVs of 0.71, and NPVs of 0.76. Combined, this suggests that almost all 

the models, except CART and GBM, have a poor predictive performance when separating the 

ADNI and AIBL cohorts.  
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Table 3. Diagnostic performance of algorithms using opposite training and testing datasets ((A) ADNI train, AIBL test; or (B) AIBL train, ADNI 
test) 

 Sensitivity Specificity PPV (precision) NPV AUC 

A B A B A B A B A B 

Classification and regression trees (CART) 0.35 0.83 0.93 0.61 0.72 0.71 0.73 0.76 0.73 0.73 
Random forest 0.27 0.81 0.92 0.39 0.74 0.80 0.59 0.97 0.72 0.70 
Shrinkage discriminant analysis (SDA) 0.29 0.84 0.93 0.49 0.77 0.45 0.61 0.86 0.75 0.70 
General linear model 0.29 0.61 0.93 0.37 0.78 0.51 0.62 0.47 0.75 0.58 
K nearest neighbour 0.25 0.70 0.90 0.47 0.68 0.60 0.58 0.59 0.68 0.63 
Gradient boosting machines (GBM) 0.35 0.83 0.93 0.61 0.72 0.71 0.73 0.76 0.73 0.73 
Extreme gradient boosting (XGBoost) 0.36 0.80 0.93 0.58 0.72 0.68 0.73 0.73 0.74 0.74 
Neural network 0.29 0.89 0.93 0.39 0.62 0.99 0.77 0.50 0.70 0.51 
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3.3. The relative distributions of APOE genotype across ADNI and AIBL drive poor 

model performance  

 We next sought out to better understand why our CART and GBM models had an 

acceptable level of performance when training and testing on the opposite datasets. To do 

this, we chose to look at CART performance, specifically, as we can use decision trees to 

better understand the features used for class identification. The CART decision tree for both 

experiments (train ADNI, test AIBL and train AIBL, test ADNI) was identical and showed 

APOE genotype was the only feature that it was using to predict whether a participant was a 

healthy control or a dementia patient (Figure 2). If the APOE genotype contained at least one 

APOE4 allele (e4,e2 or e4,e3 or e4,e4) then the models categorized that person as having 

dementia and, if not (i.e. an APOE genotype of e2,e2 or e2,e3 or e3,e3), then as a healthy 

control.  

 

Figure 2. Decision tree used by the classification and regression tree (CART) models when trained on 
ADNI and tested on AIBL or trained on AIBL and tested on ADNI.  

 

Despite both of our CART models using only APOE genotype to determine a healthy 

control from a dementia patient, it was unclear why performance differed dramatically 

depending on if we used ADNI or AIBL as the training or testing dataset (Table 2). 

Specifically, our metrics in Table 2 showed that the AIBL tested model had a high rate of 

false positives and the ADNI tested model had a higher rate of false negatives. This suggested 

that a difference in the relative distribution of APOE genotypes in healthy controls and 

dementia patients across the ADNI and AIBL cohorts may be driving performance 

differences. To confirm that this was the case, we examined the relative distribution of APOE 
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genotypes in healthy controls and dementia patients in ADNI and AIBL. As shown in Figure 

3A, AIBL indeed has a high rate of false positives – i.e. the CART misclassified APOE4 

allele carriers as having dementia when they were instead healthy controls. ADNI, on the 

other hand, had a slightly higher rate of false negatives than AIBL (Figure 3B), but only for 

the e3,e2 genotype. Here, the CART misclassified these as being healthy controls when they 

had dementia.  

We further confirmed this using the CART confusion matrices. Indeed, when our 

CART models were tested on AIBL there was a high rate of false positives (i.e. low 

sensitivity; Figure 3C). When they were tested on ADNI, however, there was a higher rate of 

false negatives (i.e. lower specificity; Figure 3D). 

 

 

 

C  Dementia Control D  Dementia Control 
 Dementia 77 (TP) 30 (FN)  Dementia 336 (TP) 140 (FN) 
 Control 140 (FP) 384 (TN)  Control 71 (FP) 221 (TN) 
 

Figure 3. Misclassifications in classification and regression tree (CART) models. (A-B) Relative 
distribution of APOE genotypes across the ADNI and AIBL datasets for (A) healthy controls and (B) 
dementia patients. Red boxes highlight the number of true negatives and positives and false negatives 
and positives across the groups. (C-D) Confusion matrices for CART models when (C) trained on 
ADNI and tested on AIBL and (D) trained on AIBL and tested on ADNI. Abbreviations: FN: false 
negative; FP: false positive; TN: true negative; FN: false negative.  

 

3.4. APOE genotype predicts dementia cases in ADNI whereas it predicts healthy 

controls in AIBL  

 To further investigate the basis for our models’ poor predictive performance when 

training and testing on opposite datasets, we examined the predictive capabilities within 
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ADNI and AIBL independently. First, we examined the performance of our 21-feature 

(including APOE genotype) models when we trained and validated on a 70% split of the 

ADNI dataset and tested on a withheld 30% of the ADNI dataset. Our models showed strong 

dementia predictive performance. Here, depending on the algorithm, our models showed a 

very high sensitivity ranging from 0.80 to 0.86 and a PPV ranging from 0.65 to 0.75 (Table 

4). The two models with the highest performance were the CART and XGBoost with an equal 

sensitivity of 0.86 and PPV of 0.84 (Table 4). Our SHAP analysis again demonstrated that 

APOE genetic testing was the main feature driving our predictive power for identifying 

incident dementia cases (Figure 4A,B).  
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Table 4. Diagnostic performance of machine learning algorithms for either the ADNI or AIBL datasets, respectively.  

 Sensitivity Specificity PPV (precision) NPV AUC 

ADNI AIBL ADNI AIBL ADNI AIBL ADNI AIBL ADNI AIBL 

Classification and regression trees (CART) 0.86 0.35 0.67 0.94 0.74 0.85 0.82 0.59 0.78 0.68 
Random forest 0.84 0.40 0.65 0.94 0.71 0.81 0.79 0.68 0.80 0.79 
Shrinkage discriminant analysis (SDA) 0.86 0.41 0.67 0.90 0.72 0.67 0.82 0.75 0.77 0.79 
General linear model 0.84 0.42 0.64 0.88 0.71 0.59 0.80 0.79 0.78 0.77 
K nearest neighbour 0.80 0.26 0.59 0.87 0.65 0.74 0.75 0.45 0.72 0.68 
Gradient boosting machines (GBM) 0.86 0.42 0.68 0.95 0.74 0.85 0.82 0.69 0.80 0.79 
Extreme gradient boosting (XGBoost) 0.86 0.43 0.68 0.92 0.74 0.84 0.82 0.68 0.82 0.79 
Neural network 0.84 0.44 0.68 0.86 0.75 0.56 0.79 0.72 0.77 0.68 
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Figure 4. Feature importance using SHAP analysis in independent ADNI or AIBL models. (A-B) 
SHAP analysis for ADNI models showing (A) absolute SHAP value for the top 15 features and (B) 
heat map of the relative contribution of each feature. (C-D) SHAP analysis for AIBL models showing 
(C) absolute SHAP value for the top 15 features and (D) heat map of the relative contribution of each 
feature. Negative values = healthy control, positive values = dementia. Abbreviations: BAT126: 
vitamin B12; HMT3: red blood cell count; HMT7: white blood cell count; HMT13: platelets; 
HMT40: hemoglobin; HMT100: mean corpuscular hemoglobin; HMT102: mean corpuscular 
hemoglobin concentration; MH2NEURL: medical history neurologic; MH4CARD: medical history 
cardiovascular; MH12RENA: medical history renal-genitourinary; MHPSYCH: medical history 
psychiatric; RCT6: urea nitrogen; RCT11: serum glucose; RCT20: cholesterol (high performance); 
RCT392: creatinine. 

We then performed the same experiment, however this time using 70% of the AIBL 

dataset to train and validate our models and a withheld 30% of AIBL to test them. These 

models were unable to predict dementia cases. Here, the sensitivity ranged from 0.26 to 0.44 

(Table 4), suggesting that the models miss most dementia cases. The PPV, however, was 

higher, ranging from 0.56 to 0.85 (Table 4). Despite this, and unlike the ADNI dataset, our 

models had very high specificity that ranged from 0.86 to 0.95 (Table 4). The NPV ranged 
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from 0.45 to 0.75 (Table 4). Again, APOE genotype remained the strongest predictor that 

drove model performance (Figure 4C,D) and urea nitrogen testing came in as a second 

predictor, albeit to a lesser extent than APOE genotype.  

Combined, these findings indicate that APOE genotype is predictive of dementia 

cases in the ADNI cohort (high sensitivity) whereas it’s predictive of healthy controls in the 

AIBL cohort (high specificity).  

 

4. DISCUSSION 

Developing diagnostic models of dementia that rely on “easy-to-obtain” clinical measures 

rather than neuroimages is important for timely diagnoses by primary care physicians. Using 

cohort data from the ADNI and AIBL datasets, this study used machine learning to examine 

the diagnostic potential of 21 clinical measures, including APOE genotype, medical history, 

hematological and other blood tests.  

Using a combined ADNI and AIBL cohort dataset, we showed that artificial neural 

networks have the best predictive performance. Our sensitivity was 0.83 and PPV was 0.73, 

suggesting that our neural network would only miss approximately 27% of incident dementia 

cases. These metrics showed that our neural network outperformed existing models [9, 14, 

16-18] and that it may hold practical utility for dementia diagnostics. APOE genotype was the 

top performing variable with urea nitrogen the second, albeit lesser, performing variable.  

Interestingly, when we separated the ADNI and AIBL cohorts and used them either as 

training or testing datasets, respectively, our models lost predictive power. When we trained 

our models on ADNI and tested them on AIBL, our models’ sensitivity decreased to a 

clinically invaluable range of 0.25-0.36. When we performed the reverse, training on AIBL 

and testing on ADNI, our sensitivity metrics improved however our specificity fell to 0.37-

0.61. We identified that these discrepancies were due to differences in the relative distribution 

of APOE genotype across ADNI and AIBL. ADNI had a small increase in the number of false 

negatives due to APOE4 non-carriers being identified as healthy controls when they were 

instead dementia cases. AIBL, on the other hand, had a very high number of false positives 

because APOE4 carriers were being classified as having dementia when they were healthy 

controls. Therefore, although APOE genotype was the main predictive variable across all our 
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models, APOE genotype better predicted dementia cases in ADNI whereas it was predictive 

of healthy controls in AIBL. 

The reasons for this discrepancy in APOE genotype are largely unclear. It may be due to 

class imbalances across the datasets: ADNI had more dementia cases whereas AIBL had more 

healthy controls. This may have led to higher sensitivity using ADNI and a higher specificity 

when using AIBL. It may also be due to differences in participant group allocations between 

ADNI and AIBL. ADNI reported that participants with a subjective memory complaint were 

placed into the dementia group whereas AIBL reported that these participants went into the 

healthy control group [19, 20]. As reported in the baseline and methodology characteristics 

study, this resulted in approximately 50% of the healthy control group in AIBL made up of 

participants that had a subjective memory complaint – i.e. said yes in response to being asked 

“Do you have difficulties with your memory” [20]. Subjective memory complaints are an 

important consideration in the context of APOE genotype. Numerous studies have identified 

that APOE4 carriers with subjective memory complaints or cognitive dysfunction have worse 

baseline memory [25], memory-guided attention [26], and episodic memory [27]. Age has 

also been shown to play a significant role in the relationship between APOE4 and a faster rate 

of memory decline [25, 26]. Further, some studies have shown that APOE4 carriers with 

subjective memory complaints and cognitive dysfunction are similar to people with early 

mild cognitive impairment (MCI) [28] and are more likely to develop clinical MCI [29, 30]. 

People with subjective memory complaints and an APOE4 allele also have changes in the 

brain that are indicative of MCI and dementia including hippocampal volume changes [27, 

31]. One study even found evidence to suggest that subjective memory complaints may be a 

realistic appraisal of cognitive decline-associated brain changes in people with and APOE4 

allele [31]. It may be the case, therefore, that AIBL contains healthy controls, especially those 

with an APOE4 allele, that are in the early stages of MCI or dementia.  

It’s important to note that the finding that our AIBL-derived models have a high rate of 

false positives may be due to the data that has been made open source and publicly available. 

For example, a study using a subgroup of participants from the AIBL cohort found that 

subjective memory complaints were indicative of a higher amyloid β burden and APOE4 

carrier status [32]. The subjective memory complaint status of the participants in the publicly 

available AIBL cohort is not available. We were unable, therefore, to further investigate if re-

coding the subjective memory complainers as dementia cases led to improved model 
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performance in line with what we found in our ADNI-based models. Future research would 

benefit from further examining this.  

Large open source and publicly available dementia datasets are increasingly becoming 

available and, in line with this, it is becoming easier to pool participants to increase study 

sample sizes and improve statistical power. This is particularly important for studies like ours 

that use machine learning or other artificial intelligence-based methods to unravel complex 

relationships between variables for dementia diagnostic and treatment modelling. Our results, 

however, highlight several limitations of using such cohort data. First, there needs to be 

increased effort in ensuring that the data obtained between cohorts is the same. For example, 

although the test results of the hematological and other blood tests largely looked to be 

similar across ADNI and AIBL, there were clear differences in the urea nitrogen results. This 

is likely due to differences in the units of measurement used (e.g. ng/dL vs. nmol/L) however 

without this information it’s not possible to confirm. Unclear units of measurement also may 

limit the clinical implementation of these types of models and their predictive features. There 

were also many variables missing between the cohorts that may be important. For example, 

ADNI included measures like ethnicity, educational attainment, and type of residence that 

were not including in AIBL, thus potentially limiting the generalizability of our models (e.g. 

to multiple ethnicities). Second, our results highlight that it’s important to independently 

examine the behaviour of different dementia cohorts prior to undertaking studies using 

merged or unified datasets. Here, our merged ADNI-AIBL models performed very well, 

despite there being clear and opposing differences when the cohorts were examined 

individually. It’s not clear, therefore, whether the merging of the two datasets produced a 

cohort that is truly generalizable to the population. For example, merging datasets may lead 

to the unintentional washing out of important variables and effects that are relevant to 

dementia. This may limit the interpretability and generalizability of studies that only use 

merged cohorts and hold important implications for future research on predictive dementia 

models.  

Irrespective of the differences between the ADNI and AIBL cohorts, APOE genotype 

remained the strongest predictor of both dementia cases and healthy controls. In line with the 

growing body of research, this finding highlights the importance of considering APOE 

genotype in the context of dementia diagnostics. APOE genetic testing is a low-cost and 

readily available assay. In the US, an APOE genetic screen costs from $100-$125 USD and 

can even be done from home and mailed into a diagnostic testing lab. Similarly, APOE 
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testing in Australia costs $150-$200 AUD and can be done through routine pathology labs. 

Although the UK’s National Health Service (NHS) doesn’t offer APOE testing, there are 

services available offering APOE genetic screens in the context of cardiovascular disease for 

similar price ranges (£180). Further, APOE genetic results are easy to interpret in the absence 

of specialist resources. This highlights that it’s a practical diagnostic tool that primary care 

physicians can readily use to identify patients with subjective memory complaints who are at 

a high risk of dementia. Future research, therefore, should examine the use of routine APOE 

genetic testing in primary care clinics for the purposes of early identification and diagnosis of 

dementia. 

5. CONCLUSION  

In conclusion, we have identified that across several easy-to-obtain clinical measures, 

APOE genotype remains the best predictor of dementia cases relative to healthy controls. 

APOE genotype remains a relatively widely available test and consideration should be given 

to its utility as a routine diagnostic test for dementia. We also highlighted that there are 

limitations associated with using publicly available cohort data to generate multivariate 

dementia prediction models. These limitations warrant further efforts to unify existing and 

future dementia cohorts.  
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