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ABSTRACT 11 

The rapid and constant development of deep learning (DL) strategies is pushing forward the quality of 12 

object segmentation in images from diverse fields of interest. In particular, these algorithms can be very 13 

helpful in delineating brain abnormalities (lesions, tumors, lacunas, etc), enabling the extraction of 14 

information such as volume and location, that can inform doctors or feed predictive models. Here, we 15 

describe ResectVol DL, a fully automatic tool developed to segment resective lacunas in brain images of 16 

patients with epilepsy. ResectVol DL relies on the nnU-Net framework that leverages the 3D U-Net deep 17 

learning architecture. T1-weighted MRI datasets from 120 patients (57 women; 31.5 ± 15.9 years old at 18 

surgery) were used to train (n=78) and test (n=48) our tool. Manual segmentations were carried out by 19 

five different raters and were considered as ground truth for performance assessment. We compared 20 

ResectVol DL with two other fully automatic methods: ResectVol 1.1.2 and DeepResection, using the 21 

Dice similarity coefficient (DSC), Pearson’s correlation coefficient, and relative difference to manual 22 

segmentation. ResectVol DL presented the highest median DSC (0.92 vs. 0.78 and 0.90), the highest 23 

correlation coefficient (0.99 vs. 0.63 and 0.94), and the lowest median relative difference (9 vs. 44 and 24 

12 %). Overall, we demonstrate that ResectVol DL accurately segments brain lacunas, which has the 25 

potential to assist in the development of predictive models for postoperative cognitive and seizure 26 

outcomes.   27 
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1. Introduction 33 

Epilepsy is a neurological disease with profound impacts on quality of life, morbidity, and mortality. 34 

About 30-40 % of patients do not respond to treatment with medication (1,2) and can be referred to 35 

surgical intervention, especially if structural alterations are detected (3,4). Many factors impact surgical 36 

outcome and long-term seizure freedom is still limited, ranging from 40 to 80 % (5,6) 37 

Studies have tried to determine the factors leading to surgical success (7–9) and nomograms were 38 

created showing promising results for individualizing outcome prediction (5,10). However, most surgical 39 

outcome studies still capture the surgical procedure under broad categorical classifications with 40 

resolution limited to the lobe of resection (temporal/external temporal, hippocampal sparing versus 41 

resecting).  42 

Characterization of the lacuna can be informative to those predictive models by providing volume and 43 

location of extracted brain tissue. Due to the laborious and time-consuming nature of the manual 44 

annotation required to characterize resections, initiatives to automate this task increased in the last 45 

years (11–13). Hence, the purpose of this study is twofold: (i) to introduce ResectVol DL, a fully 46 

automatic method to segment brain lacunas, based on the 3D U-Net architecture (14); and (ii) to 47 

compare ResectVol DL against two other methods: ResectVol (version 1.1.2), a rule-based processing 48 

pipeline (12), and DeepResection, which is based on a 2D U-Net architecture (13). 49 

2. Material and Methods 50 

This study was conducted with approval from the Cleveland Clinical Foundation Institutional Review 51 

Board. Informed consent was waived due to the retrospective nature of the data collection. 52 

2.1. Subjects and image datasets 53 
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Image datasets from 125 patients were retrospectively selected from the Cleveland Clinic Epilepsy 54 

Center and the University of Campinas. We included subjects with temporal (n=45) and extratemporal 55 

lobe epilepsy (n=75), and volunteers with no brain lesions or resective intervention (n=5) to serve as 56 

controls for false discoveries (no-surgery data). Only resective surgeries were included. 57 

2.2. Manual segmentation 58 

Five raters trained in neuroanatomy performed the manual segmentation of the surgical lacunas using 59 

MRIcron (15). Forty-eight image datasets were segmented by either two (n=42) or three (n=6) raters and 60 

were analyzed for inter-rater agreement.  61 

2.3. Automatic Segmentation 62 

To perform the automatic segmentation, we created ResectVol DL, which is based on the nnU-Net deep 63 

learning framework (16). nnU-Net derives from the U-Net (14), a popular deep learning architecture 64 

composed of an encoder, a decoder, and skip connections that concatenate features from the encoder 65 

to the decoder part of the network. Each processing stage of the encoding and decoding streams has 66 

two blocks of operation comprising steps of convolution, intensity normalization, and linear 67 

regularization (Fig. 1). Data augmentation strategies included rotation, scaling, addition of Gaussian 68 

noise, Gaussian blurring, changes to brightness and contrast, simulation of low resolution, and 69 

mirroring. The model training was carried out with five cross-validation folds and 1000 epochs for each 70 

fold. 71 
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 72 

Figure 1. Representation of the 3D nnU-Net architecture. The number of channels and resolution at each 73 

of the six stages are shown on the left (eg: there are 320 channels and a resolution of 4x4x4 in the 74 

feature map of the sixth stage). Contiguous blocks after the green arrows represent the concatenation of 75 

channels from the lower stage of the decoding branch (light blue) with channels at the same stage from 76 

the encoding branch (dark blue). 77 

 78 

To compare our algorithm against other freely available methods, we also performed the lacuna 79 

prediction with two other tools: ResectVol version 1.1.2 (available at lniunicamp.com/resectvol), a rule-80 

based algorithm previously developed by our group that does not employ deep learning methods (12);  81 

and the DeepResection tool (13) (available at github.com/penn-cnt/DeepResection) which uses a set of 82 

three 2D U-Nets, each in one anatomical plane, followed by voxel-wise majority voting. In ResectVol 83 

1.1.2, users must provide the pre- and postoperative images to run the analysis, whereas in 84 

DeepResection users are required to provide the postoperative image only. 85 

2.4. Computational Resources 86 
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All automatic processing was performed on a 3.6 GHz Intel(R) Core(TM) i7-12700KF CPU with 32-GB 87 

RAM, a 48-GB NVIDIA RTX A6000, and a 20.04.1 Ubuntu operational system.  88 

2.5. Performance Assessment 89 

The Dice similarity coefficient (DSC) (17) was used as an indirect measure of overlap between manual 90 

and automatic segmentations. We also calculated the volume obtained from the manual and the 91 

automatic segmentations, and estimated Pearson’s correlation and the volume difference percentage 92 

(manual volume as reference) between them.  93 

Additionally, to investigate if there were differences associated with lacuna size, we split lacunas into 94 

two groups (large and small) based on their median volume and compared the DSCs. Regarding the 95 

inter-rater segmentation performance, we calculated the DSC for the 48 images that were manually 96 

segmented more than once. 97 

3. Results 98 

3.1. Subjects 99 

One hundred and twenty patient volunteers (57 women; 31.5 ± 15.9 years old at surgery) had temporal 100 

(n=45; 23 women; 37.7 ± 13.8 years old) and extratemporal (n=75; 34 women; 27.8 ± 16.0 years old) 101 

epilepsy, whereas five subjects (2 women; 29.0 ± 4.5 years old) were included as controls who were not 102 

submitted to any brain surgery. Nearly all postoperative images were acquired 5 months after surgery 103 

(median: 6.2; Q1-Q3: 6.0 - 8.0; range: .2 - 63.9), to avoid necrotic tissue that could be misleading in the 104 

segmentation process. Seventy-three patients (~61 %) were seizure-free (Engel Ia) after surgery. 105 

3.2. Imaging protocol 106 
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T1-weighted anatomical MR images were obtained in a total of eight different MRI systems (1.5 and 3 T) 107 

from two different vendors (Siemens and Philips). Acquisition parameters and image quality varied, 108 

benefiting the robustness of the performance assessment. Parameters can be summarized in the 109 

following ranges: voxel size = 0.41 × 0.45 × 0.41 to 1 × 2 × 1 mm³; TR = 7 to 2200 ms; TE = 2.3 to 46 ms; 110 

and image matrix = 180 x 96 to 512 x 512. 111 

3.3. Manual segmentation 112 

All the images containing brain lacunas (n=120) were manually segmented at least once. Three of the 113 

five raters timed the duration of manual delineation in a subset of images yielding the approximated 114 

median times of: 114 min (MERB, n=31); 70 min (RFC, n=14); 54 min (GCLP, n=19). Forty-eight images 115 

were segmented by two different raters at least, and the median DSC was .88 (Q1-Q3: .78 - .91; range: 116 

.00 - .97). We visually selected the best manual mask in these cases to compose the final set of 120 117 

manual masks used as ground truth in the subsequent analyses. 118 

3.4. ResectVol DL 119 

Seventy-two images were used to train the nnU-Net architecture. We found a median DSC of .92 (Q1-120 

Q3: .88 - .94) and .91 (Q1-Q3: .86 - .94) for the test and the cross-validation set, respectively (Table 1). 121 

For 47 of the 48 test images, ResectVol DL was able to correctly identify the lacuna (DSC ≥ .612) and it 122 

failed for only one extratemporal case – the smallest lacuna in the sample. The correlation between the 123 

manual and the automatic volumes was r(46) = .99 (p < .001), with a median relative difference of 9 % 124 

(Q1-Q3: 4 – 15 %) (Table 1 and Fig. 2). ResectVol DL correctly identified the absence of lacunas in the 125 

five control datasets. The prediction for each image took, on average, 41.7 seconds.  126 

 127 
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Table 1. Dice Similarity Coefficient (DSC), correlation, and relative difference obtained with each method 

for the test set 

  ResectVol DL ResectVol 1.1.2 DeepResection 

All data 

median DSC (Q1-Q3) .92 (.88 - .94) .78 (.65 - .84) .07 (0 - .89)* 

range 0 - .96 0 - .90 0 - .95* 

correlation (p-val) .99 (< .001) .63 (< .001) ---- 

median rel. diff. (Q1-Q3) 9 (4 - 15) % 44 (29 - 75) % ---- 

Temporal 

median DSC (Q1-Q3) .93 (.89 - .95) .79 (.75 - .86) .90 (.86 - .92) 

range .85 - .96 .21 - .90 .20 - .95 

correlation (p-val) .97 (< .001) .72 (<.001) .94 (< .001) 

median rel. diff. (Q1-Q3) 8 (4 - 11) % 45 (30 - 65) % 12 (6 - 20) % 

Extra-temporal 

median DSC (Q1-Q3) .92 (.88 - .94) .73 (.61 - .79) 0 (0 - 0)* 

range 0 - .96 0 - .89 0 - .08* 

correlation (p-val) .99 (< .001) .62 (.001) ---- 

median rel. diff. (Q1-Q3) 10 (4 - 20) % 37 (15 - 84) % ---- 

No-surgery data 5 cases 0 5 0 

* DeepResection authors do not recommend applying it to extra-temporal cases. These values are just reported 

for completeness. The associated correlation values, however, are not displayed due to the impossibility related 

to data distribution (see Fig. 2A, bottom plot). 

 128 

3.5. Performance of other approaches 129 

The test set of 53 images (48 lacunas and five no-surgery controls) was also processed by ResectVol 130 

1.1.2 and DeepResection. 131 

ResectVol 1.1.2 requires no pre-processing of the images, although the origin of image space (x=0, y=0, 132 

z=0) must not be too far off the anterior commissure, in which case reorienting is necessary. It took on 133 

average nine minutes and 17 seconds to process each dataset composed of the pre- and the 134 

postoperative images. We found a median DSC = .78 (Q1-Q3: .65 - .84), a correlation between the 135 

manual and automatic volumes of r(46) = .63 (p < .001), and a median relative difference of 44 % (Q1-136 

Q3: 29 – 75 %). For the five control images, it incorrectly found a lacuna in all five cases (volume range: 137 

.3 - 4.2 cm³) (Table 1 and Fig. 2). 138 
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139 

Figure 2. Scatter plots for (A) all data (temporal + extratemporal cases) and for (B-D) temporal data only 140 

between each segmentation method and manual delineation. Plots B-D include the linear fit, the 141 

equation that best adjusts to the data, and the correlation value r. 142 

 143 

Like the other tools, DeepResection does not require any image preprocessing. The authors do 144 

recommend, however, that images are in Left-Anterior-Superior orientation because predictions can be 145 

inaccurate otherwise. We used fslorient function from the FMRIB Software Library (FSL) (18) to perform 146 

the reorientation. The available version of DeepResection is only intended for temporal resections, thus 147 

results for this tool are mostly restricted to this brain region. Temporal lacuna predictions overlapped 148 
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with the manual segmentation in all cases, yielding a DSC = .90 (.86 - .92). Median correlation and 149 

relative difference were r(46) = .94 (p < .001) and 12 % (Q1-Q3: 6 – 20 %), respectively (Table 1 and Fig. 150 

2).  151 

Fig. 3 exhibits the best, median, and worst DSC-associated cases for all tools. 152 

 153 

 154 
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Fig. 3. Boxplots, histograms, and noteworthy cases for (A) ResectVol DL (RV2), (B) ResectVol 1.1.2 155 

(RV112), and (C) DeepResection (DR), along with Dice similarity coefficient (DSC). Red and green contours 156 

in A-C represent manual and automatic segmentation. Both versions of ResectVol (A and B) were applied 157 

to temporal and extratemporal data (n = 48), whereas DeepResection (C) is only applied to temporal 158 

cases (n = 23) due to its limitation. In D we display contours obtained with RVDL (red), RV112 (green), 159 

and DR (cyan) in temporal cases (to allow visual comparison across the three tools). Although included in 160 

boxplots and histograms, cases with DSC = 0 are not shown in the figures. 161 

3.6. Large vs. Small lacunas 162 

The Spearman’s correlation between volume (in cm³) and DSCs was rs (46) = .60 (p < .001). To further 163 

assess this significant relationship, we ranked lacunas by their size obtained with the manual delineation 164 

and split our dataset into two subgroups based on the median lacuna volume (25.5 cm³). We 165 

investigated whether there was any difference in DSC across the small (< 25.5 cm³) and the large lacunas 166 

(> 25.5 cm³) (Fig. 4). Since the data in each group was not normally distributed, we performed a non-167 

parametric Mann-Whitney U test that revealed a significant difference between groups (U = 450.5, p = 168 

.001). 169 
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 170 

Fig. 4. Distribution of Dice similarity coefficients (DSC) as a function of lacuna volume. Small lacunas 171 

(black dots) show more diverse values of DSC than large ones (red dots). 172 

 173 

3.7. Structure Identification 174 

After segmenting the lacuna, ResectVol DL combines the lacuna mask with the brain-extracted image to 175 

estimate the original 3D brain shape. This recreated whole brain undergoes a series of registration steps 176 

that register a labeled template in the Montreal Neurological Institute (MNI) space onto the space of the 177 

original image (native). We use the Desikan-Killiany-Tourville (DKT) atlas (19) as a reference for naming 178 

brain structures. Our pipeline uses functions from the Advanced Normalization Tools (ANTs) package 179 

(20), the Statistical Parametric Mapping (SPM) toolbox (21), and the FMRIB Software Library (FSL) (18). 180 

Fig. 5 illustrates an example of the labeled regions of a temporal patient along with the table containing 181 

the volumetric information. 182 
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 183 

Fig. 5. Region labeling in the lacuna segmentation (top) and the corresponding volumetric information 184 

table (bottom). 185 

4. Discussion 186 

In this study, we compared three different segmenting methods against the manual delineation of brain 187 

lacunas in T1-weighted MR images. We found that ResectVol DL, which relies on the nnU-Net 188 

architecture, could outperform its previous rule-based implementation (version 1.1.2) and 189 

DeepResection, a deep learning method based on the 2D U-Net architecture. To the best of our 190 

knowledge, DeepResection, ResectVol 1.1.2, and ResectVol DL are the only freely available, fully 191 

automatic tools dedicated to this task. 192 
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Lacuna segmentation can offer a means of estimating characteristics of the removed brain region and 193 

informing predictive models of surgery outcome. Manual segmentation is the obvious first approach 194 

considered, and arguably the one with the best quality, but it is susceptible to human error and 195 

consistency factors, such as inter and intra-rater variability. A subset of images from our study (n = 48) 196 

were segmented by two (or three) raters to estimate the inter-rater DSC. When more than two 197 

segmentations were available, we chose the highest associated DSC, yielding a more human-favorable 198 

estimate (DSC = .88) to be compared against the automatic methods. 199 

Semi-automated methods have been implemented in which users need to click on a point inside the 200 

lacuna to carry out the segmentation. Gau et al. (22), for instance, employed itk-SNAP segmenting 201 

software (23) to perform the lacuna delineation by manually setting a seed inside the lacuna, followed 202 

by the itk-SNAP's region-growing algorithm, and found a median DSC = .78 (range: .53 - .94). Billardello 203 

and colleagues (11) created a tool that also requires the user to click on (or set the coordinates of) a 204 

voxel to be used as the seed for the region-growing algorithm. They found a median DSC = .83 (Q1-Q3: 205 

.72 - .85). The major advantage of these approaches is that the seed is always positioned in the right 206 

location where the lacuna is expected to be identified. Nevertheless, this approach still demands human 207 

intervention, is prone to bias—since manual positioning of the seed may lead to different results—, and, 208 

although we did not make a direct comparison on the same dataset, the DSC found for ResectVol DL 209 

(.93) is better than in these studies. 210 

Among the fully automatic tools we tested, DeepResection was the fastest (~35 s per image), ResectVol 211 

DL was second (~42 s), whereas ResectVol 1.1.2 took much longer (~9 min) due to the nature of its 212 

processing algorithm which is based on a series of processing steps. When comparing median DSCs 213 

for temporal cases, ResectVol DL was the best one (DSC = .93) followed by DeepResection (.90) and 214 

ResectVol 1.1.2 (.79). Although DeepResection is capable of being fine-tuned to work with 215 
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extratemporal resections—as tested in the original publication (exploratory DSC=.75)—authors do not 216 

recommend using this preliminary fine-tuned model. Hence, for extratemporal cases, we only 217 

considered the results from ResectVol 1.1.2 and ResectVol DL, and, again, version DL was the winner 218 

(.92 vs .73). 219 

As previously reported in other studies (13,22), we found a relationship between DSC and lacuna size 220 

indicating that there is a trend towards better performance for larger resection. Since DSC is dependent 221 

upon a volume ratio, large values in the numerator (intersection) and denominator (total volume) will 222 

be less sensitive to intersection mismatches when comparing two volumetric shapes. Hence, small 223 

lacunas are more prone to be affected by discrepancies and present more variability in DSCs (Fig. 4). 224 

Besides the volumetric information obtained with such computational segmentation methods, this line 225 

of research may offer potential avenues for surgery planning and outcome prediction. Koepp et al. (24) 226 

showed that the removal of at least 50 % of the piriform cortex increased (by a factor of 16) the odds of 227 

becoming seizure-free, and no relationship was found with other mesiotemporal structures. Leon-Rojas 228 

and colleagues (25) implemented a pipeline, based on this result and on their dataset of resective 229 

surgeries, to automatically segment the piriform cortex and calculate chances of seizure freedom during 230 

planning. They were able to plan a new patient intervention with an estimated 50 % chance of long-term 231 

seizure freedom. The automatic segmentation of resected areas can help increase knowledge and 232 

accelerate the development of such tools. Since ResectVol can list areas removed along with their 233 

volume, it can also help serve that purpose. 234 

Regarding manual segmentation, raters spent more time in our study (approximately or more than 1 235 

hour) than what has been reported by other authors (approximately 30 minutes) (12,22). We found that 236 

duration depends on lesion complexity (as reported in these studies), tool used, and rater experience. 237 

Computer systems can spare humans from these repetitive tasks and accelerate their completion, 238 
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besides avoiding the mentioned human error and variability. In the inter-rater assessment, we found a 239 

DSC = .88, comparable to previous reports on brain tumors (.84 - .86) (26) and lacuna resection (.84) 240 

(27). We noticed idiosyncrasies among raters, that were more pronounced in temporal resections, 241 

especially in the very medial region near the hippocampus. We do recommend that researchers 242 

carefully check, or standardize—if possible—, important resection areas if they anticipate that some 243 

regions may be controversial. 244 

One limitation of our tool refers to not being tested on postoperative MRIs of other surgery types, like 245 

laser interstitial thermal therapy. However, we anticipate that, due to the different profiles of lesioned 246 

brain sites, a new network should be trained on this specific dataset to accommodate these discordant 247 

characteristics. We also have not validated the labeling of resected brain structures, which is an area 248 

that does deserve attention in future studies. Overall, ResectVol DL had the best performance across the 249 

tested tools, having failed for only one case out of 53 on which it was tested. It can be utilized in 250 

temporal and extratemporal cases and is freely available at github.com/rfcasseb/resectvol_dl/. 251 

5. Conclusion 252 

ResectVol DL successfully segmented brain lacunas in MRIs of patients with epilepsy who have 253 

undergone surgery. ResectVol DL is fast, accurate, and does not require any image pre-processing. It 254 

relies solely on postoperative images to measure lacuna volumes besides providing estimates of the 255 

volumes of anatomical structures within the lacuna. This enables more precise estimation of volumetric 256 

information, which facilitates studies such as fMRI investigations performed before surgery. Moreover, 257 

it may aid in generating predictive models of surgical results. 258 

 259 
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