Skip to main content
Log in

Insights into the Pharmacokinetics and Pharmacodynamics of Direct Oral Anticoagulants in Older Adults with Atrial Fibrillation: A Structured Narrative Review

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Older adults, the fastest growing population, represent almost 50% of all users of direct oral anticoagulants (DOACs). Unfortunately, we have very little relevant pharmacological and clinical data on DOACs, especially in older adults with geriatric profiles. This is highly relevant as pharmacokinetics and pharmacodynamics (PK/PD) often differ substantially in this population. Hence, we need to obtain a better understanding of the PK/PD of DOACs in older adults, to ensure appropriate treatment. This review summarises the current insights into PK/PD of DOACs in older adults. A search was undertaken up to October 2022 to identify PK/PD studies of apixaban, dabigatran, edoxaban, and rivaroxaban, that included older adults aged ≥ 75 years. This review identified 44 articles. Older age alone did not influence exposure of edoxaban, rivaroxaban and dabigatran, while apixaban peak concentrations were 40% higher in older adults than in young volunteers. Nevertheless, high interindividual variability in DOAC exposure in older adults was noted, which can be explained by distinctive older patient characteristics, such as kidney function, changes in body composition (especially reduced muscle mass), and co-medication with P-gp inhibitors, which is in line with the current dosing reduction criteria of apixaban, edoxaban, and rivaroxaban. Dabigatran had the largest interindividual variability among all DOACs since its dose adjustment criterion is only age, and thus it is not a preferable option. Additionally, DOAC exposure, which fell outside of on-therapy ranges, was significantly related to stroke and bleeding events. No definite thresholds linked to these outcomes in older adults have been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vos T, Abajobir AA, Abate KH, Abbafati C, Abbas KM, Abd-Allah F, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet. 2017;390(10100):1211–59.

    Article  Google Scholar 

  2. Wilke T, Groth A, Mueller S, Pfannkuche M, Verheyen F, Linder R, et al. Incidence and prevalence of atrial fibrillation: an analysis based on 8.3 million patients. Europace. 2013;15(4):486–93.

    Article  PubMed  Google Scholar 

  3. Wilkinson C, Clegg A, Todd O, Rockwood K, Yadegarfar ME, Gale CP, et al. Atrial fibrillation and oral anticoagulation in older people with frailty: a nationwide primary care electronic health records cohort study. Age Ageing. 2021;50(3):772–9.

    Article  PubMed  Google Scholar 

  4. Laupacis A, et al. Risk factors for stroke and efficacy of antithrombotic therapy in atrial fibrillation Analysis of pooled data from five randomized controlled trials. Arch Intern Med. 1994;154(13):1449–57.

    Article  Google Scholar 

  5. Hart RG, Pearce LA, Aguilar MI. Meta-analysis: antithrombotic therapy to prevent stroke in patients who have nonvalvular atrial fibrillation. Ann Intern Med. 2007;146(12):857–67.

    Article  PubMed  Google Scholar 

  6. Singer DE, Chang Y, Fang MC, Borowsky LH, Pomernacki NK, Udaltsova N, et al. The net clinical benefit of warfarin anticoagulation in atrial fibrillation. Ann Intern Med. 2009;151(5):297–305.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Steffel J, Collins R, Antz M, Cornu P, Desteghe L, Haeusler KG, et al. 2021 European heart rhythm association practical guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation. EP Europace. 2021;23(10):1612–76.

    Article  Google Scholar 

  8. Granger CB, Alexander JH, Mcmurray JJV, Lopes RD, Hylek EM, Hanna M, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011;365(11):981–92.

    Article  CAS  PubMed  Google Scholar 

  9. Giugliano RP, Ruff CT, Braunwald E, Murphy SA, Wiviott SD, Halperin JL, et al. Edoxaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2013;369(22):2093–104.

    Article  CAS  PubMed  Google Scholar 

  10. Connolly SJ, Ezekowitz MD, Yusuf S, Eikelboom J, Oldgren J, Parekh A, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med. 2009;361(12):1139–51.

    Article  CAS  PubMed  Google Scholar 

  11. Patel MR, Mahaffey KW, Garg J, Pan G, Singer DE, Hacke W, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med. 2011;365(10):883–91.

    Article  CAS  PubMed  Google Scholar 

  12. Ageno W, Gallus AS, Wittkowsky A, Crowther M, Hylek EM, Palareti G. Oral anticoagulant therapy. Chest. 2012;141(2):e44S-e88S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Witt DM, Clark NP, Kaatz S, Schnurr T, Ansell JE. Guidance for the practical management of warfarin therapy in the treatment of venous thromboembolism. J Thromb Thrombolysis. 2016;41(1):187–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. De Groot JR, Weiss TW, Kelly P, Monteiro P, Deharo JC, De Asmundis C, et al. Edoxaban for stroke prevention in atrial fibrillation in routine clinical care: 1-year follow-up of the prospective observational ETNA-AF-Europe study. Eur Heart J Cardiovasc Pharmacother. 2021;7(FI1):f30–9.

    Article  PubMed  Google Scholar 

  15. Proietti M, Romanazzi I, Romiti GF, Farcomeni A, Lip GYH. Real-world use of apixaban for stroke prevention in atrial fibrillation. Stroke. 2018;49(1):98–106.

    Article  CAS  PubMed  Google Scholar 

  16. Ibáñez L, Sabaté M, Vidal X, Ballarin E, Rottenkolber M, Schmiedl S, et al. Incidence of direct oral anticoagulant use in patients with nonvalvular atrial fibrillation and characteristics of users in 6 European countries (2008–2015): a cross-national drug utilization study. Br J Clin Pharmacol. 2019;85(11):2524–39.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hias J, Van der Linden L, Walgraeve K, Gijsen M, Mian P, Koch BCP, et al. Pharmacokinetics of 2 oral paracetamol formulations in hospitalized octogenarians. Br J Clin Pharmacol. 2021;88:1020–30.

    Article  PubMed  Google Scholar 

  18. Lloyd-Jones D, Adams R, Carnethon M, De Simone G, Ferguson TB, Flegal K, et al. Heart disease and stroke statistics—2009 update. Circulation. 2009;119(3):e21–181.

    PubMed  Google Scholar 

  19. Eurostat. Ageing Europe: Looking at the lives of older people in the EU. Luxembourg: Publications Office of the European Union. 2019.

  20. Bramer WM, Giustini D, De Jonge GB, Holland L, Bekhuis T. De-duplication of database search results for systematic reviews in EndNote. J Med Libr Assoc. 2016;104(3):240–3.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. Syst Rev. 2016;5:1.

    Article  Google Scholar 

  22. Bendayan M, Mardigyan V, Williamson D, Chen-Tournoux A, Eintracht S, Rudski L, et al. Muscle mass and direct oral anticoagulant activity in older adults with atrial fibrillation. J Am Geriatr Soc. 2021;69(4):1012–8.

    Article  PubMed  Google Scholar 

  23. Bernier M, Lancrerot SL, Rocher F, Van-Obberghen EK, Olivier P, Lavrut T, et al. Major bleeding events in octagenarians associated with drug interactions between dabigatran and P-gp inhibitors. J Geriatr Cardiol. 2019;16(11):806–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bhagirath VC, Chan N, Hirsh J, Ginsberg J, de Vries TAC, Eikelboom J. Plasma apixaban levels in patients treated off label with the lower dose. J Am Coll Cardiol. 2020;76(24):2906–7.

    Article  CAS  PubMed  Google Scholar 

  25. Chaussade E, Hanon O, Boully C, Labourée F, Caillard L, Gerotziafas G, et al. Real-life peak and trough dabigatran plasma measurements over time in hospitalized geriatric patients with atrial fibrillation. J Nutr Health Aging. 2018;22(1):165–73.

    Article  CAS  PubMed  Google Scholar 

  26. Comans AL, Sennesael AL, Bihin B, Regnier M, Mullier F, de Saint-Hubert M. Inappropriate low dosing of direct oral anticoagulants in older patients with non-valvular atrial fibrillation: impact on plasma drug levels. Thromb Res. 2021;201:139–42.

    Article  CAS  PubMed  Google Scholar 

  27. Gendron N, Chocron R, Billoir P, Brunier J, Camoin-Jau L, Tuffigo M, et al. Dabigatran level before reversal can predict hemostatic effectiveness of idarucizumab in a real-world setting. Front Med. 2020;2020:7.

    Google Scholar 

  28. Gommans E, Grouls RJE, Kerkhof D, Houterman S, Simmers T, Van Der Linden C. Dabigatran trough concentrations in very elderly patients. Eur J Hosp Pharm. 2021;28(4):231–3.

    Article  PubMed  Google Scholar 

  29. Gulilat M, Keller D, Linton B, Pananos AD, Lizotte D, Dresser GK, et al. Drug interactions and pharmacogenetic factors contribute to variation in apixaban concentration in atrial fibrillation patients in routine care. J Thromb Thrombol. 2020;49(2):294–303.

    Article  Google Scholar 

  30. Ikeda K, Tachibana H. Clinical implication of monitoring rivaroxaban and apixaban by using anti-factor Xa assay in patients with non-valvular atrial fibrillation. J Arrhythm. 2016;32(1):42–50.

    Article  PubMed  Google Scholar 

  31. Kampouraki E, Avery P, Biss T, Wynne H, Kamali F. Assessment of exposure to direct oral anticoagulants in elderly hospitalised patients. Br J Haematol. 2021;195(5):790–801.

    Article  CAS  PubMed  Google Scholar 

  32. Kryukov AV, Sychev DA, Andreev DA, Ryzhikova KA, Grishina EA, Ryabova AV, et al. Influence of ABCB1 and CYP3A5 gene polymorphisms on pharmacokinetics of apixaban in patients with atrial fibrillation and acute stroke. Pharmacogenom Personal Med. 2018;11:43–9.

    Article  CAS  Google Scholar 

  33. Lin SY, Kuo CH, Huang TM, Peng YF, Huang CF, Tang SC, et al. Impact of different renal function equations on direct oral anticoagulant concentrations. Sci Rep. 2021;11(1):23833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lin SY, Kuo CH, Yeh SJ, Tsai LK, Liu YB, Huang CF, et al. Real-world rivaroxaban and apixaban levels in asian patients with atrial fibrillation. Clin Pharmacol Ther. 2020;107(1):278–86.

    Article  CAS  PubMed  Google Scholar 

  35. Mavri A, Vene N, Božič-Mijovski M, Miklič M, Söderblom L, Pohanka A, et al. Apixaban concentration variability and relation to clinical outcomes in real-life patients with atrial fibrillation. Sci Rep. 2021;11(1):13908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nissan R, Spectre G, Hershkovitz A, Green H, Shimony S, Cooper L, et al. Apixaban levels in octogenarian patients with non-valvular atrial fibrillation. Drugs Aging. 2019;36(2):165–77.

    Article  CAS  PubMed  Google Scholar 

  37. Okata T, Toyoda K, Okamoto A, Miyata T, Nagatsuka K, Minematsu K. Anticoagulation intensity of rivaroxaban for stroke patients at a special low dosage in Japan. PLoS ONE. 2014;9:11.

    Article  Google Scholar 

  38. Osanai H, Ajioka M, Masutomi T, Kuwayama T, Ishihama S, Sakamato Y, et al. Measurement of anti-factor xa activity in patients on apixaban for non-valvular atrial fibrillation. Circ J. 2015;79(12):2584–90.

    Article  CAS  PubMed  Google Scholar 

  39. Perlman A, Goldstein R, Choshen Cohen L, Hirsh-Raccah B, Hakimian D, Matok I, et al. Effect of enzyme-inducing antiseizure medications on the risk of sub-therapeutic concentrations of direct oral anticoagulants: a retrospective cohort study. CNS Drugs. 2021;35(3):305–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rizos T, Meid AD, Huppertz A, Dumschat C, Purrucker J, Foerster KI, et al. Low exposure to direct oral anticoagulants is associated with ischemic stroke and its severity. J Stroke. 2022;24(1):88–97.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sacco M, Lancellotti S, Berruti F, Arcovito A, Bellelli A, Ricciardelli T, et al. Apixaban interacts with haemoglobin: effects on its plasma levels. Thromb Haemost. 2018;118(10):1701–12.

    Article  PubMed  Google Scholar 

  42. Siedler G, Macha K, Stoll S, Plechschmidt J, Wang R, Gerner ST, et al. Monitoring of direct oral anticoagulants plasma levels for secondary stroke prevention. J Thromb Haemost. 2022;20:1138–45.

    Article  CAS  PubMed  Google Scholar 

  43. Skripka A, Sychev D, Bochkov P, Shevchenko R, Krupenin P, Kogay V, et al. Factors affecting trough plasma dabigatran concentrations in patients with atrial fibrillation and chronic kidney disease. High Blood Pressure Cardiovasc Prevent. 2020;27(2):151–6.

    Article  CAS  Google Scholar 

  44. Suwa M, Morii I, Kino M. Rivaroxaban or apixaban for non-valvular atrial fibrillation—efficacy and safety of off-label under-dosing according to plasma concentration. Circ J. 2019;83(5):991–9.

    Article  CAS  PubMed  Google Scholar 

  45. Suzuki S, Yamashita T, Akao M, Okumura K. Clinical implications of assessment of apixaban levels in elderly atrial fibrillation patients: J-ELD AF registry sub-cohort analysis. Eur J Clin Pharmacol. 2020;76(8):1111–24.

    Article  CAS  PubMed  Google Scholar 

  46. Suzuki S, Yamashita T, Akao M, Okumura K. Predictors for a high apixaban level in elderly patients with atrial fibrillation prescribed reduced dose of apixaban. Eur J Clin Pharmacol. 2021;77(11):1757–8.

    Article  CAS  PubMed  Google Scholar 

  47. Testa S, Tripodi A, Legnani C, Pengo V, Abbate R, Dellanoce C, et al. Plasma levels of direct oral anticoagulants in real life patients with atrial fibrillation: results observed in four anticoagulation clinics. Thromb Res. 2016;137:178–83.

    Article  CAS  PubMed  Google Scholar 

  48. Testa S, Dellanoce C, Paoletti O, Cancellieri E, Morandini R, Tala M, et al. Edoxaban plasma levels in patients with non-valvular atrial fibrillation: inter and intra-individual variability, correlation with coagulation screening test and renal function. Thromb Res. 2019;175:61–7.

    Article  CAS  PubMed  Google Scholar 

  49. Volbers B, Köhrmann M, Kallmünzer B, Kurka N, Breuer L, Ringwald J, et al. Dabigatran plasma levels in acute cerebrovascular events. J Stroke Cerebrovasc Dis. 2016;25(4):877–82.

    Article  PubMed  Google Scholar 

  50. Cirincione B, Kowalski K, Nielsen J, Roy A, Thanneer N, Byon W, et al. Population pharmacokinetics of apixaban in subjects with nonvalvular atrial fibrillation. CPT Pharmacometr Syst Pharmacol. 2018;7(11):728–38.

    Article  CAS  Google Scholar 

  51. Dansirikul C, Lehr T, Liesenfeld KH, Haertter S, Staab A. A combined pharmacometric analysis of dabigatran etexilate in healthy volunteers and patients with atrial fibrillation or undergoing orthopaedic surgery. Thromb Haemost. 2012;107(4):775–85.

    Article  CAS  PubMed  Google Scholar 

  52. Girgis IG, Patel MR, Peters GR, Moore KT, Mahaffey KW, Nessel CC, et al. Population pharmacokinetics and pharmacodynamics of rivaroxaban in patients with non-valvular atrial fibrillation: results from ROCKET AF. J Clin Pharmacol. 2014;54(8):917–27.

    Article  CAS  PubMed  Google Scholar 

  53. Kaneko M, Tanigawa T, Hashizume K, Kajikawa M, Tajiri M, Mueck W. Confirmation of model-based dose selection for a Japanese phase III study of rivaroxaban in non-valvular atrial fibrillation patients. Drug Metab Pharmacokinet. 2013;28(4):321–31.

    Article  CAS  PubMed  Google Scholar 

  54. Krekels EH, Niebecker R, Karlsson MO, Miller R, Shimizu T, Karlsson KE, et al. Population pharmacokinetics of edoxaban in patients with non-valvular atrial fibrillation in the ENGAGE AF-TIMI 48 Study, a phase III clinical trial. Clin Pharmacokinet. 2016;55(9):1079–90.

    Article  CAS  PubMed  Google Scholar 

  55. Liesenfeld KH, Lehr T, Dansirikul C, Reilly PA, Connolly SJ, Ezekowitz MD, et al. Population pharmacokinetic analysis of the oral thrombin inhibitor dabigatran etexilate in patients with non-valvular atrial fibrillation from the RE-LY trial. J Thromb Haemost. 2011;9(11):2168–75.

    Article  CAS  PubMed  Google Scholar 

  56. Liu XQ, Zhang YF, Ding HY, Yan MM, Jiao Z, Zhong MK, et al. Population pharmacokinetic and pharmacodynamic analysis of rivaroxaban in Chinese patients with non-valvular atrial fibrillation. Acta Pharmacol Sin. 2022;43:2726–34.

    Article  Google Scholar 

  57. Salazar DE, Mendell J, Kastrissios H, Green M, Carrothers TJ, Song S, et al. Modeling and simulation of edoxaban exposure and response relationships in patients with atrial fibrillation. Thromb Haemost. 2012;107(5):925–34.

    Article  CAS  PubMed  Google Scholar 

  58. Song S, Kang D, Halim AB, Miller R. Population pharmacokinetic-pharmacodynamic modeling analysis of intrinsic FXa and bleeding from edoxaban treatment. J Clin Pharmacol. 2014;54(8):910–6.

    Article  CAS  PubMed  Google Scholar 

  59. Speed V, Green B, Roberts LN, Woolcombe S, Bartoli-Abdou J, Barsam S, et al. Fixed dose rivaroxaban can be used in extremes of bodyweight: a population pharmacokinetic analysis. J Thromb Haemost. 2020;18(9):2296–307.

    Article  CAS  PubMed  Google Scholar 

  60. Tanigawa T, Kaneko M, Hashizume K, Kajikawa M, Ueda H, Tajiri M, et al. Model-based dose selection for phase III rivaroxaban study in Japanese patients with non-valvular atrial fibrillation. Drug Metab Pharmacokinet. 2013;28(1):59–70.

    Article  CAS  PubMed  Google Scholar 

  61. Ueshima S, Hira D, Kimura Y, Fujii R, Tomitsuka C, Yamane T, et al. Population pharmacokinetics and pharmacogenomics of apixaban in Japanese adult patients with atrial fibrillation. Br J Clin Pharmacol. 2018;84(6):1301–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Willmann S, Zhang L, Frede M, Kubitza D, Mueck W, Schmidt S, et al. Integrated population pharmacokinetic analysis of rivaroxaban across multiple patient populations. CPT Pharmacometr Syst Pharmacol. 2018;7(5):309–20.

    Article  CAS  Google Scholar 

  63. Yin OQ, Tetsuya K, Miller R. Edoxaban population pharmacokinetics and exposure-response analysis in patients with non-valvular atrial fibrillation. Eur J Clin Pharmacol. 2014;70(11):1339–51.

    Article  CAS  PubMed  Google Scholar 

  64. Zhang F, Chen X, Wu T, Huang N, Li L, Yuan D, et al. Population pharmacokinetics of rivaroxaban in chinese patients with non-valvular atrial fibrillation: a prospective multicenter study. Clin Pharmacokinet. 2022;61:881–93.

    Article  CAS  PubMed  Google Scholar 

  65. Ueshima S, Hira D, Tomitsuka C, Nomura M, Kimura Y, Yamane T, et al. Population pharmacokinetics and pharmacodynamics of apixaban linking its plasma concentration to intrinsic activated coagulation factor X activity in Japanese patients with atrial fibrillation. AAPS J. 2019;21:5.

    Article  Google Scholar 

  66. Ogata K, Mendell-Harary J, Tachibana M, Masumoto H, Oguma T, Kojima M, et al. Clinical safety, tolerability, pharmacokinetics, and pharmacodynamics of the novel factor Xa inhibitor edoxaban in healthy volunteers. J Clin Pharmacol. 2010;50(7):743–53.

    Article  CAS  PubMed  Google Scholar 

  67. Kreutz R, Persson PB, Kubitza D, Thelen K, Heitmeier S, Schwers S, et al. Dissociation between the pharmacokinetics and pharmacodynamics of once-daily rivaroxaban and twice-daily apixaban: a randomized crossover study. J Thromb Haemost. 2017;15(10):2017–28.

    Article  CAS  PubMed  Google Scholar 

  68. Stangier J, Eriksson BI, Dahl OE, Ahnfelt L, Nehmiz G, Stähle H, et al. Pharmacokinetic profile of the oral direct thrombin inhibitor dabigatran etexilate in healthy volunteers and patients undergoing total hip replacement. J Clin Pharmacol. 2005;45(5):555–63.

    Article  CAS  PubMed  Google Scholar 

  69. Frost C, Nepal S, Wang J, Schuster A, Byon W, Boyd RA, et al. Safety, pharmacokinetics and pharmacodynamics of multiple oral doses of apixaban, a factor Xa inhibitor, in healthy subjects. Br J Clin Pharmacol. 2013;76(5):776–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Summary of Product Characteristics: Eliquis 2.5 mg film-coated tablets. 2020. https://www.ema.europa.eu/en/documents/product-information/eliquis-epar-product-information_en.pdf.

  71. Shimizu T, Tachibana M, Kimura T, Kumakura T, Yoshihara K. Population pharmacokinetics of edoxaban in japanese atrial fibrillation patients with severe renal impairment. Clin Pharmacol Drug Dev. 2017;6(5):484–91.

    Article  CAS  PubMed  Google Scholar 

  72. Mendell J, Shi M. Safety, tolerability, pharmacokinetic (PK) and pharmacodynamic (PD) profiles of edoxaban in healthy post-menopausal or surgically sterile females, and healthy elderly males. Eur Heart J. 2011;32:461.

    Google Scholar 

  73. Frost CE, Song Y, Shenker A, Wang J, Barrett YC, Schuster A, et al. Effects of age and sex on the single-dose pharmacokinetics and pharmacodynamics of apixaban. Clin Pharmacokinet. 2015;54(6):651–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kubitza D, Becka M, Roth A, Mueck W. The influence of age and gender on the pharmacokinetics and pharmacodynamics of rivaroxaban-an oral, direct factor Xa inhibitor. J Clin Pharmacol. 2013;53(3):249–55.

    Article  PubMed  Google Scholar 

  75. Stangier J. Clinical pharmacokinetics and pharmacodynamics of the oral direct thrombin?? Inhibitor dabigatran etexilate. Clin Pharmacokinet. 2008;47(5):285–95.

    Article  CAS  PubMed  Google Scholar 

  76. Okada M, Inoue K, Tanaka N, Sakata Y, Akao M, Yamashita T, et al. Clinical outcomes of very elderly patients with atrial fibrillation receiving on-label doses of apixaban: J-ELD AF registry subanalysis. J Am Heart Assoc. 2021;10:15.

    Article  Google Scholar 

  77. Van Der Linden L, Decoutere L, Walgraeve K, Milisen K, Flamaing J, Spriet I, et al. Combined use of the rationalization of home medication by an adjusted STOPP in older patients (RASP) list and a pharmacist-led medication review in very old inpatients: impact on quality of prescribing and clinical outcome. Drugs Aging. 2017;34(2):123–33.

    Article  PubMed  Google Scholar 

  78. de Groot CP, Perdigao AL, Deurenberg P. Longitudinal changes in anthropometric characteristics of elderly Europeans. SENECA investigators. Eur J Clin Nutr. 1996;50(Suppl 2):S9-15.

    PubMed  Google Scholar 

  79. Newman AB, Yanez D, Harris T, Duxbury A, Enright PL, Fried LP, et al. Weight change in old age and its association with mortality. J Am Geriatr Soc. 2001;49(10):1309–18.

    Article  CAS  PubMed  Google Scholar 

  80. Candeloro M, Di Nisio M, Potere N, Di Pizio L, Secinaro E, De Flaviis C, et al. Frailty phenotype as a predictor of bleeding and mortality in ambulatory patients receiving direct oral anticoagulants. J Am Geriatr Soc. 2022;70(12):3503–12.

    Article  PubMed  Google Scholar 

  81. Yamamoto T, Yamashita K, Miyamae K, Koyama Y, Izumimoto M, Kamimura Y, et al. The influence of frailty under direct oral anticoagulant use in patients with atrial fibrillation. Heart Asia. 2019;11(2): e011212.

    Article  PubMed  PubMed Central  Google Scholar 

  82. De Simone V, Mugnolo A, Zanotto G, Morando G. Direct oral anticoagulants for patients aged over 80 years in nonvalvular atrial fibrillation: the impact of frailty. J Cardiovasc Med. 2020;21(8):562–9.

    Article  Google Scholar 

  83. Hilmer SN, Kirkpatrick CMJ. New Horizons in the impact of frailty on pharmacokinetics: latest developments. Age Ageing. 2021;50(4):1054–63.

    Article  PubMed  Google Scholar 

  84. Verrest L, Wilthagen EA, Beijnen JH, Huitema ADR, Dorlo TPC. Influence of malnutrition on the pharmacokinetics of drugs used in the treatment of poverty-related diseases: a systematic review. Clin Pharmacokinet. 2021;60(9):1149–69.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Reilly PA, Lehr T, Haertter S, Connolly SJ, Yusuf S, Eikelboom JW, et al. The effect of dabigatran plasma concentrations and patient characteristics on the frequency of ischemic stroke and major bleeding in atrial fibrillation patients: the RE-LY trial (Randomized Evaluation of Long-Term Anticoagulation Therapy). J Am Coll Cardiol. 2014;63(4):321–8.

    Article  CAS  PubMed  Google Scholar 

  86. Ruff CT, Giugliano RP, Braunwald E, Morrow DA, Murphy SA, Kuder JF, et al. Association between edoxaban dose, concentration, anti-Factor Xa activity, and outcomes: an analysis of data from the randomised, double-blind ENGAGE AF-TIMI 48 trial. Lancet. 2015;385(9984):2288–95.

    Article  CAS  PubMed  Google Scholar 

  87. Kubitza D, Becka M, Wensing G, Voith B, Zuehlsdorf M. Safety, pharmacodynamics, and pharmacokinetics of BAY 59–7939—an oral, direct Factor Xa inhibitor—after multiple dosing in healthy male subjects. Eur J Clin Pharmacol. 2005;61(12):873–80.

    Article  CAS  PubMed  Google Scholar 

  88. Sturkenboom MGG, Märtson A-G, Svensson EM, Sloan DJ, Dooley KE, Van Den Elsen SHJ, et al. Population pharmacokinetics and bayesian dose adjustment to advance TDM of anti-TB drugs. Clin Pharmacokinet. 2021;60(6):685–710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Brooks E, Tett SE, Isbel NM, Staatz CE. Population pharmacokinetic modelling and bayesian estimation of tacrolimus exposure: is this clinically useful for dosage prediction yet? Clin Pharmacokinet. 2016;55(11):1295–335.

    Article  CAS  PubMed  Google Scholar 

  90. Chan N, Sager PT, Lawrence J, Ortel T, Reilly P, Berkowitz S, et al. Is there a role for pharmacokinetic/pharmacodynamic-guided dosing for novel oral anticoagulants? Am Heart J. 2018;199:59–67.

    Article  CAS  PubMed  Google Scholar 

  91. Stocker SL, Carland JE, Reuter SE, Stacy AE, Schaffer AL, Stefani M, et al. Evaluation of a pilot vancomycin precision dosing advisory service on target exposure attainment using an interrupted time series analysis. Clin Pharmacol Ther. 2021;109(1):212–21.

    Article  CAS  PubMed  Google Scholar 

  92. Eikelboom JW, Quinlan DJ, Hirsh J, Connolly SJ, Weitz JI. Laboratory monitoring of non-vitamin K antagonist oral anticoagulant use in patients with atrial fibrillation. JAMA Cardiol. 2017;2(5):566.

    Article  PubMed  Google Scholar 

  93. Gosselin R, Adcock D, Bates S, Douxfils J, Favaloro E, Gouin-Thibault I, et al. International council for standardization in haematology (ICSH) recommendations for laboratory measurement of direct oral anticoagulants. Thromb Haemost. 2018;118(03):437–50.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Chayenne Van Meel and Eline Vancoppenolle, the biomedical reference librarians of the KU Leuven Libraries—2Bergen—learning Centre Désiré Collen (Leuven, Belgium), for their help in providing the assistance with the search strategy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jos Tournoy.

Ethics declarations

Funding

This review article receives no specific funding. AEE is supported by AGePOP, a Horizon 2020 research and innovation program; Marie Skłodowska-Curie grant (No. 956146). TV is supported by a research Grant from FWO No. 1843423N

Conflict of Interest

Angela Elma Edwina, Nada Dia, Erwin Dreesen, Thomas Vanassche, Peter Verhamme, Isabel Spriet, Lorenz Van der Linden, Jos Tournoy declare that they have no potential conflicts of interest that might be relevant to the contents of this manuscript.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Code Availability

Not applicable.

Author Contributions

AEE, JT, LVdL provided the concept for this review. AEE and ND performed the literature search and data analysis. AEE drafted the original manuscript. ND, ED, TV, PV, IS, LVdL, JT critically reviewed and edited the manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 585 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edwina, A.E., Dia, N., Dreesen, E. et al. Insights into the Pharmacokinetics and Pharmacodynamics of Direct Oral Anticoagulants in Older Adults with Atrial Fibrillation: A Structured Narrative Review. Clin Pharmacokinet 62, 351–373 (2023). https://doi.org/10.1007/s40262-023-01222-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-023-01222-w

Navigation