Skip to main content

Advertisement

Log in

Urinary angiotensin converting enzyme 2 is strongly related to urinary nephrin in type 2 diabetes patients

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

An Erratum to this article was published on 16 January 2017

Abstract

Purpose

Podocyte lesion is recently recognized as an early event in diabetic kidney disease (DKD) and is reflected by urinary (u) nephrin (Neph) shedding. Angiotensin II plays an important role in podocyte dysfunction of diabetes. Angiotensin converting enzyme 2 (ACE2) is the main ACE variant in podocytes and counteracts deleterious angiotensin II effects. We assessed for the first time the relation of uACE2 and uNeph in type 2 diabetes subjects.

Material and method

Seventy-five type 2 diabetes patients were included in a transversal study. History, clinical and laboratory data, urinary albumin-to-creatinine ratio (uACR), and ELISA determination of uNeph and uACE2 were obtained.

Results

uNeph was 349.00 ± 133.42 pg/ml, and uACE2 was 45.50 (36.35–62.60) pg/ml. uNeph correlated to uACE2 (r = 0.44, p < 0.001) and to uACR (r = 0.25, p = 0.032). In multivariate regression, introducing parameters that are known to be related to DKD, uACE2 (p < 0.0001), LDL cholesterol (p = 0.02) and glycated hemoglobin (p = 0.03) remained significant predictors of uNeph. Normoalbuminuric patients had lower uNeph than patients with uACR > 30 mg/g (325.50 ± 135.45 vs 391.03 ± 121.40 pg/ml, p = 0.04); they also had a tendency versus lower uACE2 [41.40 (34.30–60.65) vs 52.57 (37.95–69.85) pg/ml, p = 0.06]. A cutoff for uNeph of 451.6 pg/ml was derived from the ROC curve analysis; uACE2 was the main determinant for uNeph being above or below this cutoff—OR = 1.09; 95 %CI (1.04–1.15), p = 0.001. Patients taking blockers of the renin angiotensin system had similar uNeph and uACE2. uNeph and uACE2 were not influenced by renal function.

Conclusion

uNeph is significantly correlated to uACE2 and uACR in type 2 diabetes patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wolf G, Chen S, Ziyadeh F (2005) Perspectives in diabetes from the periphery of the glomerular capillary wall toward the center of disease: podocyte injury comes of age in diabetic nephropathy. Diabetes 54:1626–1634

    Article  CAS  PubMed  Google Scholar 

  2. Pagtalunan ME, Miller PL, Jumping-Eagle S (1997) Podocyte loss and progressive glomerular injury in type II diabetes. J Clin Investig 99:342–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Steffes MW, Schmidt D, McCrery R, Basgen JM (2001) Glomerular cell number in normal subjects and in type 1 diabetic patients. Kidney Int 59:2104–2113

    Article  CAS  PubMed  Google Scholar 

  4. Hara M, Yanagihara T, Itoh M, Matsuno M, Kihara I (1998) Immunohistochemical and urinary markers of podocyte injury. Pediatr Nephrol 12:43–48

    Article  CAS  PubMed  Google Scholar 

  5. Nakamura T, Ushiyama C, Suzuki S (2000) Urinary excretion of podocytes in patients with diabetic nephropathy. Nephrol Dial Transpl 15:1379–1383

    Article  CAS  Google Scholar 

  6. Jim B, Ghanta M, Qipo A, Fan Y et al (2012) Dysregulated nephrin in diabetic nephropathy of type 2 diabetes: a cross sectional study. PLoS ONE 7:e36041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kandasamy Y, Smith R, Lumbers ER, Rudd D (2014) Nephrin—a biomarker of early glomerular injury. Biomark Res 2:21

    Article  PubMed  PubMed Central  Google Scholar 

  8. Petrica L, Vlad A, Gluhovschi G, Gadalean F et al (2014) Proximal tubule dysfunction is associated with podocyte damage biomarkers nephrin and vascular endothelial growth factor in type 2 diabetes mellitus patients: a cross-sectional study. PLoS ONE 9:e112538

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mizuiri S, Ohashi Y (2015) ACE and ACE2 in kidney disease. World J Nephrol 4:74–82

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ortiz-Melo DI, Gurley SB (2016) Angiotensin converting enzyme 2 and the kidney. Curr Opin Nephrol Hypertens 25:59–66

    Article  CAS  PubMed  Google Scholar 

  11. Márquez E, Riera M, Pascual J, Soler MJ (2015) Renin-angiotensin system within the diabetic podocyte. Am J Physiol Renal Physiol 308:F1–F10

    Article  PubMed  Google Scholar 

  12. Ye M, Wysocki J, William J, Soler MJ, Cokic I, Batlle D (2006) Glomerular localization and expression of angiotensin-converting enzyme 2 and angiotensin-converting enzyme: implications for albuminuria in diabetes. J Am Soc Nephrol 17:3067–3075

    Article  CAS  PubMed  Google Scholar 

  13. Reich HN, Oudit GY, Penninger JM, Scholey JW, Herzenberg AM (2008) Decreased glomerular and tubular expression of ACE2 in patients with type 2 diabetes and kidney disease. Kidney Int 74:1610–1616

    Article  CAS  PubMed  Google Scholar 

  14. Tikellis C, Johnston CI, Forbes JM, Burns WC, Burrell LM, Risvanis J, Cooper ME (2003) Characterization of renal angiotensin-converting enzyme 2 in diabetic nephropathy. Hypertension 41:392–397

    Article  CAS  PubMed  Google Scholar 

  15. Liang Y, Deng H, Bi S, Cui Z, A L, Zheng D, Wang Y (2015) Urinary angiotensin converting enzyme 2 increases in patients with type 2 diabetic mellitus. Kidney Blood Press Res 40:101–110

    Article  CAS  PubMed  Google Scholar 

  16. Bondor CI, Potra AR, Moldovan D, Rusu CC, Pop MC, Muresan A, Vladutiu DS, Kacso IM (2015) Relationship of adiponectin to markers of oxidative stress in type 2 diabetic patients: influence of incipient diabetes-associated kidney disease. Int Urol Nephrol 47:1173–1180

    Article  CAS  PubMed  Google Scholar 

  17. Fukuyama N, Homma K, Wakana N et al (2008) Validation of the Friedewald equation for evaluation of plasma LDL-cholesterol. J Clin Biochem Nutr 2008(43):1–5

    Google Scholar 

  18. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J, CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pätäri A, Forsblom C, Havana M, Taipale H, Groop PH, Holthöfer H (2003) Nephrinuria in diabetic nephropathy of type 1 diabetes. Diabetes 52:2969–2974

    Article  PubMed  Google Scholar 

  20. Ng DPK, Tai B-C, Tan E et al (2010) Nephrinuria associates with multiple renal traits in type 2 diabetes. Nephrol Dial Transpl 26:2508–2514

    Article  Google Scholar 

  21. Shahid MA, Baig S, Shah SNN (2014) Nephrin: an emerging biomarker for detecting damage of glomerular filtration barrier. Pak J Med Dent 3:83–88

    Google Scholar 

  22. Do Nascimento JF, Canani LH, Gerchman F et al (2013) Messenger RNA levels of podocyte-associated proteins in subjects with different degrees of glucose tolerance with or without nephropathy. BMC Nephrol 14:214

    Article  PubMed  PubMed Central  Google Scholar 

  23. Doublier S, Salvidio G, Lupia E et al (2003) Nephrin expression is reduced in human diabetic nephropathy: evidence for a distinct role for glycated albumin and angiotensin II. Diabetes 52:1023–1030

    Article  CAS  PubMed  Google Scholar 

  24. Velez JC, Bland AM, Arthur JM, Raymond JR, Janech MG (2007) Characterization of renin–angiotensin system enzyme activities in cultured mouse podocytes. Am J Physiol Renal Physiol 293:F398–F407

    Article  CAS  PubMed  Google Scholar 

  25. Giani JF, Burghi V, Veiras LC, Tomat A, Munoz MC, Cao G, Turyn D, Toblli JE, Dominici FP (2012) Angiotensin-(1–7) attenuates diabetic nephropathy in Zucker diabetic fatty rats. Am J Physiol Renal Physiol 302:F1606–F1615

    Article  CAS  PubMed  Google Scholar 

  26. Benter IF, Yousif MH, Dhaunsi GS, Kaur J, Chappell MC, Diz DI (2008) Angiotensin-(1–7) prevents activation of NADPH oxidase and renal vascular dysfunction in diabetic hypertensive rats. Am J Nephrol 28:25–33

    Article  CAS  PubMed  Google Scholar 

  27. Moon JY, Tanimoto M, Gohda T et al (2011) Attenuating effect of angiotensin-(1–7) on angiotensin II—mediated NAD(P)H oxidase activation in type 2 diabetic nephropathy of KK-A(y)/Ta mice. Am J Physiol Renal Physiol 300:F1271–F1282

    Article  CAS  PubMed  Google Scholar 

  28. Nadarajah R, Milagres R, Dilauro M, Gutsol A, Xiao F, Zimpelmann J, Kennedy C, Wysocki J, Batlle D, Burns KD (2012) Podocyte-specific overexpression of human angiotensin-converting enzyme 2 attenuates diabetic nephropathy in mice. Kidney Int 82:292–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Oudit GY, Liu GC, Zhong J et al (2010) Human recombinant ACE2 reduces the progression of diabetic nephropathy. Diabetes 59:529–538

    Article  CAS  PubMed  Google Scholar 

  30. Chen LJ, Xu YL, Song B et al (2016) Angiotensin-converting enzyme 2 ameliorates renal fibrosis by blocking the activation of mTOR/ERK signaling in apolipoprotein E-deficient mice. Peptides 79:49–57

    Article  CAS  PubMed  Google Scholar 

  31. Zhong J, Guo D, Chen CB, Wang W, Schuster M, Loibner H, Penninger JM, Scholey JW, Kassiri Z, Oudit GY (2011) Prevention of angiotensin II—mediated renal oxidative stress, inflammation, and fibrosis by angiotensin-converting enzyme 2. Hypertension 57:314–322

    Article  CAS  PubMed  Google Scholar 

  32. Soler MJ, Wysocki J, Ye M, Lloveras J, Kanwar Y, Batlle D (2007) ACE2 inhibition worsens glomerular injury in association with increased ACE expression in streptozotocin-induced diabetic mice. Kidney Int 72:614–623

    Article  CAS  PubMed  Google Scholar 

  33. Danilczyk U, Penninger JM (2006) Angiotensin-converting enzyme II in the heart and the kidney. Circ Res 98:463–471

    Article  CAS  PubMed  Google Scholar 

  34. Burrel LM, Burchill L, Dean RG, Griggs K, Patel SK, Velkoska E (2012) Chronic kidney diseae: cardiac and renal angiotensin-converting enzyme 2 (ACE2) expression in rats after subtotal nephrectomy and the role of ACE inhibition. Exp Physiol 97:477–485

    Article  Google Scholar 

  35. Funhashi M, Moniwa N, Mita T et al (2015) Urinary angiotensin converting enzyme 2 in hypertensive patients may be increased by olmesartan and angiotensin II receptor blocker. Am J Hypertens 28:15–21

    Article  Google Scholar 

  36. Abe M, Oikawa O, Okada K, Soma M (2014) Urinary angiotensin converting enzyme 2 increases in diabetic nephropathy by angiotensin II receptor blocker olmesartan. J Renin Angiotensin Aldosterone Syst 16:159–164

    Article  PubMed  Google Scholar 

  37. Galagher PE, Payne VS, Kasper SO et al (2011) Long term angiotensin II type 1 receptor blockade regulates mRNA expression of dorsomedial medulla renin–angiotensin system components. Physiol Genom 43:829–835

    Article  Google Scholar 

  38. Nakhoul F, Ramadan R, Khankin E, Yaccob A, Kositch Z, Lewin M, Assady S, Abassi Z (2005) Glomerular abundance of nephrin and podocin in experimental nephrotic syndrome: different effects of antiproteinuric therapies. Am J Physiol Renal Physiol 289:F880–F890

    Article  CAS  PubMed  Google Scholar 

  39. Bonnet F, Cooper ME, Kawachi H (2001) Irbesartan normalises the deficiency in glomerular nephrin expression in a model of diabetes and hypertension. Diabetologia 44:874–877

    Article  CAS  PubMed  Google Scholar 

  40. Kelly DJ, Aaltonen P, Cox AJ (2002) Expression of the slit-diaphragm protein, nephrin, in experimental diabetic nephropathy: differing effects of anti-proteinuric therapies. Nephrol Dial Transplant 17:1327–1332

    Article  CAS  PubMed  Google Scholar 

  41. Xu ZG, Yoo TH, Ryu DR, Park HC, Ha SK, Han DS, Adler SG, Natarajan R, Kang SW (2005) p27Kip1 expression in glucose-stimulated podocytes and in diabetic glomeruli. Kidney Int 67:944–952

    Article  CAS  PubMed  Google Scholar 

  42. Mizuiri S, Aoki T, Hemmi H, Arita M, Sakai K, Aikawa A (2011) Urinary angiotensin-converting enzyme 2 in patients with CKD. Nephrology (Carlton) 16:567–572

    Article  CAS  Google Scholar 

  43. Durvasula RV, Petermann AT, Hiromura K, Blonski M, Pippin J, Mundel P, Pichler R, Griffin S, Couser WG, Shankland SJ (2004) Activation of a local tissue angiotensin system in podocytes by mechanical strain. Kidney Int 65:30–39

    Article  CAS  PubMed  Google Scholar 

  44. Durvasula RV, Shankland SJ (2008) Activation of a local renin–angiotensin system in podocytes by glucose. Am J Physiol Renal Physiol 294:F830–F839

    Article  CAS  PubMed  Google Scholar 

  45. Deb DK, Chen Y, Zhang Z, Zhang Y, Szeto FL, Wong KE, Kong J, Li YC (2009) 1,25-Dihydroxyvitamin D3 suppresses high glucose-induced angiotensinogen expression in kidney cells by blocking the NFK-B pathway. Am J Physiol Renal Physiol 296:F1212–F1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yoo TH, Li JJ, Kim JJ et al (2007) Activation of the renin–angiotensin system within podocytes in diabetes. Kidney Int 71:1019–1027

    Article  CAS  PubMed  Google Scholar 

  47. Marquez E, Riera M, Pascual J, Soler MJ (2014) Albumin inhibits the insulin-mediated ACE2 increase in cultured podocytes. Am J Physiol Renal Physiol 306:F1327–F1334

    Article  CAS  PubMed  Google Scholar 

  48. Park SE, Kim WJ, Park SW, Park JW, Lee N, Park CY, Youn BS (2013) High urinary ACE2 concentrations are associated with severity of glucose intolerance and microalbuminuria. Eur J Endocrinol 168:203–210

    Article  CAS  PubMed  Google Scholar 

  49. Haschke M, Schuster M, Poglitsch M, Loibner H, Salzberg M, Bruggisser M, Penninger J, Krähenbühl S, Oudit GY (2013) Pharmacokinetics and pharmacodynamics of recombinant human angiotensin-converting enzyme 2 in healthy human subjects. Clin Pharmacokinet 52:783–792

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Alina Ramona Potra is a fellow of POSDRU Grant no. 159/1.5/S/138776 Grant with title: “Model colaborativ institutional pentru translatarea cercetarii stiintifice biomedicale in practica clinica—TRANSCENT”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Potra Alina Ramona.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s11255-017-1504-3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mariana, C.P., Ramona, P.A., Ioana, B.C. et al. Urinary angiotensin converting enzyme 2 is strongly related to urinary nephrin in type 2 diabetes patients. Int Urol Nephrol 48, 1491–1497 (2016). https://doi.org/10.1007/s11255-016-1334-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-016-1334-8

Keywords

Navigation