Skip to main content

Advertisement

Log in

The Fanconi anemia family of genes and its correlation with breast cancer susceptibility and breast cancer features

  • Letter to the Editor
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Fanconi anemia (FA) family of proteins participates in the DNA repair pathway by homologous recombination, and it is currently formed by 13 genes. Some of these proteins also confer susceptibility to hereditary breast and ovarian cancer (HBOC), since FANCD1 is the BRCA2 breast cancer susceptibility gene, and FANCN/PALB2 and FANCJ/BRIP1 explain 2% of non-BRCA1/2 HBOC families. Thus, there is an important connection between FA and BRCA pathways. In a previous case–control association study analysing FANCA, FANCD2 and FANCL, we reported an association between FANCD2 and sporadic breast cancer (BC) risk (OR = 1.35). In order to know whether variants in other FA genes could also be involved in this association, we have extended our study with the rest of FA genes and some others implicated in the BRCA pathway. We have also analyzed the correlation with survival, nodal metastasis and hormonal receptors (ER− and PR−). A total of 61 SNPs in ten FA genes (FANC-B, -C, -D1, -E, -F, -G, -I, -J, -M, -N) and five FA related genes (ATM, ATR, BRCA1, H2AX and USP1) were studied in a total of 547 consecutive and nonrelated sporadic BC cases and 552 unaffected controls from the Spanish population. Association analyses reported marginal statistically significant results with the minor allele of intronic SNPs in three genes: BRCA1, BRCA2/FANCD1, and ATM. Survival association with SNPs on FANCC and BRCA2/FANCD1 genes were also reported. Sub-group analyses revealed associations between SNPs on FANCI and ATM and nodal metastasis status and between FANCJ/BRIP1 and FANCN/PALB2 and PR− status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Miki Y, Swensen J, Shattuck-Eidens D et al (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266:66–71

    Article  CAS  PubMed  Google Scholar 

  2. Wooster R, Bignell G, Lancaster J et al (1995) Identification of the breast cancer susceptibility gene BRCA2. Nature 378:789–792

    Article  CAS  PubMed  Google Scholar 

  3. Stewart G, Elledge SJ (2002) The two faces of BRCA2, a FANCtastic discovery. Mol Cell 10:2–4

    Article  CAS  PubMed  Google Scholar 

  4. Thorstenson YR, Roxas A, Kroiss R et al (2003) Contributions of ATM mutations to familial breast and ovarian cancer. Cancer Res 63:3325–3333

    CAS  PubMed  Google Scholar 

  5. Seal S, Thompson D, Renwick A et al (2006) Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nat Genet 38:1239–1241

    Article  CAS  PubMed  Google Scholar 

  6. Rahman N, Seal S, Thompson D et al (2007) PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet 39:165–167

    Article  CAS  PubMed  Google Scholar 

  7. Liang F, Han M, Romanienko PJ, Jasin M (1998) Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc Natl Acad Sci USA 95:5172–5177

    Article  CAS  PubMed  Google Scholar 

  8. Moynahan ME, Chiu JW, Koller BH, Jasin M (1999) Brca1 controls homology-directed DNA repair. Mol Cell 4:511–518

    Article  CAS  PubMed  Google Scholar 

  9. Moynahan ME, Pierce AJ, Jasin M (2001) BRCA2 is required for homology-directed repair of chromosomal breaks. Mol Cell 7:263–272

    Article  CAS  PubMed  Google Scholar 

  10. Wang X, D’Andrea AD (2004) The interplay of Fanconi anemia proteins in the DNA damage response. DNA Repair (Amst) 3:1063–1069

    Article  CAS  Google Scholar 

  11. Thompson E, Dragovic RL, Stephenson SA et al (2005) A novel duplication polymorphism in the FANCA promoter and its association with breast and ovarian cancer. BMC Cancer 5:43

    Article  PubMed  CAS  Google Scholar 

  12. Fei P, Yin J, Wang W (2005) New advances in the DNA damage response network of Fanconi anemia and BRCA proteins. FAAP95 replaces BRCA2 as the true FANCB protein. Cell Cycle 4(8):80–86

    CAS  PubMed  Google Scholar 

  13. Kitao H, Yamamoto K, Matsushita N et al (2006) Functional interplay between BRCA2/FancD1 and FancC in DNA repair. J Biol Chem 281:21312–21320

    Article  CAS  PubMed  Google Scholar 

  14. Howlett NG, Taniguchi T, Olson S et al (2002) Biallelic inactivation of BRCA2 in Fanconi anemia. Science 297:606–609

    Article  CAS  PubMed  Google Scholar 

  15. Hussain S, Wilson JB, Medhurst AL et al (2004) Direct interaction of FANCD2 with BRCA2 in DNA damage response pathways. Hum Mol Genet 13:1241–1248

    Article  CAS  PubMed  Google Scholar 

  16. Gordon SM, Alon N, Buchwald M (2005) FANCC, FANCE, and FANCD2 form a ternary complex essential to the integrity of the Fanconi anemia DNA damage response pathway. J Biol Chem 280:36118–36125

    Article  CAS  PubMed  Google Scholar 

  17. Wang Z, Li M, Lu S, Zhang Y, Wang H (2006) Promoter hypermethylation of FANCF plays an important role in the occurrence of ovarian cancer through disrupting Fanconi anemia-BRCA pathway. Cancer Biol Ther 5:256–260

    Article  CAS  PubMed  Google Scholar 

  18. Hussain S, Witt E, Huber PA et al (2003) Direct interaction of the Fanconi anaemia protein FANCG with BRCA2/FANCD1. Hum Mol Genet 12:2503–2510

    Article  CAS  PubMed  Google Scholar 

  19. Sims AE, Spiteri E, Sims RJ et al (2007) FANCI is a second monoubiquitinated member of the Fanconi anemia pathway. Nat Struct Mol Biol 14:564–567

    Article  CAS  PubMed  Google Scholar 

  20. Litman R, Peng M, Jin Z et al (2005) BACH1 is critical for homologous recombination and appears to be the Fanconi anemia gene product FANCJ. Cancer Cell 8:255–265

    Article  CAS  PubMed  Google Scholar 

  21. Meetei AR, Yan Z, Wang W (2004) FANCL replaces BRCA1 as the likely ubiquitin ligase responsible for FANCD2 monoubiquitination. Cell Cycle 3:179–181

    CAS  PubMed  Google Scholar 

  22. Meetei AR, Medhurst AL, Ling C et al (2005) A human ortholog of archaeal DNA repair protein Hef is defective in Fanconi anemia complementation group M. Nat Genet 37:958–963

    Article  CAS  PubMed  Google Scholar 

  23. Tischkowitz M, Xia B, Sabbaghian N et al (2007) Analysis of PALB2/FANCN-associated breast cancer families. Proc Natl Acad Sci USA 104:6788–6793

    Article  CAS  PubMed  Google Scholar 

  24. Wang W (2007) Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins. Nat Rev Genet 8:735–748

    Article  CAS  PubMed  Google Scholar 

  25. Garcia MJ, Benitez J (2008) The Fanconi anaemia/BRCA pathway and cancer susceptibility. Searching for new therapeutic targets. Clin Transl Oncol 10:78–84

    Article  CAS  PubMed  Google Scholar 

  26. Jacquemont C, Taniguchi T (2007) The Fanconi anemia pathway and ubiquitin. BMC Biochem 8(Suppl 1):S10

    Article  PubMed  CAS  Google Scholar 

  27. Gatei M, Zhou BB, Hobson K et al (2001) Ataxia telangiectasia mutated (ATM) kinase and ATM and Rad3 related kinase mediate phosphorylation of Brca1 at distinct and overlapping sites. In vivo assessment using phospho-specific antibodies. J Biol Chem 276:17276–17280

    Article  CAS  PubMed  Google Scholar 

  28. Yu YM, Pace SM, Allen SR, Deng CX, Hsu LC (2008) A PP1-binding motif present in BRCA1 plays a role in its DNA repair function. Int J Biol Sci 4:352–361

    CAS  PubMed  Google Scholar 

  29. Lyakhovich A, Surralles J (2007) New roads to FA/BRCA pathway: H2AX. Cell Cycle 6:1019–1023

    CAS  PubMed  Google Scholar 

  30. Nijman SM, Huang TT, Dirac AM et al (2005) The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway. Mol Cell 17:331–339

    Article  CAS  PubMed  Google Scholar 

  31. Barroso E, Milne RL, Fernandez LP et al (2006) FANCD2 associated with sporadic breast cancer risk. Carcinogenesis 27:1930–1937

    Article  CAS  PubMed  Google Scholar 

  32. Freedman ML, Penney KL, Stram DO et al (2004) Common variation in BRCA2 and breast cancer risk: a haplotype-based analysis in the Multiethnic Cohort. Hum Mol Genet 13:2431–2441

    Article  CAS  PubMed  Google Scholar 

  33. Palacios J, Robles-Frias MJ, Castilla MA, Lopez-Garcia MA, Benitez J (2008) The molecular pathology of hereditary breast cancer. Pathobiology 75:85–94

    Article  CAS  PubMed  Google Scholar 

  34. Baynes C, Healey CS, Pooley KA et al (2007) Common variants in the ATM, BRCA1, BRCA2, CHEK2 and TP53 cancer susceptibility genes are unlikely to increase breast cancer risk. Breast Cancer Res 9:R27

    Article  PubMed  CAS  Google Scholar 

  35. Narayan G, Arias-Pulido H, Nandula SV et al (2004) Promoter hypermethylation of FANCF: disruption of Fanconi Anemia-BRCA pathway in cervical cancer. Cancer Res 64:2994–2997

    Article  CAS  PubMed  Google Scholar 

  36. van der Heijden MS, Yeo CJ, Hruban RH, Kern SE (2003) Fanconi anemia gene mutations in young-onset pancreatic cancer. Cancer Res 63:2585–2588

    PubMed  Google Scholar 

  37. Berwick M, Satagopan JM, Ben-Porat L et al (2007) Genetic heterogeneity among Fanconi anemia heterozygotes and risk of cancer. Cancer Res 67:9591–9596

    Article  CAS  PubMed  Google Scholar 

  38. Tischkowitz M, Easton DF, Ball J, Hodgson SV, Mathew CG (2008) Cancer incidence in relatives of British Fanconi Anaemia patients. BMC Cancer 8:257

    Article  PubMed  CAS  Google Scholar 

  39. Sorlie T, Tibshirani R, Parker J et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100:8418–8423

    Article  CAS  PubMed  Google Scholar 

  40. Garcia-Closas M, Hall P, Nevanlinna H et al (2008) Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics. PLoS Genet 4:e1000054

    Article  PubMed  CAS  Google Scholar 

  41. Mavaddat N, Dunning AM, Ponder BA, Easton DF, Pharoah PD (2009) Common genetic variation in candidate genes and susceptibility to subtypes of breast cancer. Cancer Epidemiol Biomarkers Prev 18:255–259

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants FANCOGEN (Genoma España); BFI2003-03852 and SAF2007-65542-C02-01 from the Ministerio de Educación y Ciencia (MEC) and Fundación Mútua Madrileña, Spain (GR). EB is funded by the Comunidad Autónoma de Madrid. We would like to thank Santiago Palacios (Instituto Palacios, Madrid) for the access to samples of cases and controls. We would also like to thank Fátima Mercadillo, Alicia Barroso, Victoria Fernández and Rocío Letón for their expert technical skills.

Conflict of interest statement

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ribas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 51 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barroso, E., Pita, G., Arias, J.I. et al. The Fanconi anemia family of genes and its correlation with breast cancer susceptibility and breast cancer features. Breast Cancer Res Treat 118, 655–660 (2009). https://doi.org/10.1007/s10549-009-0439-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-009-0439-5

Keywords

Navigation