Skip to main content

Advertisement

Log in

Reduced thiamine binding is a novel mechanism for TPK deficiency disorder

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Thiamine pyrophosphokinase (TPK) converts thiamine (vitamin B1) into thiamine pyrophosphate (TPP), an essential cofactor for many important enzymes. TPK1 mutations lead to a rare disorder: episodic encephalopathy type thiamine metabolism dysfunction. Yet, the molecular mechanism of the disease is not entirely clear. Here we report an individual case of episodic encephalopathy, with familial history carrying a novel homozygous TPK1 mutation (p.L28S). The L28S mutation leads to reduced enzymatic activity, both in vitro and in vivo, without impairing thiamine binding and protein stability. Thiamine supplementation averted encephalopathic episodes and restored the patient’s developmental progression. Biochemical characterization of reported TPK1 missense mutations suggested reduced thiamine binding as a new disease mechanism. Importantly, many disease mutants are directly or indirectly involved in thiamine binding. Thus, our study provided a novel rationale for thiamine supplementation, so far the major therapeutic intervention in TPK deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Banka S, de Goede C, Yue WW, Morris AAM, von Bremen B, Chandler KE, Feichtinger RG, Hart C, Khan N, Lunzer V, Mataković L, Marquardt T, Makowski C, Prokisch H, Debus O, Nosaka K, Sonwalkar H, Zimmermann FA, Sperl W, Mayr JA (2014) Expanding the clinical and molecular spectrum of thiamine pyrophosphokinase deficiency: a treatable neurological disorder caused by TPK1 mutations. Mol Genet Metab 113:301–306

    Article  CAS  PubMed  Google Scholar 

  • Brown G (2014) Defects of thiamine transport and metabolism. J Inherit Metab Dis 37:577–585

    Article  CAS  PubMed  Google Scholar 

  • Bunik VI, Tylicki A, Lukashev NV (2013) Thiamin diphosphate-dependent enzymes: from enzymology to metabolic regulation, drug design and disease models. FEBS J 280:6412–6442

    Article  CAS  PubMed  Google Scholar 

  • Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the clustal series of programs. Nucleic Acids Res 31:3497–3500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser JL, Vanderver A, Yang S, Chang T, Cramp L, Vezina G, Lichter-Konecki U, Cusmano-Ozog KP, Smpokou P, Chapman KA, Zand DJ (2014) Thiamine pyrophosphokinase deficiency causes a Leigh Disease like phenotype in a sibling pair: identification through whole exome sequencing and management strategies. Mol Genet Metab Rep 1:66–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gangolf M, Czerniecki J, Radermecker M, Detry O, Nisolle M, Jouan C, Martin D, Chantraine F, Lakaye B, Wins P, Grisar T, Bettendorff L (2010) Thiamine status in humans and content of phosphorylated thiamine derivatives in biopsies and cultured cells. PLoS One 5:e13616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iacobazzi V, Ventura M, Fiermonte G, Prezioso G, Rocchi M, Palmieri F (2001) Genomic organization and mapping of the gene (SLC25A19) encoding the human mitochondrial deoxynucleotide carrier (DNC). Cytogenet Cell Genet 93:40–42

    Article  CAS  PubMed  Google Scholar 

  • Invernizzi F, Panteghini C, Chiapparini L, Moroni I, Nardocci N, Garavaglia B, Tonduti D (2017) Thiamine-responsive disease due to mutation of tpk1: Importance of avoiding misdiagnosis. Neurology 89:870–871

    Article  CAS  PubMed  Google Scholar 

  • Jia D, Zhang JS, Li F, Wang J, Deng Z, White MA, Osborne DG, Phillips-Krawczak C, Gomez TS, Li H, Singla A, Burstein E, Billadeau DD, Rosen MK (2016) Structural and mechanistic insights into regulation of the retromer coat by TBC1d5. Nat Commun 7:13305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller S, Vargas C, Zhao H, Piszczek G, Brautigam CA, Schuck P (2012) High-precision isothermal titration calorimetry with automated peak-shape analysis. Anal Chem 84:5066–5073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelley RI, Robinson D, Puffenberger EG, Strauss KA, Morton DH (2002) Amish lethal microcephaly: a new metabolic disorder with severe congenital microcephaly and 2-ketoglutaric aciduria. Am J Med Genet 112:318–326

    Article  PubMed  Google Scholar 

  • Kril JJ (1996) Neuropathology of thiamine deficiency disorders. Metab Brain Dis 11:9–17

    Article  CAS  PubMed  Google Scholar 

  • Labay V, Raz T, Baron D, Mandel H, Williams H, Barrett T, Szargel R, McDonald L, Shalata A, Nosaka K, Gregory S, Cohen N (1999) Mutations in SLC19A2 cause thiamine-responsive megaloblastic anaemia associated with diabetes mellitus and deafness. Nat Genet 22:300–304

    Article  CAS  PubMed  Google Scholar 

  • Mahajan A, Sidiropoulos C (2017) TPK1 mutation induced childhood onset idiopathic generalized dystonia: Report of a rare mutation and effect of deep brain stimulation. J Neurol Sci 376:42–43

    Article  CAS  PubMed  Google Scholar 

  • Manzetti S, Zhang J, van der Spoel D (2014) Thiamin function, metabolism, uptake, and transport. Biochemistry 53:821–835

    Article  CAS  PubMed  Google Scholar 

  • Mayr Johannes A, Freisinger P, Schlachter K, Rolinski B, Zimmermann Franz A, Scheffner T, Haack Tobias B, Koch J, Ahting U, Prokisch H, Sperl W (2011) Thiamine pyrophosphokinase deficiency in encephalopathic children with defects in the pyruvate oxidation pathway. Am J Hum Genet 89:806–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nosaka K, Onozuka M, Nishino H, Nishimura H, Kawasaki Y, Ueyama H (1999) Molecular cloning and expression of a mouse thiamin pyrophosphokinase cDNA. J Biol Chem 274:34129–34133

    Article  CAS  PubMed  Google Scholar 

  • Ogershok PR, Rahman A, Nestor S, Brick J (2002) Wernicke encephalopathy in nonalcoholic patients. Am J Med Sci 323:107–111

    Article  PubMed  Google Scholar 

  • Onozuka M, Nosaka K (2003) Steady-state kinetics and mutational studies of recombinant human thiamin pyrophosphokinase. J Nutr Sci Vitaminol (Tokyo) 49:156–162

    Article  CAS  Google Scholar 

  • Rosenberg MJ, Agarwala R, Bouffard G, Davis J, Fiermonte G, Hilliard MS, Koch T, Kalikin LM, Makalowska I, Morton DH, Petty EM, Weber JL, Palmieri F, Kelley RI, Schaffer AA, Biesecker LG (2002) Mutant deoxynucleotide carrier is associated with congenital microcephaly. Nat Genet 32:175–179

    Article  CAS  PubMed  Google Scholar 

  • Spiegel R, Shaag A, Edvardson S, Mandel H, Stepensky P, Shalev SA, Horovitz Y, Pines O, Elpeleg O (2009) SLC25A19 mutation as a cause of neuropathy and bilateral striatal necrosis. Ann Neurol 66:419–424

    Article  CAS  PubMed  Google Scholar 

  • Sun Q, Yong X, Sun X, Yang F, Dai Z, Gong Y, Zhou L, Zhang X, Niu D, Dai L, Liu J-J, Jia D (2017) Structural and functional insights into sorting nexin 5/6 interaction with bacterial effector IncE. Signal Transduct Target Ther 2:17030

    Article  PubMed  PubMed Central  Google Scholar 

  • Timm DE, Liu J, Baker LJ, Harris RA (2001) Crystal structure of thiamin pyrophosphokinase. J Mol Biol 310:195–204

    Article  CAS  PubMed  Google Scholar 

  • Yao J, Yang F, Sun X, Wang S, Gan N, Liu Q, Liu D, Zhang X, Niu D, Wei Y, Ma C, Luo ZQ, Sun Q, Jia D (2018) Mechanism of inhibition of retromer transport by the bacterial effector RidL. Proc Natl Acad Sci USA 115:E1446–E1454

    Article  CAS  PubMed  Google Scholar 

  • Zeng WQ, Al-Yamani E, Acierno JS Jr, Slaugenhaupt S, Gillis T, MacDonald ME, Ozand PT, Gusella JF (2005) Biotin-responsive basal ganglia disease maps to 2q36.3 and is due to mutations in SLC19A3. Am J Hum Genet 77:16–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank our patients and their families and our coworkers. This research is supported by Natural Science Foundation of China (NSFC) grants (#80502629 to Q.S., and #31671477, #31871429, and #91854121 to D.J.), and Sichuan Science and Technology Program (2018RZ0128 to D.J.).

Author information

Authors and Affiliations

Authors

Contributions

YMX and DJ conceived and supervised the project. WH, JQ, and DL performed biochemical work with assistance from YW, XS, NY and FX, YMX diagnosed the patient with assistance from HZ, XTC, ZLW, DY and RL, QS and DJ performed structural analysis. YMX and DJ prepared the manuscript. The authors declare no conflict of interest.

Corresponding authors

Correspondence to Yong-Mei Xie or Da Jia.

Ethics declarations

Research involving human participants and/or animal rights

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, W., Qin, J., Liu, D. et al. Reduced thiamine binding is a novel mechanism for TPK deficiency disorder. Mol Genet Genomics 294, 409–416 (2019). https://doi.org/10.1007/s00438-018-1517-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-018-1517-3

Keywords

Navigation