Skip to main content

Advertisement

Log in

Clonally expanded mitochondrial DNA deletions within the choroid plexus in multiple sclerosis

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Mitochondrial DNA deletions (∆-mtDNA) have been implicated in the pathogenesis of Alzheimer’s disease (AD), multiple sclerosis (MS) and Parkinson’s disease (PD), as well as ageing. Clonal expansion of ∆-mtDNA is the process by which a mutant mtDNA molecule increases to high levels within a single cell containing both wild-type and mutant mtDNA. Unlike in AD and PD, the diffuse inflammatory process in MS involves the choroid plexus, and mitochondria are exposed to reactive oxygen and nitrogen species over a prolonged period. We determined the extent of respiratory enzyme deficiency and ∆-mtDNA at a single cell level within choroid plexus epithelial cells in MS as well as in AD, PD and controls. The respiratory enzyme-deficient (lacking complex IV and with intact complex II activity) cells were more prevalent within the choroid plexus in AD, MS and PD compared with controls. The main catalytic subunit of complex IV (subunit-I of cytochrome c oxidase) was lacking in significantly more respiratory enzyme-deficient cells in MS compared with AD, PD and controls. The single cell analysis showed a fourfold increase in the percentage of respiratory enzyme-deficient choroid plexus epithelial cells harbouring clonally expanded ∆-mtDNA in MS. Our findings establish clonal expansion of ∆-mtDNA as a feature relatively more prominent within the choroid plexus epithelium in MS than AD, PD or controls. We propose clonal expansion of ∆-mtDNA as a molecular link between inflammation and part of a delayed cellular energy failure in MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bender A, Schwarzkopf RM, McMillan A et al (2008) Dopaminergic midbrain neurons are the prime target for mitochondrial DNA deletions. J Neurol 255:1231–1235

    Article  PubMed  Google Scholar 

  2. Bender A, Krishnan KJ, Morris CM et al (2006) High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 38:515–517

    Article  PubMed  CAS  Google Scholar 

  3. Betts J, Lightowlers RN, Turnbull DM (2004) Neuropathological aspects of mitochondrial DNA disease. Neurochem Res 29:505–511

    Article  PubMed  CAS  Google Scholar 

  4. Broadwater L, Pandit A, Clements R et al (2011) Analysis of the mitochondrial proteome in multiple sclerosis cortex. Biochim Biophys Acta 1812:630–641

    Article  PubMed  CAS  Google Scholar 

  5. Burney S, Caulfield JL, Niles JC, Wishnok JS, Tannenbaum SR (1999) The chemistry of DNA damage from nitric oxide and peroxynitrite. Mutat Res 424:37–49

    Article  PubMed  CAS  Google Scholar 

  6. Campbell GR, Ziabreva I, Reeve AK et al (2011) Mitochondrial DNA deletions and neurodegeneration in multiple sclerosis. Ann Neurol 69:481–492

    Article  PubMed  CAS  Google Scholar 

  7. Cornford EM, Varesi JB, Hyman S, Damian RT, Raleigh MJ (1997) Mitochondrial content of choroid plexus epithelium. Exp Brain Res 116:399–405

    Article  PubMed  CAS  Google Scholar 

  8. Cottrell DA, Ince PG, Wardell TM, Turnbull DM, Johnson MA (2001) Accelerated ageing changes in the choroid plexus of a case with multiple mitochondrial DNA deletions. Neuropathol Appl Neurobiol 27:206–214

    Article  PubMed  CAS  Google Scholar 

  9. Cottrell DA, Blakely EL, Johnson MA, Ince PG, Turnbull DM (2001) Mitochondrial enzyme-deficient hippocampal neurons and choroidal cells in AD. Neurology 57:260–264

    Article  PubMed  CAS  Google Scholar 

  10. Cottrell DA, Blakely EL, Johnson MA, Ince PG, Borthwick GM, Turnbull DM (2001) Cytochrome c oxidase deficient cells accumulate in the hippocampus and choroid plexus with age. Neurobiol Aging 22:265–272

    Article  PubMed  CAS  Google Scholar 

  11. Coulter-Mackie MB, Applegarth DA, Toone JR, Gagnier L (1998) A protocol for detection of mitochondrial DNA deletions: characterization of a novel deletion. Clin Biochem 31:627–632

    Article  PubMed  CAS  Google Scholar 

  12. Dutta R, McDonough J, Yin X et al (2006) Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann Neurol 59:478–489

    Article  PubMed  CAS  Google Scholar 

  13. Elson JL, Samuels DC, Turnbull DM, Chinnery PF (2001) Random intracellular drift explains the clonal expansion of mitochondrial DNA mutations with age. Am J Hum Genet 68:802–806

    Article  PubMed  CAS  Google Scholar 

  14. Engelhardt B, Sorokin L (2009) The blood–brain and the blood–cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol 31:497–511

    Article  PubMed  Google Scholar 

  15. Engelhardt B, Wolburg-Buchholz K, Wolburg H (2001) Involvement of the choroid plexus in central nervous system inflammation. Microsc Res Tech 52:112–129

    Article  PubMed  CAS  Google Scholar 

  16. Fischer MT, Sharma R, Lim JL et al (2012) NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage and mitochondrial injury. Brain 135:886–899

    Article  PubMed  Google Scholar 

  17. Fukui H, Moraes CT (2009) Mechanisms of formation and accumulation of mitochondrial DNA deletions in aging neurons. Hum Mol Genet 18:1028–1036

    Article  PubMed  CAS  Google Scholar 

  18. Haider L, Fischer MT, Frischer JM et al (2011) Oxidative damage in multiple sclerosis lesions. Brain 134:1914–1924

    Article  PubMed  Google Scholar 

  19. Han W, Chen S, Yu KN, Wu L (2010) Nitric oxide mediated DNA double strand breaks induced in proliferating bystander cells after alpha-particle irradiation. Mutat Res 684:81–89

    Article  PubMed  CAS  Google Scholar 

  20. Hauser SL, Oksenberg JR (2006) The neurobiology of multiple sclerosis: genes, inflammation, and neurodegeneration. Neuron 52:61–76

    Article  PubMed  CAS  Google Scholar 

  21. Kiryu-Seo S, Ohno N, Kidd GJ, Komuro H, Trapp BD (2010) Demyelination increases axonal stationary mitochondrial size and the speed of axonal mitochondrial transport. J Neurosci 30:6658–6666

    Article  PubMed  CAS  Google Scholar 

  22. Kraytsberg Y, Kudryavtseva E, McKee AC, Geula C, Kowall NW, Khrapko K (2006) Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet 38:518–520

    Article  PubMed  CAS  Google Scholar 

  23. Krishnan KJ, Ratnaike TE, Gruyter HL, Jaros E, Turnbull DM. (2011) Mitochondrial DNA deletions cause the biochemical defect observed in Alzheimer’s disease. Neurobiol Aging [Epub ahead of print]

  24. Krishnan KJ, Reeve AK, Samuels DC et al (2008) What causes mitochondrial DNA deletions in human cells? Nat Genet 40:275–279

    Article  PubMed  CAS  Google Scholar 

  25. Larsson NG (2010) Somatic mitochondrial DNA mutations in mammalian aging. Annu Rev Biochem 79:683–706

    Article  PubMed  CAS  Google Scholar 

  26. Mahad DJ, Ziabreva I, Campbell G et al (2009) Mitochondrial changes within axons in multiple sclerosis. Brain 132:1161–1174

    Article  PubMed  Google Scholar 

  27. Mahad DJ, Ziabreva I, Campbell G et al (2009) Detection of cytochrome c oxidase activity and mitochondrial proteins in single cells. J Neurosci Methods 184:310–319

    Article  PubMed  CAS  Google Scholar 

  28. Nicholas A, Kraytsberg Y, Guo X, Khrapko K (2009) On the timing and the extent of clonal expansion of mtDNA deletions: evidence from single-molecule PCR. Exp Neurol 218:316–319

    Article  PubMed  CAS  Google Scholar 

  29. Nijst TQ, Wevers RA, Schoonderwaldt HC, Hommes OR, de Haan AF (1990) Vitamin B12 and folate concentrations in serum and cerebrospinal fluid of neurological patients with special reference to multiple sclerosis and dementia. J Neurol Neurosurg Psychiatry 53:951–954

    Article  PubMed  CAS  Google Scholar 

  30. Nisoli E, Clementi E, Paolucci C et al (2003) Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 299:896–899

    Article  PubMed  CAS  Google Scholar 

  31. Old SL, Johnson MA (1989) Methods of microphotometric assay of succinate dehydrogenase and cytochrome c oxidase activities for use on human skeletal muscle. Histochem J 21:545–555

    Article  PubMed  CAS  Google Scholar 

  32. Onyango I, Khan S, Miller B, Swerdlow R, Trimmer P, Bennett P Jr (2006) Mitochondrial genomic contribution to mitochondrial dysfunction in Alzheimer’s disease. J Alzheimers Dis 9:183–193

    PubMed  Google Scholar 

  33. Perez-Gracia E, Blanco R, Carmona M, Carro E, Ferrer I (2009) Oxidative stress damage and oxidative stress responses in the choroid plexus in Alzheimer’s disease. Acta Neuropathol 118:497–504

    Article  PubMed  CAS  Google Scholar 

  34. Qi X, Lewin AS, Sun L, Hauswirth WW, Guy J (2006) Mitochondrial protein nitration primes neurodegeneration in experimental autoimmune encephalomyelitis. J Biol Chem 281:31950–31962

    Article  PubMed  CAS  Google Scholar 

  35. Rickert CH, Paulus W (2001) Tumors of the choroid plexus. Microsc Res Tech 52:104–111

    Article  PubMed  CAS  Google Scholar 

  36. Ross JM (2011) Visualization of mitochondrial respiratory function using cytochrome c oxidase/succinate dehydrogenase (COX/SDH) double-labeling histochemistry. J Vis Exp 57:e3266

    Google Scholar 

  37. Schapira AH, Jenner P (2011) Etiology and pathogenesis of Parkinson’s disease. Mov Disord 26:1049–1055

    Article  PubMed  Google Scholar 

  38. Serrano M, Garcia-Silva MT, Martin-Hernandez E et al (2010) Kearns-Sayre syndrome: cerebral folate deficiency, MRI findings and new cerebrospinal fluid biochemical features. Mitochondrion 10:429–432

    Article  PubMed  CAS  Google Scholar 

  39. Spector R, Johanson CE (2010) Choroid plexus failure in the Kearns-Sayre syndrome. Cerebrospinal Fluid Res 7:14

    Article  PubMed  Google Scholar 

  40. Strazielle N, Ghersi-Egea JF (2000) Choroid plexus in the central nervous system: biology and physiopathology. J Neuropathol Exp Neurol 59:561–574

    PubMed  CAS  Google Scholar 

  41. Tanji K, Schon EA, DiMauro S, Bonilla E (2000) Kearns-Sayre syndrome: oncocytic transformation of choroid plexus epithelium. J Neurol Sci 178:29–36

    Article  PubMed  CAS  Google Scholar 

  42. Tondo M, Malaga I, O’Callaghan M et al (2011) Biochemical parameters to assess choroid plexus dysfunction in Kearns-Sayre syndrome patients. Mitochondrion 11:867–870

    Article  PubMed  CAS  Google Scholar 

  43. Vercellino M, Votta B, Condello C et al (2008) Involvement of the choroid plexus in multiple sclerosis autoimmune inflammation: a neuropathological study. J Neuroimmunol 199:133–141

    Article  PubMed  CAS  Google Scholar 

  44. Witte ME, Geurts JJ, de Vries HE, van der Valk P, van Horssen J (2010) Mitochondrial dysfunction: a potential link between neuroinflammation and neurodegeneration? Mitochondrion 10:411–418

    Article  PubMed  CAS  Google Scholar 

  45. Witte ME, Bo L, Rodenburg RJ et al (2009) Enhanced number and activity of mitochondria in multiple sclerosis lesions. J Pathol 219:193–204

    Article  PubMed  Google Scholar 

  46. Wolburg H, Paulus W (2010) Choroid plexus: biology and pathology. Acta Neuropathol 119:75–88

    Article  PubMed  Google Scholar 

  47. Zambonin JL, Zhao C, Ohno N et al (2011) Increased mitochondrial content in remyelinated axons: implications for multiple sclerosis. Brain 134:1901–1913

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the Wellcome Trust and Newcastle upon Tyne NHS Hospital Charity (DM), MRC [G0400074], Alzheimer’s Society, Alzheimer’s Research Trust and NIHR Biomedical Centre or Ageing and Age related disease (DMT) for funding this study. We thank NeuroResource (UK), UK MS and PD Tissue Bank (funded by the UK MS Society 910/09), Cleveland Clinic Foundation and Newcastle Brain Tissue Resource for providing snap frozen choroid plexus. Newcastle University Centre for Brain Ageing and Vitality supported by BBSRC, EPSRC, ESRC and MRC [G0700718] and Straker Charitable Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Don J. Mahad.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campbell, G.R., Kraytsberg, Y., Krishnan, K.J. et al. Clonally expanded mitochondrial DNA deletions within the choroid plexus in multiple sclerosis. Acta Neuropathol 124, 209–220 (2012). https://doi.org/10.1007/s00401-012-1001-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-012-1001-9

Keywords

Navigation