Skip to main content
Log in

The cerebellar component of Friedreich’s ataxia

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Lack of frataxin in Friedreich’s ataxia (FRDA) causes a complex neurological and pathological phenotype. Progressive atrophy of the dentate nucleus (DN) is a major intrinsic central nervous system lesion. Antibodies to neuron-specific enolase (NSE), calbindin, glutamic acid decarboxylase (GAD), and vesicular glutamate transporters 1 and 2 (VGluT1, VGluT2) allowed insight into the disturbed synaptic circuitry of the DN. The available case material included autopsy specimens of 24 patients with genetically defined FRDA and 14 normal controls. In FRDA, the cerebellar cortex revealed intact Purkinje cell somata and dendrites as assessed by calbindin immunoreactivity. The DN, however, displayed severe loss of large NSE-reactive neurons. Small neurons remained intact. Labeling of Purkinje cells, basket fibers, Golgi neurons, and Golgi axonal plexuses with antibodies to GAD indicated normal intrinsic circuitry of the cerebellar cortex involving γ-aminobutyric acid (GABA). In contrast, the DN displayed severe loss of GABA-ergic terminals and formation of GAD- and calbindin-reactive grumose degeneration. The surviving small GAD-positive DN neurons provided normal GABA-ergic terminals to intact inferior olivary nuclei. The olives also received normal glutamatergic terminals as shown by VGluT2-reactivity. VGluT1-immunocytochemistry of the cerebellar cortex confirmed normal glutamatergic input to the molecular layer by parallel fibers and the granular layer by mossy fibers. VGluT2-immunoreactivity visualized normal climbing fibers and mossy fiber terminals. The DN, however, showed depletion of VGluT1- and VGluT2-reactive terminals arising from climbing and mossy fiber collaterals. The main functional deficit underlying cerebellar ataxia in FRDA is defective processing of inhibitory and excitatory impulses that converge on the large neurons of the DN. The reason for the selective vulnerability of these nerve cells remains elusive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Campuzano V, Montermini L, Moltò MD et al (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423–1427

    Article  PubMed  CAS  Google Scholar 

  2. Chan-Palay V (1977) Cerebellar dentate nucleus. Organization, cytology and transmitters. Springer, Berlin

    Google Scholar 

  3. De Zeeuw CI, Holstege JC, Calkoen F, Ruigrok TJH, Voogd J (1988) A new combination of WGA-HRP anterograde tracing and GABA immunocytochemistry applied to afferents of the cat inferior olive at the ultrastructural level. Brain Res 447:369–375

    Article  PubMed  Google Scholar 

  4. De Zeeuw CI, Ruigrok TJH, Schalekamp MPA, Boesten AJP, Voogd J (1990) Ultrastructural study of the cat hypertrophic inferior olive following anterograde tracing, immunocytochemistry, and intracellular labeling. Eur J Morphol 28:240–255

    PubMed  Google Scholar 

  5. Foix C, Chavany J-A, Hillemand P (1926) Le syndrome myoclonique de la calotte. Etude anatomo-clinique du nystagmus du voile et des myoclonies rythmiques associées, oculaires, faciales, etc. Rev Neurol 1:942–956

    Google Scholar 

  6. Fredette BJ, Mugnaini E (1991) The GABAergic cerebello-olivary projection in the rat. Anat Embryol 184:225–243

    Article  PubMed  CAS  Google Scholar 

  7. Fremeau RT, Troyer MD, Pahner I et al (2001) The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31:247–260

    Article  PubMed  CAS  Google Scholar 

  8. Guillain G, Mollaret P (1931) Deux cas de myoclonies synchrones et rythmées vélo-pharyngo-laryngo-oculo-diphragmatiques: Le problème anatomique et physiologique. Rev Neurol 2:545–566

    Google Scholar 

  9. Herzog E, Bellenchi GC, Gras C et al (2001) The existence of a second vesicular glutamate transporter specifies subpopulations of glutamatergic neurons. J Neurosci 21:1–6

    Google Scholar 

  10. Hioki H, Fujiyama F, Taki K (2003) Differential distribution of vesicular glutamate transporters in the rat cerebellar cortex. Neuroscience 117:1–6

    Article  PubMed  CAS  Google Scholar 

  11. IIzuka R, Hirayama K, Maehara K (1984) Dentato-rubro-pallidoluysian atrophy: a clinicopathological study. J Neuro Neurosurg Psychiatry 47:1288–1298

    Article  CAS  Google Scholar 

  12. Kaneko T, Fujiyam F, Hioki H (2002) Immunohistochemical localization of candidates for vesicular glutamate transporters in the rat brain. J Comp Neurol 444:39–62

    Article  PubMed  CAS  Google Scholar 

  13. Koeppen AH, Dickson AC, Lamarche JB, Robitaille Y (1999) Synapses in the hereditary ataxias. J Neuropathol Exp Neurol 58:748–764

    Article  PubMed  CAS  Google Scholar 

  14. Koeppen AH, Morral JA, McComb RD, Feustel PJ (2011) The neuropathology of late-onset Friedreich’s ataxia. Cerebellum 10:96–103

    Article  PubMed  Google Scholar 

  15. Lang EJ, Sugihara I, Llinás R (1996) GABAergic modulation of complex spike activity by the cerebellar nucleoolivary pathway in rat. J Neurophysiol 76:255–275

    PubMed  CAS  Google Scholar 

  16. Lang EJ (2001) Organization of olivocerebellar activity in the absence of excitatory glutamatergic input. J Neurosci 21:1663–1675

    PubMed  CAS  Google Scholar 

  17. Lapresle J, Ben Hamida M (1970) The dentato-olivary pathway. Arch Neurol 22:135–143

    PubMed  CAS  Google Scholar 

  18. Mott FW (1907) Case of Friedreich’s disease, with autopsy and systematic microscopical examination of the nervous system. Arch Neurol Psychiat (Lond) 3:180–200

    Google Scholar 

  19. Mugnaini E, Oertel W (1981) Distribution of glutamate decarboxylase positive neurons in the rat cerebellar nuclei. Soc Neurosci Abstr 7:122

    Google Scholar 

  20. Nelson B, Mugnaini E (1985) Loss of GABAergic nerve terminals in the inferior olive of cerebellectomized rats. Soc Neurosci Abstr 11:182

    Google Scholar 

  21. Oppenheimer DR (1979) Brain lesions in Friedreich’s ataxia. Can J Neurol Sci 6:173–176

    PubMed  CAS  Google Scholar 

  22. Owens DF, Kriegstein AR (2002) Is there more to GABA than synaptic inhibition? Nat Rev Neurosci 3:715–727

    Article  PubMed  CAS  Google Scholar 

  23. Robitaille Y, Lopes-Cendes I, Becher M, Rouleau G, Clark AW (1997) The neuropathology of CAG repeat diseases: Review and update of genetic and molecular features. Brain Pathol 7:901–927

    Article  PubMed  CAS  Google Scholar 

  24. Rossi F, Gianola S, Corvetti L (2006) The strange case of Purkinje axon regeneration and plasticity. Cerebellum 5:174–182

    Article  PubMed  Google Scholar 

  25. Ruigrok TJ, De Zeew CI, Voogd J (1990) Hypertrophy of inferior olivary neurons: a degenerative, regenerative or plasticity phenomenon. Eur J Morphol 28:224–239

    PubMed  CAS  Google Scholar 

  26. Schaffer K (1915) Gibt es eine cerebello-olivare Bahn? Zeitsch Ges Neurol Psychiat 30:70–83

    Article  Google Scholar 

  27. Shinoda Y, Sugiuchi Y, Futami T, Izawa R (1992) Axon collaterals of mossy fibers from the pontine nucleus in the cerebellar dentate nucleus. J Neurophysiol 67:547–560

    PubMed  CAS  Google Scholar 

  28. Shinoda Y, Sugihara I, Wu H-S, Sugiuchi Y (2000) The entire trajectory of single climbing and mossy fibers in the cerebellar nuclei and cortex. In: Gerrits NM, Ruigrok TJH, De Zeeuw CI (eds) Progress in Brain Res. vol 124, pp 173–186

  29. Urich H, Norman RM, Lloyd OC (1957) Suprasegmental lesions in Friedreich’s ataxia. Confin Neurol 17:360–371

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors receive financial support from Friedreich’s Ataxia Research Alliance; National Ataxia Foundation; National Institutes of Health; and Neurochemical Research, Inc. The work was completed in the laboratories of the Research Service at the Veterans Affairs Medical Center in Albany, NY, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnulf H. Koeppen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koeppen, A.H., Davis, A.N. & Morral, J.A. The cerebellar component of Friedreich’s ataxia. Acta Neuropathol 122, 323–330 (2011). https://doi.org/10.1007/s00401-011-0844-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-011-0844-9

Keywords

Navigation