Skip to main content

Advertisement

Log in

Does posterior cingulate hypometabolism result from disconnection or local pathology across preclinical and clinical stages of Alzheimer’s disease?

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Posterior cingulate cortex (PCC) hypometabolism as measured by FDG PET is an indicator of Alzheimer’s disease (AD) in prodromal stages, such as in mild cognitive impairment (MCI), and has been found to be closely associated with hippocampus atrophy in AD dementia. We studied the effects of local and remote atrophy and of local amyloid load on the PCC metabolic signal in patients with different preclinical and clinical stages of AD.

Methods

We determined the volume of the hippocampus and PCC grey matter based on volumetric MRI scans, PCC amyloid load based on AV45 PET, and PCC metabolism based on FDG PET in 667 subjects participating in the Alzheimer’s Disease Neuroimaging Initiative spanning the range from cognitively normal ageing through prodromal AD to AD dementia.

Results

In cognitively normal individuals and those with early MCI, PCC hypometabolism was exclusively associated with hippocampus atrophy, whereas in subjects with late MCI it was associated with both local and remote effects of atrophy as well as local amyloid load. In subjects with AD dementia, PCC hypometabolism was exclusively related to local atrophy.

Conclusion

Our findings suggest that the effects of remote pathology on PCC hypometabolism decrease and the effects of local pathology increase from preclinical to clinical stages of AD, consistent with a progressive disconnection of the PCC from downstream cortical and subcortical brain regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Minoshima S, Frey KA, Koeppe RA, Foster NL, Kuhl DE. A diagnostic approach in Alzheimer's disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med. 1995;36:1238–48.

    PubMed  CAS  Google Scholar 

  2. Pagani M, De Carli F, Morbelli S, Oberg J, Chincarini A, Frisoni GB, et al. Volume of interest-based [18F]fluorodeoxyglucose PET discriminates MCI converting to Alzheimer's disease from healthy controls. A European Alzheimer's Disease Consortium (EADC) study. Neuroimage Clin. 2015;7:34–42. doi:10.1016/j.nicl.2014.11.007.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Yakushev I, Schreckenberger M, Muller MJ, Schermuly I, Cumming P, Stoeter P, et al. Functional implications of hippocampal degeneration in early Alzheimer's disease: a combined DTI and PET study. Eur J Nucl Med Mol Imaging. 2011;38:2219–27. doi:10.1007/s00259-011-1882-1.

    Article  PubMed  Google Scholar 

  4. Villain N, Desgranges B, Viader F, de la Sayette V, Mezenge F, Landeau B, et al. Relationships between hippocampal atrophy, white matter disruption, and gray matter hypometabolism in Alzheimer's disease. J Neurosci. 2008;28:6174–81. doi:10.1523/JNEUROSCI.1392-08.2008.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Chetelat G, Villain N, Desgranges B, Eustache F, Baron JC. Posterior cingulate hypometabolism in early Alzheimer's disease: what is the contribution of local atrophy versus disconnection? Brain. 2009;132:e133. doi:10.1093/brain/awp253. Author reply e134.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Villain N, Fouquet M, Baron JC, Mezenge F, Landeau B, de La Sayette V, et al. Sequential relationships between grey matter and white matter atrophy and brain metabolic abnormalities in early Alzheimer's disease. Brain. 2010;133:3301–14. doi:10.1093/brain/awq203.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bozoki AC, Korolev IO, Davis NC, Hoisington LA, Berger KL. Disruption of limbic white matter pathways in mild cognitive impairment and Alzheimer's disease: a DTI/FDG-PET study. Hum Brain Mapp. 2012;33:1792–802. doi:10.1002/hbm.21320.

    Article  PubMed  Google Scholar 

  8. Nagasawa H, Kogure K, Fujiwara T, Itoh M, Ido T. Metabolic disturbances in exo-focal brain areas after cortical stroke studied by positron emission tomography. J Neurol Sci. 1994;123:147–53.

    Article  PubMed  CAS  Google Scholar 

  9. Akiyama H, Harrop R, McGeer PL, Peppard R, McGeer EG. Crossed cerebellar and uncrossed basal ganglia and thalamic diaschisis in Alzheimer's disease. Neurology. 1989;39:541–8.

    Article  PubMed  CAS  Google Scholar 

  10. Meguro K, Blaizot X, Kondoh Y, Le Mestric C, Baron JC, Chavoix C. Neocortical and hippocampal glucose hypometabolism following neurotoxic lesions of the entorhinal and perirhinal cortices in the non-human primate as shown by PET. Implications for Alzheimer's disease. Brain. 1999;122(Pt 8):1519–31.

    Article  PubMed  Google Scholar 

  11. Lowe VJ, Weigand SD, Senjem ML, Vemuri P, Jordan L, Kantarci K, et al. Association of hypometabolism and amyloid levels in aging, normal subjects. Neurology. 2014;82:1959–67. doi:10.1212/WNL.0000000000000467.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Ibanez V, Pietrini P, Alexander GE, Furey ML, Teichberg D, Rajapakse JC, et al. Regional glucose metabolic abnormalities are not the result of atrophy in Alzheimer's disease. Neurology. 1998;50:1585–93.

    Article  PubMed  CAS  Google Scholar 

  13. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of the Department of Health and Human Services Task Force on Alzheimer's disease. Neurology. 1984;34:939–44.

    Article  PubMed  CAS  Google Scholar 

  14. Fleisher AS, Chen K, Liu X, Roontiva A, Thiyyagura P, Ayutyanont N, et al. Using positron emission tomography and florbetapir F18 to image cortical amyloid in patients with mild cognitive impairment or dementia due to Alzheimer disease. Arch Neurol. 2011;68:1404–11. doi:10.1001/archneurol.2011.150.

    Article  PubMed  Google Scholar 

  15. Landau SM, Breault C, Joshi AD, Pontecorvo M, Mathis CA, Jagust WJ, et al. Amyloid-beta imaging with Pittsburgh compound B and florbetapir: comparing radiotracers and quantification methods. J Nucl Med. 2013;54:70–7. doi:10.2967/jnumed.112.109009.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Grothe M, Heinsen H, Teipel SJ. Atrophy of the cholinergic basal forebrain over the adult age range and in early stages of Alzheimer's disease. Biol Psychiatry. 2012;71:805–13. doi:10.1016/j.biopsych.2011.06.019.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage. 2007;38:95–113.

    Article  PubMed  Google Scholar 

  18. Müller-Gärtner HW, Links JM, Prince JL, Bryan RN, McVeigh E, Leal JP, et al. Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects. J Cereb Blood Flow Metab. 1992;12:571–83.

    Article  PubMed  Google Scholar 

  19. Pruessner JC, Li LM, Serles W, Pruessner M, Collins DL, Kabani N, et al. Volumetry of hippocampus and amygdala with high-resolution MRI and three-dimensional analysis software: minimizing the discrepancies between laboratories. Cereb Cortex. 2000;10:433–42.

    Article  PubMed  CAS  Google Scholar 

  20. Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31:968–80. doi:10.1016/j.neuroimage.2006.01.021.

    Article  PubMed  Google Scholar 

  21. Hammers A, Allom R, Koepp MJ, Free SL, Myers R, Lemieux L, et al. Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Hum Brain Mapp. 2003;19:224–47. doi:10.1002/hbm.10123.

    Article  PubMed  Google Scholar 

  22. La Joie R, Perrotin A, Barre L, Hommet C, Mezenge F, Ibazizene M, et al. Region-specific hierarchy between atrophy, hypometabolism, and beta-amyloid (Abeta) load in Alzheimer's disease dementia. J Neurosci. 2012;32:16265–73. doi:10.1523/JNEUROSCI.2170-12.2012.

    Article  PubMed  Google Scholar 

  23. Vincent JL, Snyder AZ, Fox MD, Shannon BJ, Andrews JR, Raichle ME, et al. Coherent spontaneous activity identifies a hippocampal-parietal memory network. J Neurophysiol. 2006;96:3517–31. doi:10.1152/jn.00048.2006.

    Article  PubMed  Google Scholar 

  24. Stahl R, Dietrich O, Teipel SJ, Hampel H, Reiser MF, Schoenberg SO. White matter damage in Alzheimer disease and mild cognitive impairment: assessment with diffusion-tensor MR imaging and parallel imaging techniques. Radiology. 2007;243:483–92. doi:10.1148/radiol.2432051714.

    Article  PubMed  Google Scholar 

  25. Fischer FU, Scheurich A, Wegrzyn M, Schermuly I, Bokde AL, Kloppel S, et al. Automated tractography of the cingulate bundle in Alzheimer's disease: a multicenter DTI study. J Magn Reson Imaging. 2012;36:84–91. doi:10.1002/jmri.23621.

    Article  PubMed  Google Scholar 

  26. Pasquini L, Scherr M, Tahmasian M, Meng C, Myers NE, Ortner M, et al. Link between hippocampus' raised local and eased global intrinsic connectivity in AD. Alzheimers Dement. 2015;11:475–84. doi:10.1016/j.jalz.2014.02.007.

    Article  PubMed  Google Scholar 

  27. Tahmasian M, Pasquini L, Scherr M, Meng C, Forster S, Mulej Bratec S, et al. The lower hippocampus global connectivity, the higher its local metabolism in Alzheimer disease. Neurology. 2015;84:1956–63. doi:10.1212/WNL.0000000000001575.

    Article  PubMed  CAS  Google Scholar 

  28. Forsberg A, Engler H, Almkvist O, Blomquist G, Hagman G, Wall A, et al. PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiol Aging. 2008;29:1456–65. doi:10.1016/j.neurobiolaging.2007.03.029.

    Article  PubMed  CAS  Google Scholar 

  29. Furst AJ, Rabinovici GD, Rostomian AH, Steed T, Alkalay A, Racine C, et al. Cognition, glucose metabolism and amyloid burden in Alzheimer's disease. Neurobiol Aging. 2012;33:215–25. doi:10.1016/j.neurobiolaging.2010.03.011.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Engler H, Forsberg A, Almkvist O, Blomquist G, Larsson E, Savitcheva I, et al. Two-year follow-up of amyloid deposition in patients with Alzheimer's disease. Brain. 2006;129:2856–66. doi:10.1093/brain/awl178.

    Article  PubMed  Google Scholar 

  31. Edison P, Archer HA, Hinz R, Hammers A, Pavese N, Tai YF, et al. Amyloid, hypometabolism, and cognition in Alzheimer disease: an [11C]PIB and [18F]FDG PET study. Neurology. 2007;68:501–8. doi:10.1212/01.wnl.0000244749.20056.d4.

    Article  PubMed  CAS  Google Scholar 

  32. Drzezga A, Becker JA, Van Dijk KR, Sreenivasan A, Talukdar T, Sullivan C, et al. Neuronal dysfunction and disconnection of cortical hubs in non-demented subjects with elevated amyloid burden. Brain. 2011;134:1635–46. doi:10.1093/brain/awr066.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Li Y, Rinne JO, Mosconi L, Pirraglia E, Rusinek H, DeSanti S, et al. Regional analysis of FDG and PIB-PET images in normal aging, mild cognitive impairment, and Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2008;35:2169–81.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Forster S, Grimmer T, Miederer I, Henriksen G, Yousefi BH, Graner P, et al. Regional expansion of hypometabolism in Alzheimer's disease follows amyloid deposition with temporal delay. Biol Psychiatry. 2012;71:792–7. doi:10.1016/j.biopsych.2011.04.023.

    Article  PubMed  Google Scholar 

  35. Villemagne VL, Burnham S, Bourgeat P, Brown B, Ellis KA, Salvado O, et al. Amyloid beta deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer's disease: a prospective cohort study. Lancet Neurol. 2013;12:357–67. doi:10.1016/S1474-4422(13)70044-9.

    Article  PubMed  CAS  Google Scholar 

  36. Cohen AD, Price JC, Weissfeld LA, James J, Rosario BL, Bi W, et al. Basal cerebral metabolism may modulate the cognitive effects of Abeta in mild cognitive impairment: an example of brain reserve. J Neurosci. 2009;29:14770–8. doi:10.1523/JNEUROSCI.3669-09.2009.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Mosconi L, Rinne JO, Tsui WH, Murray J, Li Y, Glodzik L, et al. Amyloid and metabolic positron emission tomography imaging of cognitively normal adults with Alzheimer's parents. Neurobiol Aging. 2013;34:22–34. doi:10.1016/j.neurobiolaging.2012.03.002.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Ossenkoppele R, Madison C, Oh H, Wirth M, van Berckel BN, Jagust WJ. Is verbal episodic memory in elderly with amyloid deposits preserved through altered neuronal function? Cereb Cortex. 2014;24:2210–8. doi:10.1093/cercor/bht076.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Camus V, Payoux P, Barre L, Desgranges B, Voisin T, Tauber C, et al. Using PET with 18F-AV-45 (florbetapir) to quantify brain amyloid load in a clinical environment. Eur J Nucl Med Mol Imaging. 2012;39:621–31. doi:10.1007/s00259-011-2021-8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Poisnel G, Herard AS, El Tannir El Tayara N, Bourrin E, Volk A, Kober F, et al. Increased regional cerebral glucose uptake in an APP/PS1 model of Alzheimer's disease. Neurobiol Aging. 2012;33:1995–2005. doi:10.1016/j.neurobiolaging.2011.09.026.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Puzzo D, Privitera L, Leznik E, Fa M, Staniszewski A, Palmeri A, et al. Picomolar amyloid-beta positively modulates synaptic plasticity and memory in hippocampus. J Neurosci. 2008;28:14537–45. doi:10.1523/JNEUROSCI.2692-08.2008.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Magistretti PJ, Pellerin L. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philos Trans R Soc Lond B Biol Sci. 1999;354:1155–63.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL. Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci. 2007;27:2866–75. doi:10.1523/JNEUROSCI.4970-06.2007.

    Article  PubMed  CAS  Google Scholar 

  44. Cirrito JR, Kang JE, Lee J, Stewart FR, Verges DK, Silverio LM, et al. Endocytosis is required for synaptic activity-dependent release of amyloid-beta in vivo. Neuron. 2008;58:42–51. doi:10.1016/j.neuron.2008.02.003.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T, et al. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer's disease. J Neurosci. 2009;29:1860–73. doi:10.1523/JNEUROSCI.5062-08.2009.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Choi SR, Schneider JA, Bennett DA, Beach TG, Bedell BJ, Zehntner SP, et al. Correlation of amyloid PET ligand florbetapir F 18 binding with Abeta aggregation and neuritic plaque deposition in postmortem brain tissue. Alzheimer Dis Assoc Disord. 2012;26:8–16. doi:10.1097/WAD.0b013e31821300bc.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Deshpande A, Kawai H, Metherate R, Glabe CG, Busciglio J. A role for synaptic zinc in activity-dependent Abeta oligomer formation and accumulation at excitatory synapses. J Neurosci. 2009;29:4004–15. doi:10.1523/JNEUROSCI.5980-08.2009.

    Article  PubMed  CAS  Google Scholar 

  48. Besson FL, La Joie R, Doeuvre L, Gaubert M, Mezenge F, Egret S, et al. Cognitive and brain profiles associated with current neuroimaging biomarkers of preclinical Alzheimer's disease. J Neurosci. 2015;35:10402–11. doi:10.1523/JNEUROSCI.0150-15.2015.

    Article  PubMed  CAS  Google Scholar 

  49. Ossenkoppele R, Tolboom N, Foster-Dingley JC, Adriaanse SF, Boellaard R, Yaqub M, et al. Longitudinal imaging of Alzheimer pathology using [11C]PIB, [18F]FDDNP and [18F]FDG PET. Eur J Nucl Med Mol Imaging. 2012;39:990–1000. doi:10.1007/s00259-012-2102-3.

    Article  PubMed  CAS  Google Scholar 

  50. Morbelli S, Garibotto V, Van De Giessen E, Arbizu J, Chetelat G, Drezgza A, et al. A Cochrane review on brain [18F]FDG PET in dementia: limitations and future perspectives. Eur J Nucl Med Mol Imaging. 2015;42:1487–91. doi:10.1007/s00259-015-3098-2.

  51. Thomas BA, Erlandsson K, Modat M, Thurfjell L, Vandenberghe R, Ourselin S, et al. The importance of appropriate partial volume correction for PET quantification in Alzheimer's disease. Eur J Nucl Med Mol Imaging. 2011;38:1104–19. doi:10.1007/s00259-011-1745-9.

    Article  PubMed  Google Scholar 

  52. Erlandsson K, Buvat I, Pretorius PH, Thomas BA, Hutton BF. A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology. Phys Med Biol. 2012;57:R119–59. doi:10.1088/0031-9155/57/21/R119.

    Article  PubMed  Google Scholar 

  53. Quarantelli M, Berkouk K, Prinster A, Landeau B, Svarer C, Balkay L, et al. Integrated software for the analysis of brain PET/SPECT studies with partial-volume-effect correction. J Nucl Med. 2004;45:192–201.

    PubMed  Google Scholar 

  54. Labbe C, Froment JC, Kennedy A, Ashburner J, Cinotti L. Positron emission tomography metabolic data corrected for cortical atrophy using magnetic resonance imaging. Alzheimer Dis Assoc Disord. 1996;10:141–70.

    Article  PubMed  CAS  Google Scholar 

  55. Samuraki M, Matsunari I, Chen WP, Yajima K, Yanase D, Fujikawa A, et al. Partial volume effect-corrected FDG PET and grey matter volume loss in patients with mild Alzheimer's disease. Eur J Nucl Med Mol Imaging. 2007;34:1658–69. doi:10.1007/s00259-007-0454-x.

    Article  PubMed  Google Scholar 

  56. Su Y, Blazey TM, Snyder AZ, Raichle ME, Marcus DS, Ances BM, et al. Partial volume correction in quantitative amyloid imaging. Neuroimage. 2015;107:55–64. doi:10.1016/j.neuroimage.2014.11.058.

    Article  PubMed  CAS  Google Scholar 

  57. Brendel M, Hogenauer M, Delker A, Sauerbeck J, Bartenstein P, Seibyl J, et al. Improved longitudinal [(18)F]-AV45 amyloid PET by white matter reference and VOI-based partial volume effect correction. Neuroimage. 2015;108:450–9. doi:10.1016/j.neuroimage.2014.11.055.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI; National Institutes of Health grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). The ADNI was launched in 2003 by the National Institute on Aging (NIA), the National Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private pharmaceutical companies and nonprofit organizations, as a $60 million, 5-year public–private partnership. ADNI is funded by the NIA, the NIBIB, and generous contributions from the following: Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Synarc Inc.; and Takeda Pharmaceutical Company. The Canadian Institutes of Health Research provides funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuroimaging at the University of Southern California.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Stefan Teipel.

Ethics declarations

Conflicts of Interest

None.

Ethical approval

All procedures performed in the ADNI studies involving human participants were in accordance with the ethical standards of the institutional research committees and with the principles of the 1964 Declaration of Helsinki and its later amendments.

Informed consent

Written informed consent was obtained from all participants and/or authorized representatives and the study partners before any protocol-specific procedures were carried out in the ADNI study.

Additional information

Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu/). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in the analysis of the data or the writing of this report. A complete list of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teipel, S., Grothe, M.J. & for the Alzheimer´s Disease Neuroimaging Initiative. Does posterior cingulate hypometabolism result from disconnection or local pathology across preclinical and clinical stages of Alzheimer’s disease?. Eur J Nucl Med Mol Imaging 43, 526–536 (2016). https://doi.org/10.1007/s00259-015-3222-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-015-3222-3

Keywords

Navigation