Skip to main content
Log in

Modulation of brain ACE and ACE2 may be a promising protective strategy against cerebral ischemia/reperfusion injury: an experimental trial in rats

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The brain renin-angiotensin system (RAS) is considered a crucial regulator for physiological homeostasis and disease progression. We evaluated the protective effects of the angiotensin receptor blocker (ARB) telmisartan and the angiotensin-converting enzyme 2 (ACE2) activator xanthenone on experimental cerebral ischemia/reperfusion (I/R) injury. Rats were divided into a sham control, a cerebral I/R control, a standard treatment (nimodipine, 10 mg/kg/day, 15 days, p.o.), three telmisartan treatments (1, 3, and 10 mg/kg/day, 15 days, p.o.), and three xanthenone treatments (0.5, 1, and 2 mg/kg/day, 15 days, s.c.) groups. One hour after the last dose, all rats except the sham control group were exposed to 30-min cerebral ischemia followed by 24-h reperfusion. Brain ACE and ACE2 activities and the apoptotic marker caspase-3 levels were assessed. Glutathione (GSH), malondialdehyde (MDA), and nitric oxide end products (NOx) as oxidative markers and tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and IL-10 as immunological markers were assessed. Histopathological examination and immunohistochemical evaluation of glial fibrillary acidic protein (GFAP) were performed in cerebral cortex and hippocampus sections. Telmisartan and xanthenone in the higher doses restored MDA, NOx, TNF-α, IL-6, caspase-3, ACE, and GFAP back to normal levels and significantly increased GSH, IL-10, and ACE2 compared to I/R control values. Histopathologically, both agents showed mild degenerative changes and necrosis of neurons in cerebral cortex and hippocampus compared with I/R control group. Modulation of brain RAS, either through suppression of the classic ACE pathway or stimulation of its antagonist pathway ACE2, may be a promising strategy against cerebral I/R damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdel-Fattah MM, Salama AA, Shehata BA, Ismaiel IE (2015) The potential effect of the angiotensin II receptor blocker telmisartan in regulating OVA-induced airway remodeling in experimental rats. Pharmacol Rep 67:943–951

    Article  PubMed  CAS  Google Scholar 

  • Ahmed MA, El Morsy EM, Ahmed AA (2014) Pomegranate extract protects against cerebral ischemia/reperfusion injury and preserves brain DNA integrity in rats. Life Sci 110:61–69

    Article  PubMed  CAS  Google Scholar 

  • Ali MRA-A, Abo-Youssef AMH, Messiha BAS, Khattab MM (2016) Tempol and perindopril protect against lipopolysaccharide-induced cognition impairment and amyloidogenesis by modulating brain-derived neurotropic factor, neuroinflammation and oxido-nitrosative stress. Naunyn Schmiedeberg's Arch Pharmacol 389:637–656

    Article  CAS  Google Scholar 

  • Amenta F, Bronzetti E, Sabbatini M, Vega JA (1998) Astrocyte changes in aging cerebral cortex and hippocampus: a quantitative immunohistochemical study. Microsc Res Tech 43:29–33

    Article  PubMed  CAS  Google Scholar 

  • Baldissera MD, Gonçalves RA, Sagrillo MR, Grando TH, Ritter CS, Grotto FS, Brum GF, da Luz SC, Silveira SO, Fausto VP (2016) Effects of treatment with the anti-parasitic drug diminazene aceturate on antioxidant enzymes in rat liver and kidney. Naunyn Schmiedeberg's Arch Pharmacol 389:429–438

    Article  CAS  Google Scholar 

  • Bancroft JD, Gamble M (2008) Theory and practice of histological techniques. Elsevier Health Sciences, New York

    Google Scholar 

  • Bennion DM, Haltigan E, Regenhardt RW, Steckelings UM, Sumners C (2015) Neuroprotective mechanisms of the ACE2–Angiotensin-(1-7)–Mas axis in stroke. Curr Hypertens Rep 17:3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bennion DM, Jones CH, Donnangelo LL, Graham JT, Isenberg JD, Dang AN, Rodriguez V, Sinisterra RDM, Sousa FB, Santos RAS, Sumners C (2018) Neuroprotection by post-stroke administration of an oral formulation of angiotensin-(1-7) in ischemic stroke. Exp Physiol. https://doi.org/10.1113/EP086957

  • Bernardo A, Minghetti L (2006) PPAR-γ agonists as regulators of microglial activation and brain inflammation. Curr Pharm Des 12:93–109

    Article  PubMed  CAS  Google Scholar 

  • Bielenberg GW, Burniol M, Rösen R, Klaus W (1990) Effects of nimodipine on infarct size and cerebral acidosis after middle cerebral artery occlusion in the rat. Stroke 21:IV90–IV92

    PubMed  CAS  Google Scholar 

  • Bonavida B (1991) Immunomodulatory effect of tumor necrosis factor. Biotherapy 3:127–133

    Article  PubMed  CAS  Google Scholar 

  • Braun J, Yin Z, Spiller I, Siegert S, Rudwaleit M, Liu L, Radbruch A, Sieper J (1999) Low secretion of tumor necrosis factor, but no other Th1 or Th2 cytokines, by peripheral blood mononuclear cells correlates with chronicity in reactive arthritis. Arthritis Rheum-Atlanta 42:2039–2044

    Article  CAS  Google Scholar 

  • Cai Y, Hu H, Ma X (2006) Protective effect of shenqi fuzheng injection on cerebral ischemia/reperfusion injured aged rats. Zhongguo Zhong xi yi jie he za zhi 26:10–14

    PubMed  Google Scholar 

  • Chang Y, Wei W (2015) Angiotensin II in inflammation, immunity and rheumatoid arthritis. Clin Exp Immunol 179:137–145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang, L., C.-Y. Yin, H.-Y. Wu, B.-B. Tian, Y. Zhu, C.-X. Luo, D.-Y. Zhu (2017) +))-Borneol is neuroprotective against permanent cerebral ischemia in rats by suppressing production of proinflammatory cytokines. J Biomed Res 31: 306

  • Chen I-J, Lin C-N, Wu B-N, Cheng K-L (1993) Effects of xanthone glycoside on ephedrine-induced biting behavior and motor activity. Am J Chin Med 21:79–84

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Li G, Zhang W, Wang J, Sigmund CD, Olson JE, Chen Y (2009) Ischemia-induced brain damage is enhanced in human renin and angiotensinogen double-transgenic mice. Am J Phys Regul Integr Comp Phys 297:R1526–R1531

    CAS  Google Scholar 

  • Chen J, Zhao Y, Chen S, Wang J, Xiao X, Ma X, Penchikala M, Xia H, Lazartigues E, Zhao B (2014a) Neuronal over-expression of ACE2 protects brain from ischemia-induced damage. Neuropharmacology 79:550–558

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen L, Zhao Y, Zhang T, Dang X, Xie R, Li Z, Li Y, Li Y, Zhao W, Song H (2014b) Protective effect of Sheng-Nao-Kang decoction on focal cerebral ischemia-reperfusion injury in rats. J Ethnopharmacol 151:228–236

    Article  PubMed  Google Scholar 

  • Claflin KE, Grobe JL (2015) Control of energy balance by the brain renin-angiotensin system. Curr Hypertens Rep 17:38

    Article  PubMed  Google Scholar 

  • da Silveira KD, Coelho FM, Vieira AT, Sachs D, Barroso LC, Costa VV, Bretas TLB, Bader M, de Sousa LP, da Silva TA (2010) Anti-inflammatory effects of the activation of the angiotensin-(1–7) receptor, MAS, in experimental models of arthritis. J Immunol 185:5569–5576

    Article  PubMed  CAS  Google Scholar 

  • de Cavanagh EM, Inserra F, Ferder L (2010) Angiotensin II blockade: a strategy to slow ageing by protecting mitochondria? Cardiovasc Res 89:31–40

    Article  PubMed  CAS  Google Scholar 

  • de laTremblaye PB, Benoit SM, Schock S, Plamondon H (2017) CRHR1 exacerbates the glial inflammatory response and alters BDNF/TrkB/pCREB signaling in a rat model of global cerebral ischemia: implications for neuroprotection and cognitive recovery. Prog Neuro-Psychopharmacol Biol Psychiatry 79:234–248

    Article  Google Scholar 

  • Engvall E, Jonsson K, Perlmann P (1971) Enzyme-linked immunosorbent assay. II. Quantitative assay of protein antigen, immunoglobulin G, by means of enzyme-labelled antigen and antibody-coated tubes. Biochimica et Biophysica Acta (BBA)-Protein Structure 251:427–434

    Article  CAS  Google Scholar 

  • Ernsberger P, Koletsky RJ (2007) Metabolic actions of angiotensin receptor antagonists: PPAR-γ agonist actions or a class effect? Curr Opin Pharmacol 7:140–145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fernandes-Alnemri T, Litwack G, Alnemri ES (1994) CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1 beta-converting enzyme. J Biol Chem 269:30761–30764

    PubMed  CAS  Google Scholar 

  • Fukuoka T, Hayashi T, Hirayama M, Maruyama H, Mogi M, Horiuchi M, Takao M, Tanahashi N (2015) Platelet–endothelial cell interaction in brain microvessels of angiotensin II type-2 receptor knockout mice following transient bilateral common carotid artery occlusion. J Thromb Thrombolysis 40:401–405

    Article  PubMed  CAS  Google Scholar 

  • Grilli M, Barbieri I, Basudev H, Brusa R, Casati C, Lozza G, Ongini E (2000) Interleukin-10 modulates neuronal threshold of vulnerability to ischaemic damage. Eur J Neurosci 12:2265–2272

    Article  PubMed  CAS  Google Scholar 

  • Haraguchi T, Iwasaki K, Takasaki K, Uchida K, Naito T, Nogami A, Kubota K, Shindo T, Uchida N, Katsurabayashi S (2010) Telmisartan, a partial agonist of peroxisome proliferator-activated receptor γ, improves impairment of spatial memory and hippocampal apoptosis in rats treated with repeated cerebral ischemia. Brain Res 1353:125–132

    Article  PubMed  CAS  Google Scholar 

  • Hernández Prada JA, Ferreira AJ, Katovich MJ, Shenoy V, Qi Y, Santos RA, Castellano RK, Lampkins AJ, Gubala V, Ostrov DA (2008) Structure-based identification of small-molecule angiotensin-converting enzyme 2 activators as novel antihypertensive agents. Hypertension 51:1312–1317

    Article  PubMed  CAS  Google Scholar 

  • Hosomi N, Ban CR, Naya T, Takahashi T, Guo P, Song X-y R, Kohno M (2005) Tumor necrosis factor-α neutralization reduced cerebral edema through inhibition of matrix metalloproteinase production after transient focal cerebral ischemia. J Cereb Blood Flow Metab 25:959–967

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim HS, Froemming GRA, Omar E, Singh HJ (2014) ACE2 activation by xanthenone prevents leptin-induced increases in blood pressure and proteinuria during pregnancy in Sprague-Dawley rats. Reprod Toxicol 49:155–161

    Article  PubMed  CAS  Google Scholar 

  • Iwanami J, Mogi M, Tsukuda K, Min L-J, Sakata A, Jing F, Iwai M, Horiuchi M (2010) Low dose of telmisartan prevents ischemic brain damage with peroxisome proliferator-activated receptor-γ activation in diabetic mice. J Hypertens 28:1730–1737

    Article  PubMed  CAS  Google Scholar 

  • Jia L, Li Y, Xiao C, Du J (2012) Angiotensin II induces inflammation leading to cardiac remodeling. Front Biosci (Landmark Ed) 17:221–231

    Article  CAS  Google Scholar 

  • Jiang T, Gao L, Lu J, Zhang Y-D (2013) ACE2-Ang-(1-7)-Mas axis in brain: a potential target for prevention and treatment of ischemic stroke. Curr Neuropharmacol 11:209–217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jung K-H, Chu K, Lee S-T, Kim S-J, Song E-C, Kim E-H, Park D-K, Sinn D-I, Kim J-M, Kim M (2007) Blockade of AT1 receptor reduces apoptosis, inflammation, and oxidative stress in normotensive rats with intracerebral hemorrhage. J Pharmacol Exp Ther 322:1051–1058

    Article  PubMed  CAS  Google Scholar 

  • Justin A, Sathishkumar M, Sudheer A, Shanthakumari S, Ramanathan M (2014) Non-hypotensive dose of telmisartan and nimodipine produced synergistic neuroprotective effect in cerebral ischemic model by attenuating brain cytokine levels. Pharmacol Biochem Behav 122:61–73

    Article  PubMed  CAS  Google Scholar 

  • Kamiyama E, Yoshigae Y, Kasuya A, Takei M, Kurihara A, Ikeda T (2007) Inhibitory effects of angiotensin receptor blockers on CYP2C9 activity in human liver microsomes. Drug Metab Pharmacokinet 22:267–275

    Article  PubMed  CAS  Google Scholar 

  • Khajah MA, Fateel MM, Ananthalakshmi KV, Luqmani YA (2017) Anti-inflammatory action of angiotensin 1-7 in experimental colitis may be mediated through modulation of serum cytokines/chemokines and immune cell functions. Dev Comp Immunol 74:200–208

    Article  PubMed  CAS  Google Scholar 

  • Khallaf W a-e, Messiha B, Abo-Youssef A, El Sayed NSED (2017) Protective effects of telmisartan and tempol on lipopolysaccharide-induced cognitive impairment, neuro-inflammation and amyloidogenesis: possible role of brain derived neurotrophic factor. Can J Physiol Pharmacol 95:850–860

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi K, Tancharoen S, Ito T, Morimoto-Yamashita Y, Miura N, Kawahara K-i, Maruyama I, Murai Y, Tanaka E (2013) Potential of the angiotensin receptor blockers (ARBs) telmisartan, irbesartan, and candesartan for inhibiting the HMGB1/RAGE axis in prevention and acute treatment of stroke. Int J Mol Sci 14:18899–18924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kobayashi T, Kawamata T, Shibata N, Okada Y, Kobayashi M, Hori T (2009) Angiotensin II type 1 receptor blocker telmisartan reduces cerebral infarct volume and peri-infarct cytosolic phospholipase A2 level in experimental stroke. J Neurotrauma 26:2355–2364

    Article  PubMed  Google Scholar 

  • Kossmann S, Hu H, Steven S, Schönfelder T, Fraccarollo D, Mikhed Y, Brähler M, Knorr M, Brandt M, Karbach SH (2014) Inflammatory monocytes determine endothelial nitric-oxide synthase uncoupling and nitro-oxidative stress induced by angiotensin II. J Biol Chem 289:27540–27550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumai Y, Ooboshi H, Ago T, Ishikawa E, Takada J, Kamouchi M, Kitazono T, Ibayashi S, Iida M (2008) Protective effects of angiotensin II type 1 receptor blocker on cerebral circulation independent of blood pressure. Exp Neurol 210:441–448

    Article  PubMed  CAS  Google Scholar 

  • Kurtz T (2005) Treating the metabolic syndrome: telmisartan as a peroxisome proliferator-activated receptor-gamma activator. Acta Diabetol 42:s9–s16

    Article  PubMed  CAS  Google Scholar 

  • Li J, Han B, Ma X, Qi S (2010) The effects of propofol on hippocampal caspase-3 and Bcl-2 expression following forebrain ischemia–reperfusion in rats. Brain Res 1356:11–23

    Article  PubMed  CAS  Google Scholar 

  • Li W, Suwanwela NC, Patumraj S (2017) Curcumin prevents reperfusion injury following ischemic stroke in rats via inhibition of NF-κB, ICAM-1, MMP-9 and caspase-3 expression. Mol Med Rep 16:4710–4720

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liao S-L, Lin Y-W, Hsieh C-L (2017) Neuronal regeneration after electroacupuncture treatment in ischemia–reperfusion-injured cerebral infarction rats. Biomed Res Int 2017:1–10

    Article  CAS  Google Scholar 

  • Loetscher H, Niederhauser O, Kemp J, Gill R (2001) Is caspase-3 inhibition a valid therapeutic strategy in cerebral ischemia? Drug Discov Today 6:671–680

    Article  PubMed  CAS  Google Scholar 

  • Love S (2003) Apoptosis and brain ischaemia. Prog Neuro-Psychopharmacol Biol Psychiatry 27:267–282

    Article  CAS  Google Scholar 

  • Manzanero S, Santro T, Arumugam TV (2013) Neuronal oxidative stress in acute ischemic stroke: sources and contribution to cell injury. Neurochem Int 62:712–718

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Sánchez P, Gutiérrez-Fernández M, Fuentes B, Masjuán J, de Leciñana Cases MA, Novillo-López ME, Díez-Tejedor E (2014) Biochemical and inflammatory biomarkers in ischemic stroke: translational study between humans and two experimental rat models. J Transl Med 12:220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mashima T, Naito M, Fujita N, Noguchi K, Tsuruo T (1995) Identification of actin as a substrate of ICE and an ICE-like protease and involvement of an ICE-like protease but not ICE in VP-16-induced U937 apoptosis. Biochem Biophys Res Commun 217:1185–1192

    Article  PubMed  CAS  Google Scholar 

  • Miguel-Hidalgo JJ, Baucom C, Dilley G, Overholser JC, Meltzer HY, Stockmeier CA, Rajkowska G (2000) Glial fibrillary acidic protein immunoreactivity in the prefrontal cortex distinguishes younger from older adults in major depressive disorder. Biol Psychiatry 48:861–873

    Article  PubMed  CAS  Google Scholar 

  • Min S, Kwon Y, Cho M, Shin H (2017) Nasal delivery of antioxidants by cholesterol-incorporated liposomes extends the neuroprotective time window in cerebral ischemia. Curr Pharm Des 23:6223–6230

  • Miranda KM, Espey MG, Wink DA (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5:62–71

    Article  PubMed  CAS  Google Scholar 

  • Mohammed NE, Messiha BA, Abo-Saif AA (2016) Effect of amlodipine, lisinopril and allopurinol on acetaminophen-induced hepatotoxicity in rats. Saudi Pharm J 24:644–635

    Article  Google Scholar 

  • Nasoohi S, Simani L, Khodagholi F, Nikseresht S, Faizi M, Naderi N (2017) Coenzyme Q10 supplementation improves acute outcomes of stroke in rats pretreated with atorvastatin. Nutr Neurosci. https://doi.org/10.1080/1028415X.2017.1376928

  • Nishida Y, Takahashi Y, Susa N, Kanou N, Nakayama T, Asai S (2013) Comparative effect of angiotensin II type I receptor blockers on serum uric acid in hypertensive patients with type 2 diabetes mellitus: a retrospective observational study. Cardiovasc Diabetol 12:159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nishimura Y, Ito T, Saavedra JM (2000) Angiotensin II AT1 blockade normalizes cerebrovascular autoregulation and reduces cerebral ischemia in spontaneously hypertensive rats. Stroke 31:2478–2486

    Article  PubMed  CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  • Orobei M, Kulikov V (2014) Cerebral blood flow and damage markers during ischemia/reperfusion of brain against a background of modulation of the kinin system's activity. Patol Fiziol Eksp Ter 2:8–12

  • Passaglia P, Ceron CS, Mecawi AS, Antunes-Rodrigues J, Coelho EB, Tirapelli CR (2015) Angiotensin type 1 receptor mediates chronic ethanol consumption-induced hypertension and vascular oxidative stress. Vasc Pharmacol 74:49–59

    Article  CAS  Google Scholar 

  • Paul M, Mehr AP, Kreutz R (2006) Physiology of local renin-angiotensin systems. Physiol Rev 86:747–803

    Article  PubMed  CAS  Google Scholar 

  • Pernomian L, Pernomian L, Baraldi Araújo Restini C (2014) Counter-regulatory effects played by the ACE–Ang II–AT1 and ACE2–Ang-(1–7)–Mas axes on the reactive oxygen species-mediated control of vascular function: perspectives to pharmacological approaches in controlling vascular complications. Vasa 4:404–414

    Article  Google Scholar 

  • Pinteaux E, Rothwell NJ, Boutin H (2006) Neuroprotective actions of endogenous interleukin-1 receptor antagonist (IL-1ra) are mediated by glia. Glia 53:551–556

    Article  PubMed  Google Scholar 

  • Pompella A, Casini A (1984) Glutathione depletion and lipid peroxidation in the mouse brain after bromobenzene poisoning. Boll Soc Ital Biol Sper 60:2377–2382

    PubMed  CAS  Google Scholar 

  • Pulsinelli WA, Brierley JB (1979) A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke 10:267–272

    Article  PubMed  CAS  Google Scholar 

  • Pytka K, Walczak M, Kij A, Rapacz A, Siwek A, Kazek G, Olczyk A, Gałuszka A, Waszkielewicz A, Marona H (2015) The antidepressant-like activity of 6-methoxy-2-[4-(2-methoxyphenyl) piperazin-1-yl]-9H-xanthen-9-one involves serotonergic 5-HT 1A and 5-HT 2A/C receptors activation. Eur J Pharmacol 764:537–546

    Article  PubMed  CAS  Google Scholar 

  • Qi Y, Zhang J, Cole-Jeffrey CT, Shenoy V, Espejo A, Hanna M, Song C, Pepine CJ, Katovich MJ, Raizada MK (2013) Diminazene aceturate enhances angiotensin-converting enzyme 2 activity and attenuates ischemia-induced cardiac pathophysiology. Hypertension 62:746–752

    Article  PubMed  CAS  Google Scholar 

  • Rabie EM, Heeba GH, Abouzied MM, Khalifa MM (2015) Comparative effects of Aliskiren and Telmisartan in high fructose diet-induced metabolic syndrome in rats. Eur J Pharmacol 760:145–153

    Article  PubMed  CAS  Google Scholar 

  • Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49:1603–1616

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodrigues Prestes TR, Rocha NP, Miranda AS, Teixeira AL, Simoes-e-Silva AC (2017) The anti-inflammatory potential of ACE2/angiotensin-(1-7)/mas receptor axis: evidence from basic and clinical research. Curr Drug Targets 18:1301–1313

    Article  PubMed  CAS  Google Scholar 

  • Saavedra J (2017) Beneficial effects of Angiotensin II receptor blockers in brain disorders. Pharmacol Res 125:91–103

    Article  PubMed  CAS  Google Scholar 

  • Santos Á, Soares JX, Cravo S, Tiritan ME, Reis S, Afonso C, Fernandes C, Pinto MMM (2017) Lipophilicity assessement in drug discovery: Experimental and theoretical methods applied to xanthone derivatives. J Chromatogr B Analyt Technol Biomed Life Sci 1072:182–192

  • Satoh S, Ikegaki I, Suzuki Y, Asano T, Shibuya M, Hidaka H (1996) Neuroprotective properties of a protein kinase inhibitor against ischaemia-induced neuronal damage in rats and gerbils. Br J Pharmacol 118:1592–1596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi HQ, Zhang Y, Cheng MH, Fan BS, Tian JS, Yu JG, Chen B (2016) Sodium sulfide, a hydrogen sulfide-releasing molecule, attenuates acute cerebral ischemia in rats. CNS Neurosci Ther 22:625–632

    Article  PubMed  CAS  Google Scholar 

  • Sigrist S, Bedoucha M, Boelsterli UA (2000) Down-regulation by troglitazone of hepatic tumor necrosis factor-α and interleukin-6 mRNA expression in a murine model of non-insulin-dependent diabetes∗. Biochem Pharmacol 60:67–75

    Article  PubMed  CAS  Google Scholar 

  • Simoes e Silva A, Silveira K, Ferreira A, Teixeira M (2013) ACE2, angiotensin-(1-7) and Mas receptor axis in inflammation and fibrosis. Br J Pharmacol 169:477–492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh N, Joshi S, Guo L, Baker MB, Li Y, Castellano RK, Raizada MK, Jarajapu YP (2015) ACE2/Ang-(1–7)/Mas axis stimulates vascular repair-relevant functions of CD34+ cells. Am J Phys Heart Circ Phys 309:H1697–H1707

    CAS  Google Scholar 

  • Suzuki S, Tanaka K, Suzuki N (2009) Ambivalent aspects of interleukin-6 in cerebral ischemia: inflammatory versus neurotrophic aspects. J Cereb Blood Flow Metab 29:464–479

    Article  PubMed  CAS  Google Scholar 

  • Takagi H, Mizuno Y, Yamamoto H, Goto S-n, Umemoto T (2013) Effects of telmisartan therapy on interleukin-6 and tumor necrosis factor-alpha levels: a meta-analysis of randomized controlled trials. Hypertens Res 36:368–373

    Article  PubMed  CAS  Google Scholar 

  • Tomassoni D, Lanari A, Silvestrelli G, Traini E, Amenta F (2008) Nimodipine and its use in cerebrovascular disease: evidence from recent preclinical and controlled clinical studies. Clin Exp Hypertens 30:744–766

    Article  PubMed  CAS  Google Scholar 

  • Unger T (2001) Inhibiting renin-angiotensin in the brain: the possible therapeutic implications. Blood Press 10:12–16

    Article  Google Scholar 

  • Van Weemen B, Schuurs A (1971) Immunoassay using antigen–enzyme conjugates. FEBS Lett 15:232–236

    Article  PubMed  Google Scholar 

  • Villapol S, Saavedra JM (2014) Neuroprotective effects of angiotensin receptor blockers. Am J Hypertens 28:289–299

    Article  PubMed  CAS  Google Scholar 

  • Wahba MGF, Messiha BAS, Abo-Saif AA (2015) Ramipril and haloperidol as promising approaches in managing rheumatoid arthritis in rats. Eur J Pharmacol 765:307–315

    Article  CAS  Google Scholar 

  • Wang W, Ma X, Han J, Zhou M, Ren H, Pan Q, Zheng C, Zheng Q (2016) Correction: neuroprotective effect of Scutellarin on ischemic cerebral injury by down-regulating the expression of angiotensin-converting enzyme and AT1 receptor. PLoS One 11:e0147780

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Washida K, Ihara M, Nishio K, Fujita Y, Maki T, Yamada M, Takahashi J, Wu X, Kihara T, Ito H (2010) Nonhypotensive dose of telmisartan attenuates cognitive impairment partially due to peroxisome proliferator-activated receptor-γ activation in mice with chronic cerebral hypoperfusion. Stroke 41:1798–1806

    Article  PubMed  CAS  Google Scholar 

  • Waszkielewicz AM, Słoczyńska K, Pękala E, Żmudzki P, Siwek A, Gryboś A, Marona H (2017) Design, synthesis, and anticonvulsant activity of some derivatives of xanthone with aminoalkanol moieties. Chem Biol Drug Des 89:339–352

    Article  PubMed  CAS  Google Scholar 

  • Wright JW, Harding JW (1992) Regulatory role of brain angiotensins in the control of physiological and behavioral responses. Brain Res Rev 17:227–262

    Article  PubMed  CAS  Google Scholar 

  • Xia H, Suda S, Bindom S, Feng Y, Gurley SB, Seth D, Navar LG, Lazartigues E (2011) ACE2-mediated reduction of oxidative stress in the central nervous system is associated with improvement of autonomic function. PLoS One 6:e22682

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yin J, Tu C, Zhao J, Ou D, Chen G, Liu Y, Xiao X (2013) Exogenous hydrogen sulfide protects against global cerebral ischemia/reperfusion injury via its anti-oxidative, anti-inflammatory and anti-apoptotic effects in rats. Brain Res 1491:188–196

    Article  PubMed  CAS  Google Scholar 

  • Zhang R-L, Chopp M, Chen H, Garcia JH (1994) Temporal profile of ischemic tissue damage, neutrophil response, and vascular plugging following permanent and transient (2H) middle cerebral artery occlusion in the rat. J Neurol Sci 125:3–10

    Article  PubMed  CAS  Google Scholar 

  • Zhu HY, Bie YL, Wang J, Gao J, Yang BY, Wan HT (2017) Experimental study on the protection of Agrimony extracts from different extracting methods against cerebral ischemia-reperfusion injury. Chin Med Sci J 32:239–247

    Article  PubMed  Google Scholar 

  • Zou S, Zhang M, Feng L, Zhou Y, Li L, Ban L (2017) Protective effects of notoginsenoside R1 on cerebral ischemia-reperfusion injury in rats. Exp Ther Med 14:6012–6016

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. El-Shima Nabile Ahmed, Lecturer of Pathology, Faculty of Veterinary Medicine, Beni-Suef University for providing help regarding the histopathological study conducted in the current investigation.

Author information

Authors and Affiliations

Authors

Contributions

BAS and AM conceived and designed research. AM set and supervised the experimental model. MM conducted experiments. MM and BAS analyzed data. BAS wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Basim Anwar Shehata Messiha.

Ethics declarations

All authors strictly followed the ethical standards of scientific research.

Conflict of interest

No conflict of interest is evident among all authors.

Additional information

The indicated corresponding author will handle correspondence at all stages of refereeing and publication, as well as post-publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Fattah, M.M., Messiha, B.A.S. & Mansour, A.M. Modulation of brain ACE and ACE2 may be a promising protective strategy against cerebral ischemia/reperfusion injury: an experimental trial in rats. Naunyn-Schmiedeberg's Arch Pharmacol 391, 1003–1020 (2018). https://doi.org/10.1007/s00210-018-1523-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-018-1523-3

Keywords

Navigation