Skip to main content

Advertisement

Log in

Reduced Cerebellar Brain Inhibition Measured Using Dual-Site TMS in Older Than in Younger Adults

  • Original Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Dual-site transcranial magnetic stimulation (TMS) can be used to measure the cerebellar inhibitory influence on the primary motor cortex, known as cerebellar brain inhibition (CBI), which is thought to be important for motor control. The aim of this study was to determine whether age-related differences in CBI (measured at rest) were associated with an age-related decline in bilateral motor control measured using the Purdue Pegboard task, the Four Square Step Test, and a 10-m walk. In addition, we examined test re-test reliability of CBI measured using dual-site TMS with a figure-of-eight coil in two sessions. There were three novel findings. First, CBI was less in older than in younger adults, which is likely underpinned by an age-related loss of Purkinje cells. Second, greater CBI was associated with faster 10-m walking performance in older adults, but slower 10-m walking performance in younger adults. Third, moderate intraclass correlation coefficients (ICCs: 0.53) were found for CBI in younger adults; poor ICCs were found for CBI (ICC: 0.40) in older adults. Together, these results have important implications for the use of dual-site TMS to increase our understanding of age- and disease-related changes in cortical motor networks, and the role of functional connectivity in motor control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Seidler RD, et al. Motor control and aging: Links to age-related brain structural, functional, and biochemical effects. Neurosci Biobehav Rev. 2010;34(5):721–33.

    Article  CAS  PubMed  Google Scholar 

  2. Seidler RD, Alberts JL, Stelmach GE. Changes in multi-joint performance with age. Mot Control. 2002;6(1):19–31.

    Article  Google Scholar 

  3. Manto M, et al. Consensus paper: Roles of the cerebellum in motor control-the diversity of ideas on cerebellar involvement in movement. Cerebellum. 2012;11(2):457–87.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ivry RB, et al. The cerebellum and event timing. In: Highstein TM, Thach WT, editors., et al. Cerebellum: Recent Developments in Cerebellar Research. New York: New York Acad Sciences; 2002. p. 302–17.

  5. Cavallari M, et al. Mobility impairment is associated with reduced microstructural integrity of the inferior and superior cerebellar peduncles in elderly with no clinical signs of cerebellar dysfunction. Neuroimage-Clin. 2013;2:332–40.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Silfverskiold BP. Cortical cerebellar degeneration associated with a specific disorder of standing and locomotion. Acta Neurol Scand. 1977;55(4):257–72.

    Article  CAS  PubMed  Google Scholar 

  7. Rosano C, et al. A regions-of-interest volumetric analysis of mobility limitations in community-dwelling older adults. J Gerontol A Biol Sci Med Sci. 2007;62(9):1048–55.

    Article  PubMed  Google Scholar 

  8. Bernard JA, et al. Disrupted cortico-cerebellar connectivity in older adults. Neuroimage. 2013;83:103–19.

    Article  PubMed  Google Scholar 

  9. Boisgontier MP, et al. Cerebellar gray matter explains bimanual coordination performance in children and older adults. Neurobiol Aging. 2018;65:109–20.

    Article  PubMed  Google Scholar 

  10. Sullivan EV, Rohlfing T, Pfefferbaum A. Quantitative fiber tracking of lateral and interhemispheric white matter systems in normal aging: relations to timed performance. Neurobiol Aging. 2010;31(3):464–81.

    Article  PubMed  Google Scholar 

  11. Salat DH, et al. Thinning of the cerebral cortex in aging. Cereb Cortex. 2004;14(7):721–30.

    Article  PubMed  Google Scholar 

  12. Good CD, et al. A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage. 2001;14(1):21–36.

    Article  CAS  PubMed  Google Scholar 

  13. Raz N, et al. Regional brain changes in aging healthy adults: General trends, individual differences and modifiers. Cereb Cortex. 2005;15(11):1676–89.

    Article  PubMed  Google Scholar 

  14. Hoogendam YY, et al. Determinants of cerebellar and cerebral volume in the general elderly population. Neurobiol Aging. 2012;33(12):2774–81.

    Article  PubMed  Google Scholar 

  15. Serbruyns L, et al. Bimanual motor deficits in older adults predicted by diffusion tensor imaging metrics of corpus callosum subregions. Brain Struct Funct. 2015;220(1):273–90.

    Article  CAS  PubMed  Google Scholar 

  16. Peters A. The effects of normal aging on myelin and nerve fibers: A review. J Neurocytol. 2002;31(8–9):581–93.

    Article  PubMed  Google Scholar 

  17. Meierruge W, et al. Age-related white matter atrophy in the human brain. Ann N Y Acad Sci. 1992;673:260–9.

    Article  CAS  Google Scholar 

  18. Marner L, et al. Marked loss of myelinated nerve fibers in the human brain with age. J Comp Neurol. 2003;462(2):144–52.

    Article  PubMed  Google Scholar 

  19. Bartzokis G, et al. Heterogeneous age-related breakdown of white matter structural integrity: implications for cortical “disconnection” in aging and Alzheimer’s diesase. Neurobiol Aging. 2004;25(7):843–51.

    Article  CAS  PubMed  Google Scholar 

  20. Sullivan EV, Pfefferbaum A. Diffusion tensor imaging and aging. Neurosci Biobehav Rev. 2006;30(6):749–61.

    Article  PubMed  Google Scholar 

  21. Pagani E, et al. Voxel-based analysis derived from fractional anisotropy images of white matter volume changes with aging. Neuroimage. 2008;41(3):657–67.

    Article  PubMed  Google Scholar 

  22. Giorgio A, et al. Age-related changes in grey and white matter structure throughout adulthood. Neuroimage. 2010;51(3):943–51.

    Article  PubMed  Google Scholar 

  23. Monteiro TS, et al. Age-related differences in network flexibility and segregation at rest and during motor performance. Neuroimage. 2019;194:93–104.

    Article  CAS  PubMed  Google Scholar 

  24. Holdefer RN, et al. Functional connectivity between cerebellum and primary motor cortex in the awake monkey. J Neurophysiol. 2000;84(1):585–90.

    Article  CAS  PubMed  Google Scholar 

  25. Grimaldi G, et al. Non-invasive cerebellar stimulation- a consensus paper. Cerebellum. 2014;13(1):121–38.

    Article  CAS  PubMed  Google Scholar 

  26. Rothwell JC. Using transcranial magnetic stimulation methods to probe connectivity between motor areas of the brain. Hum Mov Sci. 2011;30(5):906–15.

    Article  PubMed  Google Scholar 

  27. Daskalakis ZJ, et al. Exploring the connectivity between the cerebellum and motor cortex in humans. J Physiol London. 2004;557(2):689–700.

    Article  CAS  PubMed  Google Scholar 

  28. Ugawa Y, et al. Modulation of motor cortical excitability be electrical-stimulation over the cerebellum in man. J Physiol London. 1991;441:57–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ugawa Y, et al. Magnetic stimulation over the cerebellum in humans. Ann Neurol. 1995;37(6):703–13.

    Article  CAS  PubMed  Google Scholar 

  30. Fernandez L, et al. Assessing cerebellar brain inhibition (CBI) via transcranial magnetic stimulation (TMS): A systematic review. Neurosci Biobehav Rev. 2018;86:176–206.

    Article  PubMed  Google Scholar 

  31. Rossini PM, Rossini L, Ferreri F. Brain-Behavior Relations Transcranial Magnetic Stimulation: A Review. IEEE Eng Med Biol Mag. 2010;29(1):84–95.

    Article  PubMed  Google Scholar 

  32. Hallett M. Transcranial magnetic stimulation: a primer. Neuron. 2007;55(2):187–99.

    Article  CAS  PubMed  Google Scholar 

  33. Barker AT, Jalinous R. Non-invasive magnetic stimulation of human motor cortex. Lancet. 1985;1(8437):1106–7.

    Article  CAS  PubMed  Google Scholar 

  34. Pinto AD, Chen R. Suppression of the motor cortex by magnetic stimulation of the cerebellum. Exp Brain Res. 2001;140(4):505–10.

    Article  CAS  PubMed  Google Scholar 

  35. Allen GI, Tsukahara N. Cerebrocerebellar communication systems. Physiol Rev. 1974;54(4):957–1006.

    Article  CAS  PubMed  Google Scholar 

  36. Jayaram G, et al. Human locomotor adaptive learning is proportional to depression of cerebellar excitability. Cereb Cortex. 2011;21(8):1901–9.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Schlerf JE, et al. Dynamic modulation of cerebellar excitability for abrupt, but not gradual, visuomotor adaptation. J Neurosci. 2012;32(34):11610–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schlerf JE, et al. Laterality differences in cerebellar–motor cortex connectivity. Cereb Cortex. 2014;25(7):1827–34.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Green PE, et al. Supplementary motor area-primary motor cortex facilitation in younger but not older adults. Neurobiol Aging. 2018;64:85–91.

    Article  PubMed  Google Scholar 

  40. Dite W, Temple VA. A clinical test of stepping and change of direction to identify multiple falling older adults. Arch Phys Med Rehabil. 2002;83(11):1566–71.

    Article  PubMed  Google Scholar 

  41. Rossini PM, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an IFCN Committee. Clin Neurophysiol. 2015;126(6):1071–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rossi S, et al. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. 2009;120(12):2008–39.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rossi S, et al. Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines. Clin Neurophysiol. 2021;1(132):269–306.

    Article  Google Scholar 

  44. Nasreddine ZS, et al. Themontreal cognitive assessment, MoCA: A brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–9.

    Article  PubMed  Google Scholar 

  45. Oldfield RC. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia. 1971;9(1):97–113.

    Article  CAS  PubMed  Google Scholar 

  46. Hattemer K, et al. Excitability of the motor cortex during ovulatory and anovulatory cycles: a transcranial magnetic stimulation study. Clin Endocrinol. 2007;66(3):387–93.

    Article  Google Scholar 

  47. Smith MJ, et al. Menstrual cycle effects on cortical excitability. Neurology. 1999;53(9):2069–72.

    Article  CAS  PubMed  Google Scholar 

  48. Deng Z-D, Lisanby SH, Peterchev AV. Electric field depth–focality tradeoff in transcranial magnetic stimulation: Simulation comparison of 50 coil designs. Brain Stimul. 2013;6(1):1–13.

    Article  PubMed  Google Scholar 

  49. Lontis ER, Voigt M, Struijk JJ. Focality assessment in transcranial magnetic stimulation with double and cone coils. J Clin Neurophysiol. 2006;23(5):462–71.

    Article  PubMed  Google Scholar 

  50. Lu M, Ueno S. Comparison of the induced fields using different coil configurations during deep transcranial magnetic stimulation. PLoS ONE. 2017;12(6):12.

    Article  Google Scholar 

  51. Popa T, Russo M, Meunier S. Long-lasting inhibition of cerebellar output. Brain Stimul. 2010;3(3):161–9.

    Article  CAS  PubMed  Google Scholar 

  52. Taylor JL, Gandevia SC. Noninvasive stimulation of the human corticospinal tract. J Appl Physiol. 2004;96(4):1496–503.

    Article  CAS  PubMed  Google Scholar 

  53. Ugawa Y, et al. Magnetic stimulation of corticospinal pathways at the foramen magnum level in humans. Ann Neurol. 1994;36(4):618–24.

    Article  CAS  PubMed  Google Scholar 

  54. Carrillo F, et al. Study of cerebello-thalamocortical pathway by transcranial magnetic stimulation in Parkinson’s Disease. Brain Stimul. 2013;6(4):582–9.

    Article  PubMed  Google Scholar 

  55. Torriero S, et al. Changes in cerebello-motor connectivity during procedural learning by actual execution and observation. J Cogn Neurosci. 2011;23(2):338–48.

    Article  PubMed  Google Scholar 

  56. Deng Z-D, Lisanby SH, Peterchev AV. Coil design considerations for deep transcranial magnetic stimulation. Clin Neurophysiol. 2014;125(6):1202–12.

    Article  PubMed  Google Scholar 

  57. Spampinato D, et al. Cerebellar transcranial magnetic stimulation: The role of coil type from distinct manufacturers. Brain Stimul. 2020;13(1):153–6.

    Article  PubMed  Google Scholar 

  58. Fisher KM, et al. Corticospinal activation confounds cerebellar effects of posterior fossa stimuli. Clin Neurophysiol. 2009;120(12):2109–13.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Werhahn KJ, et al. Effect of transcranial magnetic stimulation over the cerebellum on the excitability of human motor cortex. Electromyogr Motor Control Electroencephalogr Clin Neurophysiol. 1996;101(1):58–66.

    Article  CAS  Google Scholar 

  60. Garry MI. Hemispheric differences in the relationship between corticomotor excitability changes following a fine-motor task and motor learning. J Neurophysiol. 2004;91(4):1570–8.

    Article  PubMed  Google Scholar 

  61. Hermsen AM, et al. Test-retest reliability of single and paired pulse transcranial magnetic stimulation parameters in healthy subjects. J Neurol Sci. 2016;362:209–16.

    Article  CAS  PubMed  Google Scholar 

  62. Ridding MC, Ziemann U. Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects Induction of cortical plasticity by non-invasive brain stimulation. J Physiol. 2010;588(13):2291–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fernandez L, et al. The impact of stimulation intensity and coil type on reliability and tolerability of cerebellar brain inhibition (CBI) via dual-coil TMS. Cerebellum. 2018;17(5):540–9.

    Article  PubMed  Google Scholar 

  64. Hardwick RM, Lesage E, Miall RC. Cerebellar transcranial magnetic stimulation: The role of coil geometry and tissue depth. Brain Stimul. 2014;7(5):643–9.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Taylor JL. Stimulation at the cervicomedullary junction in human subjects. J Electromyogr Kinesiol. 2006;16(3):215–23.

    Article  PubMed  Google Scholar 

  66. Panyakaew P, et al. Cerebellar brain inhibition in the target and surround muscles during voluntary tonic activation. Eur J Neurosci. 2016;43(8):1075–81.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kassavetis P, et al. Cerebellar brain inhibition is decreased in active and surround muscles at the onset of voluntary movement. Exp Brain Res. 2011;209(3):437–42.

    Article  PubMed  Google Scholar 

  68. Nimon KF. Statistical assumptions of substantive analyses across the general linear model: A mini-review. Front Psychol. 2012;3.

  69. Atkinson G, Nevill AM. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998;26(4):217–38.

    Article  CAS  PubMed  Google Scholar 

  70. Damron LA, et al. Quantification of the corticospinal silent period evoked via transcranial magnetic stimulation. J Neurosci Methods. 2008;173(1):121–8.

    Article  PubMed  Google Scholar 

  71. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307–10.

    Article  CAS  PubMed  Google Scholar 

  72. Beckerman H, et al. Smallest real difference, a link between reproducibility and responsiveness. Qual Life Res. 2001;10(7):571–8.

    Article  CAS  PubMed  Google Scholar 

  73. Schambra HM, et al. The reliability of repeated TMS measures in older adults and in patients with subacute and chronic stroke. Front Cell Neurosci. 2015;9:18.

    Article  Google Scholar 

  74. Terwee CB, et al. Quality criteria were proposed for measurement properties of health status questionnaires. J Clin Epidemiol. 2007;60(1):34–42.

    Article  PubMed  Google Scholar 

  75. Weir JP. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res. 2005;19(1):231–40.

    PubMed  Google Scholar 

  76. Koo TK, Li MY. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J Chiropr Med. 2016;15(2):155–63.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Lexell JE, Downham DY. How to assess the reliability of measurements in rehabilitation. Am J Phys Med Rehabil. 2005;84(9):719–23.

    Article  PubMed  Google Scholar 

  78. Biabani M, et al. The minimal number of TMS trials required for the reliable assessment of corticospinal excitability, short interval intracortical inhibition, and intracortical facilitation. Neurosci Lett. 2018;674:94–100.

    Article  CAS  PubMed  Google Scholar 

  79. Turco CV, et al. Reliability of transcranial magnetic stimulation measures of afferent inhibition. Brain Res. 2019;1723:10.

    Article  Google Scholar 

  80. Houde F, et al. Transcranial magnetic stimulation measures in the ederly: Reliability, smallest detectable change and the potential influence of lifestyle habits. Front Aging Neurosci. 2018;10:12.

    Article  Google Scholar 

  81. Matamala JM, et al. Inter-session reliability of short-interval intracortical inhibition measured by threshold tracking TMS. Neurosci Lett. 2018;674:18–23.

    Article  CAS  PubMed  Google Scholar 

  82. Dum RP, Strick PL. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol. 2003;89(1):634–9.

    Article  PubMed  Google Scholar 

  83. Andersen BB, Gundersen HJG, Pakkenberg B. Aging of the human cerebellum: A stereological study. J Comp Neurol. 2003;466(3):356–65.

    Article  PubMed  Google Scholar 

  84. Zhang CZ, Zhu QF, Hua TM. Aging of cerebellar Purkinje cells. Cell Tissue Res. 2010;341(3):341–7.

    Article  PubMed  Google Scholar 

  85. Kafri M, et al. High-leve gait disorder: associations with specific white matter changes observed on advanced diffusion imaging. J Neuroimaging. 2013;23(1):39–46.

    Article  PubMed  Google Scholar 

  86. Iwata NK, et al. Facilitatory effect on the motor cortex by electrical stimulation over the cerebellum in humans. Exp Brain Res. 2004;159(4):418–24.

    Article  PubMed  Google Scholar 

  87. Iwata NK, Ugawa Y. The effects of cerebellar stimulation on the motor cortical excitability in neurological disorders: A review. Cerebellum. 2005;4(4):218–23.

    Article  PubMed  Google Scholar 

  88. Wagenaar RC, Van Emmerik REA. Resonant frequencies of arms and legs identify different walking patterns. J Biomech. 2000;33(7):853–61.

    Article  CAS  PubMed  Google Scholar 

  89. Mirelman A, et al. Effects of Aging on Arm Swing during Gait: The Role of Gait Speed and Dual Tasking. PLoS ONE. 2015;10(8):11.

    Article  Google Scholar 

  90. Ortega JD, Fehlman LA, Farley CT. Effects of aging and arm swing on the metabolic cost of stability in human walking. J Biomech. 2008;41(16):3303–8.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Bruijn SM, et al. The effects of arm swing on human gait stability. J ExpBiol. 2010;213(23):3945–52.

    Google Scholar 

  92. Komeilipoor N, et al. Preparation and execution of teeth clenching and foot muscle contraction influence on corticospinal hand-muscle excitability. Sci Rep. 2017;7:9.

    Article  Google Scholar 

  93. Bakker M, et al. Motor imagery of foot dorsiflexion and gait: Effects on corticospinal excitability. Clin Neurophysiol. 2008;119(11):2519–27.

    Article  CAS  PubMed  Google Scholar 

  94. Hill A, Nantel J. The effects of arm swing amplitude and lower-limb asymmetry on gait stability. PLoS ONE. 2019;14(12):14.

    Article  Google Scholar 

  95. Siragy T, et al. Active arm swing and asymmetric walking leads to increased variability in trunk kinematics in young adults. J Biomech. 2020;99:8.

    Article  Google Scholar 

  96. Hoover JE, Strick PL. The organization of cerebellar and basal ganglia outputs to primary motor cortex as revealed by retrograde transneuronal transport of herpes simplex virus type 1. J Neurosci. 1999;19(4):1446–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Middleton FA, Strick PL. Dentate output channels: Motor and cognitive components. In: DeZeeuw CI, Strata P, Voogd J, editors. Cerebellum: From Structure to Control. Amsterdam: Elsevier Science Bv; 1997. p. 553–66.

    Chapter  Google Scholar 

  98. Colnaghi S, et al. Body Sway Increases After Functional Inactivation of the Cerebellar Vermis by cTBS. Cerebellum. 2017;16(1):1–14.

    Article  PubMed  Google Scholar 

  99. Ouchi Y, et al. Brain activation during maintenance of standing postures in humans. Brain. 1999;122:329–38.

    Article  PubMed  Google Scholar 

  100. Beck S, et al. Task-specific changes in motor evoked potentials of lower limb muscles after different training interventions. Brain Res. 2007;1179:51–60.

    Article  CAS  PubMed  Google Scholar 

  101. Morton SM, Bastian AJ. Cerebellar control of balance and locomotion. Neuroscientist. 2004;10(3):247–59.

    Article  PubMed  Google Scholar 

  102. Cattaneo Z, et al. Cerebellar vermis plays a causal role in visual motion discrimination. Cortex. 2014;58:272–80.

    Article  PubMed  Google Scholar 

  103. Beaulieu LD, et al. Reliability and minimal detectable change of transcranial magnetic stimulation outcomes in healthy adults: A systematic review. Brain Stimul. 2017;10(2):196–213.

    Article  PubMed  Google Scholar 

  104. Du XM, et al. Individualized brain inhibition and excitation profile in response to paired-pulse TMS. J Mot Behav. 2014;46(1):39–48.

    Article  PubMed  Google Scholar 

  105. Fleming MK, et al. The Effect of Coil Type and Navigation on the Reliability of Transcranial Magnetic Stimulation. IEEE Trans Neural Syst Rehabil Eng. 2012;20(5):617–25.

    Article  PubMed  Google Scholar 

  106. Badawy RAB, et al. The routine circular coil is reliable in paired-TMS studies. Clin Neurophysiol. 2011;122(4):784–8.

    Article  PubMed  Google Scholar 

  107. Boroojerdi B, et al. Reproducibility of intracortical inhibition and facilitation using the paired-pulse paradigm. Muscle Nerve. 2000;23(10):1594–7.

    Article  CAS  PubMed  Google Scholar 

  108. Orth M, Snijders AH, Rothwell JC. The variability of intracortical inhibition and facilitation. Clin Neurophysiol. 2003;114(12):2362–9.

    Article  CAS  PubMed  Google Scholar 

  109. Portney LG, Watkins MP. Foundations of clinical research: Applications to practice. Upper Saddle River: Pearson/Prentice Hall; 2009.

    Google Scholar 

  110. Morrow JR, Jackson AW. How significant is your reliability. Res Q Exerc Sport. 1993;64(3):352–5.

    Article  PubMed  Google Scholar 

  111. Raz N, et al. Trajectories of brain aging in middle-aged and older adults: Regional and individual differences. Neuroimage. 2010;51(2):501–11.

    Article  PubMed  Google Scholar 

  112. Ni Z, et al. Involvement of the cerebellothalamocortical pathway in Parkinson disease. Ann Neurol. 2010;68(6):816–24.

    Article  PubMed  Google Scholar 

  113. Ziemann U, et al. Consensus: Motor cortex plasticity protocols. Brain Stimul. 2008;1(3):164–82.

    Article  PubMed  Google Scholar 

  114. Buch ER, et al. Noninvasive associative plasticity induction in a corticocortical pathway of the human brain. J Neurosci. 2011;31(48):17669–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lu M-KMK. Cerebellum to motor cortex paired associative stimulation induces bidirectional STDP-like plasticity in human motor cortex. Front Hum Neurosci. 2012;6:260.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Veniero DD. Paired associative stimulation enforces the communication between interconnected areas. J Neurosci. 2013;33(34):13773–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Brittany Rurak was supported by an Australian Government Research Training Program scholarship and the Graduate Women (WA) Inc. Education Trust—Barbara Mary Hale Bursary. Dr Ann-Maree Vallence was supported by an Australian Research Council Discovery Early Career Researcher Award (DE190100694).

Author information

Authors and Affiliations

Authors

Contributions

This study was performed at Murdoch University, Western Australia, Australia. B.K.R., J.P.R., B.D.P., P.D.D., and A.M.V conceived and designed the experiment; B.K.R. performed the experiments; B.K.R., P.D.D., and A.M.V. analysed the data; B.K.R. drafted the manuscript; B.K.R., J.P.R., B.D.P., P.D.D., and A.M.V reviewed the manuscript; P.D.D. and A.M.V. critically revised the manuscript. All authors have approved the final version of the manuscript and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. All persons designated as authors qualify for authorship, and all those who qualify for authorship are listed.

Corresponding author

Correspondence to B. K. Rurak.

Ethics declarations

Competing Interests

The authors declare competing no interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 624 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rurak, B.K., Rodrigues, J.P., Power, B.D. et al. Reduced Cerebellar Brain Inhibition Measured Using Dual-Site TMS in Older Than in Younger Adults. Cerebellum 21, 23–38 (2022). https://doi.org/10.1007/s12311-021-01267-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-021-01267-2

Keywords

Navigation