Skip to main content

Advertisement

Log in

The Neuron-Specific Protein TMEM59L Mediates Oxidative Stress-Induced Cell Death

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

TMEM59L is a newly identified brain-specific membrane-anchored protein with unknown functions. Herein we found that both TMEM59L and its homolog, TMEM59, are localized in Golgi and endosomes. However, in contrast to a ubiquitous and relatively stable temporal expression of TMEM59, TMEM59L expression was limited in neurons and increased during development. We also found that both TMEM59L and TMEM59 interacted with ATG5 and ATG16L1, and that overexpression of them triggered cell autophagy. However, overexpression of TMEM59L induced intrinsic caspase-dependent apoptosis more dramatically than TMEM59. In addition, downregulation of TMEM59L prevented neuronal cell death and caspase-3 activation caused by hydrogen peroxide insults and reduced the lipidation of LC3B. Finally, we found that AAV-mediated knockdown of TMEM59L in mice significantly ameliorated caspase-3 activation, increased mouse duration in the open arm during elevated plus maze test, reduced mouse immobility time during forced swim test, and enhanced mouse memory during Y-maze and Morris water maze tests. Together, our study indicates that TMEM59L is a pro-apoptotic neuronal protein involved in animal behaviors such as anxiety, depression, and memory, and that TMEM59L downregulation protects neurons against oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Green DR, Llambi F (2015) Cell death signaling. Cold Spring Harbor perspectives in biology 7 (12). doi:10.1101/cshperspect.a006080

  2. Hail N Jr, Carter BZ, Konopleva M, Andreeff M (2006) Apoptosis effector mechanisms: a requiem performed in different keys. Apoptosis 11(6):889–904. doi:10.1007/s10495-006-6712-8

    Article  PubMed  Google Scholar 

  3. Rust C, Gores GJ (2000) Apoptosis and liver disease. Am J Med 108(7):567–574

    Article  CAS  PubMed  Google Scholar 

  4. Caroppi P, Sinibaldi F, Fiorucci L, Santucci R (2009) Apoptosis and human diseases: mitochondrion damage and lethal role of released cytochrome C as proapoptotic protein. Curr Med Chem 16(31):4058–4065

    Article  CAS  PubMed  Google Scholar 

  5. van Wijk SJ, Hageman GJ (2005) Poly(ADP-ribose) polymerase-1 mediated caspase-independent cell death after ischemia/reperfusion. Free Radic Biol Med 39(1):81–90. doi:10.1016/j.freeradbiomed.2005.03.021

    Article  PubMed  Google Scholar 

  6. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147(4):728–741. doi:10.1016/j.cell.2011.10.026

    Article  CAS  PubMed  Google Scholar 

  7. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93. doi:10.1146/annurev-genet-102808-114910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hanada T, Noda NN, Satomi Y, Ichimura Y, Fujioka Y, Takao T, Inagaki F, Ohsumi Y (2007) The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem 282(52):37298–37302. doi:10.1074/jbc.C700195200

    Article  CAS  PubMed  Google Scholar 

  9. Galluzzi L, Pietrocola F, Levine B, Kroemer G (2014) Metabolic control of autophagy. Cell 159(6):1263–1276. doi:10.1016/j.cell.2014.11.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wilson C, Gonzalez-Billault C (2015) Regulation of cytoskeletal dynamics by redox signaling and oxidative stress: implications for neuronal development and trafficking. Front Cell Neurosci 9:381. doi:10.3389/fncel.2015.00381

    Article  PubMed  PubMed Central  Google Scholar 

  11. Blesa J, Trigo-Damas I, Quiroga-Varela A, Jackson-Lewis VR (2015) Oxidative stress and Parkinson’s disease. Front Neuroanat 9:91. doi:10.3389/fnana.2015.00091

    PubMed  PubMed Central  Google Scholar 

  12. Kim GH, Kim JE, Rhie SJ, Yoon S (2015) The role of oxidative stress in neurodegenerative diseases. Exp Neurobiol 24(4):325–340. doi:10.5607/en.2015.24.4.325

    Article  PubMed  PubMed Central  Google Scholar 

  13. Elson GC, de Coignac AB, Aubry JP, Delneste Y, Magistrelli G, Holzwarth J, Bonnefoy JY, Gauchat JF (1999) BSMAP, a novel protein expressed specifically in the brain whose gene is localized on chromosome 19p12. Biochem Biophys Res Commun 264(1):55–62. doi:10.1006/bbrc.1999.1481

    Article  CAS  PubMed  Google Scholar 

  14. Ullrich S, Munch A, Neumann S, Kremmer E, Tatzelt J, Lichtenthaler SF (2010) The novel membrane protein TMEM59 modulates complex glycosylation, cell surface expression, and secretion of the amyloid precursor protein. J Biol Chem 285(27):20664–20674. doi:10.1074/jbc.M109.055608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mannherz O, Mertens D, Hahn M, Lichter P (2006) Functional screening for proapoptotic genes by reverse transfection cell array technology. Genomics 87(5):665–672. doi:10.1016/j.ygeno.2005.12.009

    Article  CAS  PubMed  Google Scholar 

  16. Boada-Romero E, Letek M, Fleischer A, Pallauf K, Ramon-Barros C, Pimentel-Muinos FX (2013) TMEM59 defines a novel ATG16L1-binding motif that promotes local activation of LC3. EMBO J 32(4):566–582. doi:10.1038/emboj.2013.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Luo J, Deng ZL, Luo X, Tang N, Song WX, Chen J, Sharff KA, Luu HH et al (2007) A protocol for rapid generation of recombinant adenoviruses using the AdEasy system. Nat Protoc 2(5):1236–1247. doi:10.1038/nprot.2007.135

    Article  CAS  PubMed  Google Scholar 

  18. Ischiropoulos H, Beckman JS (2003) Oxidative stress and nitration in neurodegeneration: cause, effect, or association? J Clin Invest 111(2):163–169. doi:10.1172/jci17638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kajta M (2004) Apoptosis in the central nervous system: mechanisms and protective strategies. Pol J Pharmacol 56(6):689–700

    Article  PubMed  Google Scholar 

  20. Manzanero S, Santro T, Arumugam TV (2013) Neuronal oxidative stress in acute ischemic stroke: sources and contribution to cell injury. Neurochem Int 62(5):712–718. doi:10.1016/j.neuint.2012.11.009

    Article  CAS  PubMed  Google Scholar 

  21. Cusack CL, Swahari V, Hampton Henley W, Michael Ramsey J, Deshmukh M (2013) Distinct pathways mediate axon degeneration during apoptosis and axon-specific pruning. Nat Commun 4:1876. doi:10.1038/ncomms2910

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nikolaev A, McLaughlin T, O’Leary DD, Tessier-Lavigne M (2009) APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 457(7232):981–989. doi:10.1038/nature07767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Simon DJ, Weimer RM, McLaughlin T, Kallop D, Stanger K, Yang J, O’Leary DD, Hannoush RN et al (2012) A caspase cascade regulating developmental axon degeneration. J Neurosci 32(49):17540–17553. doi:10.1523/jneurosci.3012-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yuan J, Lipinski M, Degterev A (2003) Diversity in the mechanisms of neuronal cell death. Neuron 40(2):401–413

    Article  CAS  PubMed  Google Scholar 

  25. Riccomagno MM, Kolodkin AL (2015) Sculpting neural circuits by axon and dendrite pruning. Annu Rev Cell Dev Biol 31:779–805. doi:10.1146/annurev-cellbio-100913-013038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Erturk A, Wang Y, Sheng M (2014) Local pruning of dendrites and spines by caspase-3-dependent and proteasome-limited mechanisms. J Neurosci 34(5):1672–1688. doi:10.1523/jneurosci.3121-13.2014

    Article  CAS  PubMed  Google Scholar 

  27. Li Z, Jo J, Jia JM, Lo SC, Whitcomb DJ, Jiao S, Cho K, Sheng M (2010) Caspase-3 activation via mitochondria is required for long-term depression and AMPA receptor internalization. Cell 141(5):859–871. doi:10.1016/j.cell.2010.03.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dalton GL, Wang YT, Floresco SB, Phillips AG (2008) Disruption of AMPA receptor endocytosis impairs the extinction, but not acquisition of learned fear. Neuropsychopharmacology 33(10):2416–2426. doi:10.1038/sj.npp.1301642

    Article  CAS  PubMed  Google Scholar 

  29. Kim J, Lee S, Park K, Hong I, Song B, Son G, Park H, Kim WR et al (2007) Amygdala depotentiation and fear extinction. Proc Natl Acad Sci U S A 104(52):20955–20960. doi:10.1073/pnas.0710548105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee HK, Barbarosie M, Kameyama K, Bear MF, Huganir RL (2000) Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature 405(6789):955–959. doi:10.1038/35016089

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from National Natural Science Foundation of China (Nos. 81225008, 81161120496, 91332112, 91332114 and U1405222), National Institutes of Health (R01AG021173, R01AG038710, R01AG044420, and R01NS046673), Alzheimer’s Association, Fujian Provincial Department of Science and Technology (2015Y4008), and Xiamen University President Fund (20720150170).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-wu Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 13420 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Q., Zheng, X., Zhang, L. et al. The Neuron-Specific Protein TMEM59L Mediates Oxidative Stress-Induced Cell Death. Mol Neurobiol 54, 4189–4200 (2017). https://doi.org/10.1007/s12035-016-9997-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9997-9

Keywords

Navigation