ABSTRACT
Background ChatGPT is a 175 billion parameter natural language processing model which can generate conversation style responses to user input.
Objective To evaluate the performance of ChatGPT on questions within the scope of United States Medical Licensing Examination (USMLE) Step 1 and Step 2 exams, as well as analyze responses for user interpretability.
Methods We used two novel sets of multiple choice questions to evaluate ChatGPT’s performance, each with questions pertaining to Step 1 and Step 2. The first was derived from AMBOSS, a commonly used question bank for medical students, which also provides statistics on question difficulty and the performance on an exam relative to the userbase. The second, was the National Board of Medical Examiners (NBME) Free 120-question exams. After prompting ChatGPT with each question, ChatGPT’s selected answer was recorded, and the text output evaluated across three qualitative metrics: logical justification of the answer selected, presence of information internal to the question, and presence of information external to the question.
Results On the four datasets, AMBOSS-Step1, AMBOSS-Step2, NBME-Free-Step1, and NBMEFree-Step2, ChatGPT achieved accuracies of 44%, 42%, 64.4%, and 57.8%. The model demonstrated a significant decrease in performance as question difficulty increased (P=.012) within the AMBOSSStep1 dataset. We found logical justification for ChatGPT’s answer selection was present in 100% of outputs. Internal information to the question was present in >90% of all questions. The presence of information external to the question was respectively 54.5% and 27% lower for incorrect relative to correct answers on the NBME-Free-Step1 and NBME-Free-Step2 datasets (P<=.001).
Conclusion ChatGPT marks a significant improvement in natural language processing models on the tasks of medical question answering. By performing at greater than 60% threshold on the NBME-FreeStep-1 dataset we show that the model is comparable to a third year medical student. Additionally, due to the dialogic nature of the response to questions, we demonstrate ChatGPT’s ability to provide reasoning and informational context across the majority of answers. These facts taken together make a compelling case for the potential applications of ChatGPT as a medical education tool.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This publication was made possible by the Yale School of Medicine Fellowship for Medical Student Research. Research reported in this publication was supported by the National Institute of Diabetes And Digestive And Kidney Diseases of the National Institutes of Health under Award Number T35DK104689. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
All data produced in the present work are available online at the following link:
ABBREVIATIONS
- NLP
- Natural Language Processing
- NBME
- National Board of Medical Examiners
- USMLE
- United States Medical Licensing Examination
- QA
- Question-Answering
- AZT
- Zidovudine (AZT)
- NRTI
- Nucleoside reverse transcriptase inhibitor
- ART
- Antiretroviral therapy