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1 Model description

1.1 Base platform

We developed a deterministic compartmental model of SARS-CoV-2 transmission using
the AuTuMN platform, publicly available at github.com/monash-emu/AuTuMN [1]. This
repository allows for the rapid and robust creation and stratification of models of in-
fectious disease epidemiology and includes pluggable modules to simulate heterogeneous
population mixing, demographic processes, multiple circulating pathogen strains, repeated
stratification and other modelling features relevant to infectious disease transmission.

1.2 Base model

For this application, we first created a model with sequential compartments representing
susceptible (S), latently infected (E), infectious pre-symptomatic (P ), early disease (I),
late disease (L) and recovered (R) persons (although patients in the early and late disease
compartments are not considered symptomatic if assigned to the first “clinical” stratifica-
tion, as described in Section 1.4). The latently infected and infectious pre-symptomatic
periods together comprise the incubation period, with the incubation period and the pro-
portion of this period for which patients are infectious defined by parameters described
below. The transition from early disease to late disease is intended to represent the point
at which patients are detected (in the event that detection does eventually occur) and
isolation then occurs from this point forward (i.e. applies during the late disease phase
only). This transition point is also intended to represent the point of admission to hospital
or to intensive care for patients for whom this occurs (again see Section 1.4).

When waning immunity was assumed, individuals transitioned back to a suscepti-
ble compartment at a rate that was defined as the reciprocal of the assumed immunity
duration. The compartments S, E and P were stratified by infection history, such that
differential risks of severe disease could be considered for individuals who have experienced
SARS-CoV-2 infection before, compared to infection-naive individuals.

Figure S1. Compartmental structure of the base model.
Red shading indicates infectiousness.

1.3 Age stratification

All compartments of this base compartmental structure were stratified by age into five-
year bands from 0-4 years of age through to 70-74 years of age, with the final age group
being those aged 75 years and older.

We used the age-specific contact matrices by location (home, schools, workplace and
other locations) reported by Prem et al. for the five investigated countries to inform
heterogeneous mixing in our models [2]. The model age groups were chosen to match these
mixing matrices. We did not implement births, ageing and non-COVID-19-related deaths
given that the current study pertains to the short to medium-term and the immediate
implementation of non-pharmaceutical interventions, for which population demographics
are less relevant.
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1.4 Clinical stratification

The age-stratified early and late disease compartments I and L were further stratified
into five categories: 1) asymptomatic, 2) symptomatic ambulatory never detected, 3)
symptomatic ambulatory ever detected, 4) hospitalised never critical and 5) ever critically
unwell. The proportion of new infectious persons entering stratum 1 (asymptomatic) is
age-dependent as described in Table S4. When waning immunity was assumed, these pro-
portions also depended on the individuals’ infection history, such that a smaller proportion
of symptomatic infections may be considered for repeat episodes of SARS-CoV-2 infection.
The proportion of symptomatic patients (strata 2 to 5) ever detected (strata 3 to 5) is
set through a time-variant parameter that represents the proportion of all symptomatic
patients who are ever detected. Of those ever symptomatic (strata 2 to 5), an age-specific
proportion was considered to be hospitalised (entering strata 4 or 5). Of those hospitalised
(entering strata 4 or 5), a fixed proportion was considered to be critically unwell (entering
stratum 5). The figures below illustrate this conceptual approach.

Figure S2. Clinical stratification applying to compartments I and L.

1.5 COVID-19-related death

We used age-specifc infection fatality rates (IFRs) to model COVID-19 deaths. These
rates were derived by combining data from the recent Spanish nationwide seroprevalence
survey, age-specific population sizes reported by the United Nations and mortality data
reported by the Spanish Ministry of health [3,4]. The seroprevalence survey was conducted
between 27 April and 11 May 2020. In order to account for the delay between disease
onset and time of death, we used the total number of deaths reported on the 22 May’s
governmental report which included deaths up until 21 May 2020 (available here). This
date was obtained by considering a 16 day delay from the survey period’s midpoint (5
May 2020), relying on published estimates of times to deaths [5]. The age-specific IFRs
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age (years) % seropositive number of deaths

0 0.0 (0.0-11.9)
21-4 3.5 (1.7-6.8)

5-9 3.6 (2.3-5.7)

10-14 4.1 (3.1-5.5)
5

15-19 3.8 (2.8-5.0)

20-24 5.5 (4.3-7.0)
24

25-29 5.4 (4.1-7.1)

30-34 4.3 (3.3-5.4)
63

35-39 4.8 (3.9-6.0)

40-44 4.7 (3.9-5.7)
217

45-49 5.1 (4.2-6.2)

50-54 4.9 (4.0-5.9)
657

55-59 4.9 (4.1-5.9)

60-64 4.1 (3.3-5.2)
1822

65-69 4.9 (3.8-6.3)

70-74 4.6 (3.5-5.9)
4887

75-79 4.2 (3.0-5.9)

80-84 5.0 (3.4-7.4)
8458

85-89 3.6 (2.1-6.1)

90+ 2.4 (1.1-5.3) 4417

Table S1. Age-specific estimates of seropositive proportions and numbers of deaths
in Spain.
% seropositive corresponds to the results obtained based on the immunoassay test in Pollan et al.
The numbers of deaths include deaths until 21 May 2020 inclusive.

were obtained from:

IFRi =
di
piπi

, (1)

where IFRi is the IFR of age-group i, di is the total number of deaths observed in age-
group i until 21 May 2020, pi is the proportion of seropositive individuals among age-group
i and πi is the size of the population of age-group i.

Table S1 summarises the data used to calculate the age-specific IFRs and the resulting
IFR estimates are presented in Table S4. The confidence intervals presented in Table S4
were obtained by substituting pi with the 95% bounds of the estimates of seroprevalence in
Equation 1. We then doubled the widths of these intervals when defining the IFRs’ prior
distributions (Table S3), as we recognise that there may be other sources of uncertainty
than those considered in our estimation. These includes uncertainties in the reported
numbers of deaths or the fact that IFRs may vary by country.

The IFRs were distributed across strata 4 and 5, with no deaths applied to the first
three strata. If the infection fatality rate was greater than half of the absolute proportion
of persons critically unwell (entering stratum 5), the proportion of critically unwell persons
dying was set at 50% and the remainder of the infection fatality rate was applied to the
hospitalised proportion. Otherwise, if the infection fatality rate was less than half of the
absolute proportion of persons critically unwell, the IFR was applied entirely through
stratum 5 (such that the proportion of critically unwell persons dying in that age group
is then less than 50% and the proportion of stratum 4 dying was set to zero).
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Clinical stratum Pre-symptomatic Early disease Late disease

Asymptomatic 0.7 0.7 0.7
Ambulatory undetected 0.7 1 1
Ambulatory detected 0.7 1 0.2
Hospitalised non-ICU 0.7 1 0.2
ICU 0.7 1 0.2

Table S2. Illustration of the relative infectiousness of disease compartments by clinical
stratification and stage of infection.
Darker shades of red indicate higher levels of infectiousness.

1.6 Infectiousness

For patients with disease who were admitted to hospital, the sojourn time in the early
and late infectious compartments was modified, as indicated in Table S3. The point of
admission to hospital was considered to be the transition from early to late infectious
disease, such that the sojourn time in late disease was the period of time admitted to
hospital. For patients admitted to ICU, admission to hospital and admission to ICU
occurred at this same point. Infectiousness declined at the point of transition from early to
late disease for all patients admitted to hospital (both ICU and non-ICU) and for patients
who were effectively detected and so underwent isolation. The relative infectiousness of
both early and late compartments within the asymptomatic stratum, as well as the late
disease compartment of the symptomatic ambulatory detected late disease were modified.
This was intended to reflect lower infectiousness per unit time of asymptomatic persons
and of detected persons who were assumed to self-isolate from the point of entering the late
disease compartment. Pre-symptomatic individuals were assumed to have the same level
of infectiousness as asymptomatic diseased individuals. Persons with late stage disease in
the hospital and critical strata also had their infectiousness modified. Table S2 illustrates
the different levels of infectiousness associated with the different clinical strata and the
different infection stages.

1.7 Implementation of non-pharmaceutical interventions

For this study, it was critical to simulate the past dynamics of the epidemics accurately
in order to capture the level of immunity acquired in the past. For this reason, we needed
to capture the past impact of non-pharmaceutical interventions (NPIs) such as social
distancing or school closures.

1.7.1 Isolation and quarantine

For persons who are identified with symptomatic disease and enter clinical stratum 3,
self-isolation is assumed to occur. The proportion of ambulatory symptomatic persons
effectively identified through the public health response by any means is set by the time-
variant process described in Section 1.7.2. On moving to stratum 3, infectiousness declines
according to the “relative infectiousness of identified persons undergoing quarantine and
isolation” parameter indicated above.

1.7.2 Modelling time-variant detection

The proportion of symptomatic individuals detected was varied over time in order to
account for increasing detection during the course of the epidemic. We used the following
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translated and rescaled logistic function to model this increase:

propsympt detected(t) = propstart +
propfinal − propstart

2
(tanh (b (t− c)) + 1) ,

where propstart is the proportion of symptomatic individuals that are detected at the
start of 2020, propfinal is the maximum asymptotic proportion of symptomatic individ-
uals that are detected, b is a shape parameter defining how rapidly scaling occurs and
c is the time when inflection occurs in the scale-up curve. The parameters propfinal, b
and c are automatically estimated during model calibration (see Section 2). Figure S3
illustrates two examples of functions describing the proportion of symptomatic individ-
uals that are detected over time. The six countries’ detection profiles inferred from the
detection parameters’ posterior distributions are presented in Section 2.5.

Figure S3. Examples of modelled time-variant proportions of symptomatic individuals
detected over time.
Two parameter sets are illustrated: (propstart = 0, propfinal = 0.6, b = 0.1, c = 31/3/2020) in
red; (propstart = 0, propfinal = 0.9, b = 0.05, c = 29/2/2020) in green.

1.7.3 Other non-pharmaceutical interventions

For all NPIs relating to reduction of human mobility or “lockdown” (i.e. all NPIs other
than isolation and quarantine), these interventions are implemented through dynamic
adjustments to the age-assortative mixing matrix. The mixing matrices of Prem et al.
allow for disaggregation of total contact rates by location, i.e. home, work, school and
other locations. This disaggregation allows for the simulation of various NPIs in a local
context by dynamically varying the contribution of each location to reflect the historical
implementation of the interventions. The corresponding mixing matrix (denoted C0) is
presented using the standard convention that a row represents the average numbers of age-
specific contacts per day for a contact recipient of a given age-group. In other words, the
element C0[i, j] is the average number of contacts per day that an individual of age-group
i has with individuals of age-group j. This matrix results from the summation of the four
context-specific contact matrices: C0 = CH +CS +CW +CL, where CH , CS , CW and CL
are the age-specific contact matrices associated with households, schools, workplaces and
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other locations, respectively. In our model, the contributions of the matrices CS , CW and
CL are time-variant, such that the input contact matrix can be written:

C(t) = CH + s(t)CS + w(t)CW + l(t)CL, (2)

where s, w and l are location-specific time-variant multipliers. The following three
sections describe how these multipliers are set and Figure S4 shows their respective profiles
for the six countries.

Figure S4. Time-variant contact rate multipliers used to model mobility restrictions.
“Other locations” refers to all places other than schools, workplaces or households.

It is important to note that s, w, l are all set back to 1 when predicting the future
epidemic during Phase 3 as well as during Phase 2 when mixing is optimised by age (see
Section 3 for description of the different phases).

School closures
School closures were represented by decreasing the contribution of the school-based con-
tacts to the mixing matrix by 90% at the time school closures occurred in the country
considered. The closure times were obtained from the UNESCO website [6]. The reason
why the school contacts were not set to zero after closure is that many schools continued
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to accept some children whose parents worked in priority sectors.

Workplace closures
Workplace closures were represented by proportionally reducing the contribution of work-
place contacts to the total mixing matrix over time. We used Google mobility data to
inform this time-variant proportional reduction after applying a 7-day moving average to
the raw data [7].

Community-wide movement restriction
This was simulated by reducing the contribution of the “other location” contacts to the
overall mixing matrix. The functional form of this reduction was set using Google mo-
bility data and obtained by combining the proportional reductions reported by Google
for the three categories “Retail and recreation”, “Supermarket and pharmacy” and “Pub-
lic transport” [7]. We did not include the relative changes of the “Parks” category, as
their contribution to transmission is expected to be minimal. The proportional reduction
applied to the “other locations” contact rates ρ := 1− l, was obtained from:

ρ(t) =
ρR(t) + ρS(t) + ρP (t)

3
,

where ρR, ρS and ρP are the proportional reductions reported by Google for “Retail and
recreation”, “Supermarket and pharmacy” and “Public transport”, respectively. We ap-
plied a 7-day moving average to the raw data for smoothing.

Micro-distancing
The previous adjustments to social mixing reflected reductions in people’s mobility that
resulted in lower rates of contact. In addition to this, we apply a time-variant reduction
to the per-contact probability of transmission. This adjustment is referred to as micro-
distancing and is intended to capture physical distancing between individuals, mask wear-
ing and other preventive measures that individuals may take to reduce the per-contact
transmission risk. Micro-distancing was modelled using a decreasing function of time to
describe the transmission probability multiplier. It was implemented as:

md(t) = 1−
1−microfinal

2
(tanh (−0.05 (t−microinflection)) + 1) ,

where microfinal represents the final value of the transmission probability multiplier
and microinflection is the time when inflection occurs in the scaling curve. Figure S5
illustrates two examples of micro-distancing profiles. Note that the parameters microfinal
and microinflection were automatically inferred during calibration.

1.8 Model equations

The dynamics of the model are governed by a set of ordinary differential equations. We
use the subscripts a, h and c to denote the different age-groups, the two infection history
statuses and the clinical strata, respectively. That is, a is an element of {“0-4”, “5-9”, ...,
“70-74”, “75+”}, h is an element of {“infection-naive”, “previously infected”) } and c is
one of {“asymptomatic”, “ambulatory undetected”, “ambulatory detected”, “hospitalised
non-ICU”, “ICU”}.

Using the compartment notation introduced in Section 1.2 and the parameter notation
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Figure S5. Examples of time-variant micro-distancing profiles.
Two parameter sets are illustrated: (microfinal = 0.7, microinflection = 31/3/2020) in red;
(microfinal = 0.4, microinflection = 29/2/2020) in green.

presented in Table S5, we have:



Ṡa,h = −λa(t)σaSa,h + ωRa1{h=“previously infected′′}

Ėa,h = λa(t)σaSa,h − αEa,h
Ṗa,h = αEa,h − νPa,h
İa,c =

∑
h pa,h,c(t) νPa,h − γcIa,c

L̇a,c = γcIa,c − δa,cLa,c − µa,cLa,c
Ṙa =

∑
c δa,cLa,c − ωRa ,

(3)

where:

{
λa(t) = β ×md(t)

[∑
j
ε×Pj

Nj
Ca,j(t) +

∑
j,c

ιc×Ij,c + κc×Lj,c

Nj
Ca,j(t)

]
,∑

c pa,h,c(t) = 1, ∀t ∈ R, ∀h ∈ {“infection−naive′′, “previously infected′′}.
(4)
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Parameter Definition Value/range Source

Epidemic seeding
time*,c

Time when first infectious indi-
viduals were introduced in the
model

0 - 40 Assumption

Transmission proba-
bility per contactc

Probability of transmis-
sion per contact between a
fully-infectious and a fully-
susceptible individual

0.02 - 0.06 Early model explorations

Incubation timec Average total duration spent in
pre-disease infection compart-
ments (E and P )

3 - 7 days [8–11]

Incubation infectious
proportion

Proportion of incubation period
infectious

0.5 [12]

Disease durationc Average total duration spent
in the disease compartments (I
and L). Does not apply to hos-
pitalised patients.

4 - 10 days [11]

Early disease propor-
tion (non-hospital)

Proportion of disease period be-
fore isolation can occur for in-
dividuals who are never hospi-
talised

0.33 Assumed (i.e. that identification and iso-
lation can only occur after the first third
of the disease episode has elapsed)

Early disease dura-
tion (hospital non-
ICU)

Disease duration prior to ad-
mission for hospitalised patients
not critically unwell

8.1 days Expected mean from ISARIC cohort, as re-
ported on 8th June 2020 [13]

Early disease dura-
tion (ICU)

Disease duration prior to admis-
sion for ICU patients

12.7 days Calculated as 8.1 days prior to hospital
admission plus 4.6 days in hospital prior
to ICU admission. Former value being as
for disease duration prior to admission for
hospitalised patients not critically unwell.
Latter value being expected mean of period
from admission to ICU entry from ISARIC
cohort, as reported on 8th June 2020 [13].

Late disease duration
(hospital)c

Average hospitalisation dura-
tion, excluding ICU

17.7 - 20.4
days

Expected mean from ISARIC cohort, as re-
ported on 8th June 2020. [13]

Late disease duration
(ICU)c

Average duration in intensive
care unit

9 - 13 days Mean duration of stay in ICU/HDU from
ISARIC cohort, as reported on 8th June
2020 [13]

Symptomatic pro-
portions uncertaintyc

Multiplier applying to the age-
specific proportions of symp-
tomatic presented in Table S4

0.6 - 1.4 Assumption

Hospital proportions
uncertaintyc

Multiplier applying to the age-
specific proportions of hospi-
talised presented in Table S4

0.6 - 1.4 Assumption

ICU proportionc Proportion of hospitalised in-
dividuals admitted to intensive
care

0.15 - 0.20 [13]

Infection fatality
ratesc

Age-specific proportions of
death among infected indi-
viduals (9 parameters varied
independently)

See Table S4 Pollan et al. [3]
Spanish Ministry of Health [4]

Detection profile:
→ propstart

c

→ propfinal
c

→ bc

→ c*,c

See Section 1.7.2.
0 - 0.10
0.10 - 0.90
0.05 - 0.10
70 - 160

Assumption

Micro-distancing:
→ microfinal

c

→ microinflection*,c

See Section 1.7.3
0.40 - 0.75
80 - 130

Assumption

Table S3. Model parameters.
*times are expressed as number of days since 31 December 2019. cParameter included in the
MCMC calibration. 11



Age group Proportion
symptomatic(u)

Relative suscepti-
bility to
infection

Proportion of
symptomatic
patients
hospitalised(u)

Infection fatality rate

0-9 0.29 0.4 0.001 1.35e−5 (1.07e−5 − 1.81e−5)

10-19 0.21 0.38 0.003 2.7e−5 (2.4e−5 − 3.1e−5)

20-29 0.27 0.79 0.012 9.5e−5 (8.5e−5 − 0.00011)

30-39 0.33 0.86 0.032 2.3e−4 (2.1e−4 − 2.6e−4)

40-49 0.40 0.80 0.049 5.6e−4 (5.1e−4 − 6.1e−4)

50-59 0.49 0.82 0.102 1.9e−3 (1.7e−3 − 2.1e−3)

60-69 0.63 0.88 0.166 7.7e−3 (6.9e−3 − 8.6e−3)

70-79 0.69 0.74 0.243 0.027 (0.024− 0.032)

80 and above 0.69 0.74 0.273 0.11 (0.09− 0.13)

Source Davies et al. 2020
[14]

Davies et al. 2020
[14]

Verity et al. 2020 [15] Pollan et al. [3]
Spanish Ministry of Health
[4]

Table S4. Age-specific parameters.
(u)Uncertainty was incorporated around this parameter by applying a multiplier that was varied
in the MCMC (see Table S3).

parameter definition

σa relative susceptibility to infection by age

α rate of progression from latent to pre-symptomatic state

ν rate of progression from pre-symptomatic to early disease
state

pa,c age-specific proportion progressing to each clinical stratifi-
cation

γc rate of progression from early active disease to late active
disease

δa,c rate of progression from late active disease to recovered state

ω rate of immunity loss

µa,c rate of COVID-19-related mortality

β probability of infection per contact between a fully-infectious
and a fully-susceptible individual

md time-variant multiplier used to model micro-distancing (Sec-
tion 1.7.3)

ε relative infectiousness of pre-symptomatic individuals

ιc clinical stratification infectiousness vector for early disease
compartments

κc clinical stratification infectiousness vector for late disease
compartments

Ca,j contact matrix element [a, j], defined as the average daily
number of persons of age a contacted by an individual of
age j.

Table S5. Parameter notation for ordinary differential equations.
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2 Model calibration

The model was calibrated using a Markov Chain Monte Carlo algorithm (MCMC). In par-
ticular, we used the Metropolis-Hastings algorithm with Gaussian proposal functions to
sample parameters from their posterior distributions. For each country, we ran 7 indepen-
dent MCMC chains initialised using Latin Hypercube Sampling based on the parameter
priors. We ran simulations for 3 hours per chain in order to achieve at least 2,500 iterations
per chain. We discarded the first 1,000 iterations of each chain as burn-in and combined
the samples of the 7 chains to project epidemic trajectories over time. The definitions of
the prior distributions and the likelihood are detailed in the following sections.

2.1 Parameters varied during calibration

The parameters varied during the MCMC calibration along with their associated prior
ranges are listed in Table S3 and indicated with the superscript c. We used uniform prior
distributions to reflect the still limited knowledge about SARS-CoV-2 epidemiology.

2.2 Calibration targets

We used the data reported by the World Health Organization for the daily numbers of
COVID-19 confirmed cases between 1 March 2020 and 15 July 2020 in the six countries
considered [16]. We then converted the daily counts into weekly totals in order to remove
the effect of weekdays versus weekends in cases reporting. We also used hospitalisation
data as calibration targets. We fitted the model to daily numbers of new hospitalisations
(7-day average) when these data were available (Belgium, France, Spain, UK). In con-
trast, the daily number of patients currently hospitalised was used for Italy, and the daily
number of new patients in intensive care units were used for Sweden. The sources of the
hospitalisation data are summarised in Table S6 and the data points used for calibrations
are presented in Figure S6.

Country Hospitalisation indi-
cator

Source

Belgium New hospital admis-
sions

COVID-19 Belgium Epidemiologi-
cal Situation dashboard [17]

France New hospital admis-
sions

data.gouv.fr platform (French Gov-
ernment) [18]

Italy Current total of hospi-
talisations

National COVID-19 data repository
[19]

Spain New hospital admis-
sions

Spanish Ministry of Health [4]

Sweden New ICU admissions Swedish Intensive Care Registry
[20]

United
Kingdom

New hospital admis-
sions

COVID-19 Government dashboard
[21]

Table S6. Summary of hospital data used to calibrate the models.
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2.3 Likelihood calculation

Let ni denote the average daily number of new confirmed COVID-19 cases in a given
country during week i, and νθi the associated predicted number according to the model
when using the parameter set θ. Similarly, let us denote hi as the average daily number of
new COVID-19 hospitalisations (or average daily hospital occupancy for Italy, or average
daily number of new ICU admissions for Sweden) during week i, and δθi the associated
predicted number according to the model when using the parameter set θ. The MCMC
likelihood was defined as follows:

L(θ) :=
∏
i

f(ni| νθi , σn)× f(hi| δθi , σh),

where f(.| µ, σ) is the probability mass function of the normal distribution with mean µ
and standard deviation σ. The parameters σn and σh were automatically estimated by
the MCMC.

2.4 Fitted model

Figure S6 shows our model projections against local data for case notifications and the
hospital-related indicators used for each country’s model calibration. We also present the
posterior estimates of proportion of recovered individuals over time in Figure S7. In this
figure, we also show estimates of antibody prevalence from sero-prevalence surveys for
comparison. Note that these estimates were not include as calibration targets. Table S7
provides details about the reported sero-prevalence estimates.

Country Population Sampling Approach Date Result Source
Belgium Nationwide Convenience Residual sera taken out-

side hospitals by diagnos-
tic laboratories.

30 Mar - 5 Apr 2020
20-26 Apr 2020
18 - 25 May 2020
8 - 13 Jun 2020
29 Jun - 3 Jul 2020

2.9% (2.3 - 3.4)
6.0% (5.1 - 7.1)
6.9% (5.9 - 8.0)
5.5% (4.7 - 6.5)
4.5% (3.7 - 5.4)

[22]

France Four depart-
ment areas

Convenience Blood donor samples as-
sessed with virus neutral-
isation assay

Last week of March
& first week of April
2020

2.71% [23]

Italy Nationwide Stratified,
two-stage
sampling

Home-based collection of
serum

25 May - 15 Jul 2020 2.5% [24]

Spain Nationwide Random,
stratified,
two-stage

Fingerprick RDT, and
CLIA on serum

27 Apr - 11 May 2020
18 May - 1 Jun 2020
8 - 22 jun 2020

5.0% (4.7 - 5.4)
5.2% (4.9 - 5.5)
5.2% (4.9 - 5.5)

[3]

Sweden Stockholm
urban area

Random Home-sampled DBS asses
with multiplex serology as-
say.

May 2020 10.8% (7.9%-
13.7%)

[25]

United King-
dom

Nationwide Representative
sample

Biobank participants, self-
collected fingerprick sam-
ple tested with ELISA

27 Apr - 3 May 2020 7.1% [26]

United King-
dom

Nationwide Random Self-administeered lateral
flow immunoassay

20 Jun - 13 Jul 2020 6.0% (5.8, 6.1) [27]

Table S7. Survey estimates of seroprevalence for the six analysed countries. The
numbers in brackets represent 95% confidence intervals.
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Belgium France
Confirmed cases New hospital admissions Confirmed cases New hospital admissions

Italy Spain
Confirmed cases Hospital occupancy Confirmed cases New hospital admissions

Sweden United Kingdom
Confirmed cases New ICU admissions Confirmed cases New hospital admissions

Figure S6. Model projections compared against local data.
The figures present the median estimates (dark blue line) and the central 95% credible intervals
(light blue shade) against observed numbers of confirmed COVID-19 cases and hospitalisations
(black dots). The x-axis represents the time in days since 31/12/2019. Values on the y-axis are
daily numbers of confirmed cases or hospitalisations. The data points represent the weekly average
of the daily counts.
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Figure S7. Model projections of proportion of recovered individuals over time.
The figures present the median estimates (dark blue line), the interquartile range (dark blue shade)
and the central 95% credible intervals (light blue shade) of the proportion of recovered individuals
over time. The x-axis represents the time in days since 31/12/2019. Estimates of antibody preva-
lence obtained from sero-prevalence surveys are also shown (yellow boxes and black lines). The
horizontal span of the boxes/lines represent the survey periods. The vertical span shows the 95%
confidence interval, when available.
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2.5 Parameters’ posterior distributions

The posterior distributions of the parameters listed in Table S3 are presented in Figure S8.
The ranges used on the x-axes correspond to the intervals used to define the parameters’
prior distributions.

Figure S8. Posterior estimates of model parameters.
The mean estimates are represented with a red dot. The central 50% credible intervals are shown
in blue and the central 95% credible interval are represented with black bars.

Using the posterior samples of the detection parameters, we computed estimated pro-
files of the time-variant proportion of symptomatic detected. The six countries’ detection
profiles are shown in Figure S9.
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Figure S9. Posterior estimates of the time-variant proportion of symptomatic persons
detected.
The figures present the median estimate (black line), central 50% credible interval (dark blue) and
central 95% credible interval (light blue).

3 The three simulation phases

The model is used to simulate three successive phases that have different purposes:

1. Modelling the past (until 31 July 2020),

2. Mitigating the age-specific or location-specific social mixing (during 6 or 12 months
from 1 August 2020),

3. Relaxing all restrictions and testing for herd immunity (until 31 October 2021).

Figure 1 (main text) illustrates these three phases, both in the presence and in absence
of herd-immunity.

3.1 Phase 1: Modelling the past

This phase aims to simulate the past SARS-CoV-2 epidemic accurately in order to capture
the level of immunity acquired by August 2020. During this phase which ends on 31th July
2020, model parameters were automatically calibrated in order for the model predictions
to match the numbers of notified COVID-19 cases and hospitalisations. Our Bayesian
approach to calibration also allowed us to account for uncertainty in the model inputs.
This approach is described in Section 2.

3.2 Phase 2: Mitigating the age-specific or location-specific social mix-
ing

The second simulation phase begins on the 1st of August 2020 and lasts 6 or 12 months
depending on the configuration considered. It is during this phase that the social mixing
profile was varied and optimised.
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Optimisation performed by adjusting mixing by age
In a first analysis, we aimed to find the optimal age-specific adjustments to the contact
matrix. Under this scenario, the location-specific multipliers s(t), w(t) and l(t) described
in Equation 2 were all set back to 1, so was the micro-distancing multiplier. All the
other parameter values remained the same as those used during Phase 1, including for the
parameters that are automatically calibrated (Section 2). In addition, we used age-specific
multipliers that were varied during optimisation in order to model various strategies of
mitigation by age.

Let us denote mi ∈ [0, 1] a relative mixing multiplier associated with age group i ∈
{1, ..., 16}. During Phase 2, we apply the adjusted contact matrix A defined by:

A[i, j] = mimjC0[i, j],

where C0 is the original contact matrix provided by Prem et al. and described in
Section 1.7.3. Note that during Phase 2, the matrix A replaced the matrix C in the
equations presented in Section 1.8. We aimed to identify a combination {mi, i ∈ {1, ..., 16}}
that:

1. leads to herd immunity by the end of Phase 2 and

2. minimises the mortality-related objective.

In Figure S10, we show the age-specific contributions in terms of total number of
social contacts towards the elderly population. The contribution of age-group j in terms of
contacts towards the age-group i was calculated as C0[i, j]×πj , where πj is the population
of age-group j. These quantities are presented to help understand the optimised mixing
profiles presented in the main text.

Figure S10. Age-specific contributions in terms of total number of contacts towards
the elderly population.

Optimisation performed by adjusting mixing by location
In a separate exercise, we performed optimisation of social mitigation by location. Namely,
we aimed to identify the optimal combinations of contact rate reductions in the three
following locations: schools, workplaces and places other than schools, workplaces and
homes. The rates of contacts occurring between household members were assumed to
remain unchanged during this exercise. We aimed to achieve the same goals as with social
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mitigation by age. Using the notation introduced in Equation 2, the decision variables of
the optimisation problem become the location-specific multipliers s(t), w(t) and l(t) that
we consider constant during Phase 2.

The mortality-related objectives to minimise
We considered two different mortality-related objectives separately in this study. First,
the optimisation exercise aimed to minimise the total number of deaths occurring during
Phases 2 and 3. Then, we repeated all analyses by minimising the total number of life-
years lost during the same period. The number of life-years lost was estimated by summing
the expected number of remaining years that individuals would have lived if they had not
died from COVID-19. This process was informed by the country-specific life-expectancy
values by age reported by the United Nations.

3.3 Phase 3: Relaxing all restrictions and testing herd immunity

In this analysis, we were only interested in the strategies of mitigation by age that result
in herd immunity by the end of Phase 2. We used a simulation-based approach to test
whether herd immunity was reached at that time. To do this, we set all the age-specific
mixing multipliers mi and the location-specific multipliers s, w and l back to 1 at the start
of Phase 3 in order to simulate an unmitigated epidemic. We assumed that herd immunity
was reached by the end of Phase 2 if and only if the number of new diseased individuals
was consistently found to decrease during Phase 3.

4 Optimisation of the age-specific social mixing

4.1 Problem description

Optimisation by age
For each country and for each configuration, we aimed to identify optimal combinations of
the age-specific multipliers mi described in Section 3. Let us denote Φ = {m1, . . . ,m16} ∈
[0, 1]16 a combination of these age-specific multipliers. Let also Ψ(Φ) be the associated
mortality-related objective (either total numbers of deaths or life-years lost during Phases
2 and 3), and H(Φ) a binary variable indicating whether herd immunity has been achieved
by the end of Phase 2 (H(Φ) = 1 if herd immunity, 0 otherwise). We aimed to find Φ∗

such that:

Φ∗ = arg min
Φ

Ψ(Φ) , (5)

subject to: H(Φ) = 1 . (6)

Optimisation by location

The optimisation by location was defined in the same way as the optimisation by age except
that the decision variables were the location-specific multipliers s, w and l described in
Section 1.7.3 instead of the age-specific multipliers mi.

4.2 Technical description of the optimisation algorithm

A total of 48 optimisations searches were performed, as we considered 6 countries, two
different Phase 2 durations (6 and 12 months), two different objectives to minimise (deaths
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and YLLs), and two optimisation modes (by age and by location). The optimisation exer-
cises were treated independently using a parallel mono-objective Evolutionary Algorithm
(EA) [28]. In an EA, a population of combinations is evolved by selection and reproduction
of promising combinations already simulated (parents). The new combinations (children)
generated by the reproduction operators are then simulated and replace the less promising
combinations into the population.

The constraint of achieving herd immunity presented in Equation 6 was integrated
into the mortality-related objective by setting the objective value to 8,000,000,000. This
number is overwhelmingly greater than both the total number of possible deaths and the
total number of possible life-years lost for all the countries considered in this study.

The parallel EA is described in Algorithm 1. The population of N combinations was
initialized using Latin Hypercube Sampling and was then simulated in parallel (line 1
and 2). Within the generational loop (line 4 to 11), a population of parents was created
by selecting N combinations from the population. The tournament selection of size 2
(line 5) repeatedly sampled 2 combinations with replacement from the population and
retained the best one as parent. Parent characteristics were mixed by the SBX crossover
operator [29] to generate the population of children (line 6). Children are next slightly
modified by the polynomial mutation operator [29] and simulated in parallel (line 7 and
8). The best combinations from the population and the children were retained to form
the new population (line 9).

Algorithm 1 Parallel Evolutionary Algorithm

Input
N : population size
budget : budget for the search

1: P ← LHS sampling(N) . initial population
2: parallel simulation(P)
3: (xmin, ymin) ← get best cost(P)
4: while budget 6= 0 do
5: Pp ← tournament(2, P) . population of parents
6: Pc ← SBX crossover(Pp) . population of children
7: Pc ← polynomial mutation(Pc)
8: parallel simulation(Pc)
9: P ← elitist replacement(P, Pc, N)

10: (xmin, ymin) ← get best cost(P)
11: end while
12: return xmin, ymin

Simulations were performed in parallel as they were the most computationally expen-
sive part of the process (13 seconds on 1 computational core). The budget for the search
was set to 12 hours on 1 computational node made of 18 Intel Xeon Gold 5220 cores
proceeding from Grid5000, a large-scale testbed with a focus on parallel and distributed
computing [30]. The population size was set to 126 in order to follow the general guidance
given in [28] and to minimise the number of idle cores when simulating a population.

4.3 Sensitivity analysis applying perturbations on the optimal plans

Figures 2 and 3 (main text) present the optimal plans obtained after minimisation by age
and by location, respectively. We also measured how variations in the optimised decision
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variable would affect the objective functions (numbers of deaths and YLLs). To do this,
we set a maximum allowed number of additional deaths or YLLs compared the optimum
obtained under each configuration (∆obj). We then determined the alterations of the
mixing factors that would:

1. cause an increase of ∆obj in the objective function and

2. maintain the condition of herd immunity.

The thin black bars on Figures 2 and 3 represent the greatest perturbations allowed. These
perturbations were applied to one mixing factor at a time.

5 Additional results

5.1 Effect of increased mixing on deaths and YLLs

We explored the effect of increasing mixing as compared to the optimal mitigation plans
obtained using contact mitigation by age. That is, we applied a minimum bound b to
the age-specific mixing factors such that the modified mixing profile could be described as
{max(m∗i , b)}i∈{1,...,16}, where {m∗i }i∈{1,...,16} represents the optimal (reference) solution
originally obtained in the main analysis using b = 0. Figure S11 shows the results of
this analysis in terms of predicted total numbers of COVID-19-related deaths and YLLs
occurring after 1 August 2020 when considering 0 ≤ b ≤ .5. Note that no additional
optimisation was run for this exercise such that the predictions presented here were not
optimal solutions. Recovered individuals were assumed to have persistent immunity in
this analysis.
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Figure S11. Impact of increasing mixing compared to the optimal strategies.
The minimum mixing factor is the variable b described above. The purple line represents the total
number of COVID-19-related deaths occurring after 1 Aug 2020 using the reference solution of the
optimisation by age minimising deaths. The blue line represents the total number of COVID-19-
related YLLs occurring after 1 Aug 2020 using the reference solution of the optimisation by age
minimising YLLs.
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5.2 Contact matrices resulting from the optimisation

The main text presents the optimisation results in terms of age-specific or location-specific
mixing variables. Here we present the mixing matrices resulting from the optimised mix-
ing factors. Figures S12 and S13 present the mixing matrices obtained under the different
configurations when running the optimisation processes by ages and by location, respec-
tively.
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Figure S12. Age-specific contact matrices obtained from the optimisations by age.

24



0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
index age

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

co
nt

ac
t a

ge

unmitigated

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
index age

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

co
nt

ac
t a

ge

optimising deaths (6 mo.)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
index age

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

co
nt

ac
t a

ge

optimising deaths (12 mo.)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
index age

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

co
nt

ac
t a

ge

optimising YLLs (6 mo.)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
index age

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

co
nt

ac
t a

ge

0

1

2

3

4

5

6

7

8

n 
co

nt
ac

ts
 p

er
 d

ay

optimising YLLs (6 mo.)

B
el

gi
um

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
index age

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

co
nt

ac
t a

ge

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
index age

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

co
nt

ac
t a

ge

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
index age

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

co
nt

ac
t a

ge

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
index age

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

co
nt

ac
t a

ge
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

index age

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

co
nt

ac
t a

ge

0

1

2

3

4

5

6

7

n 
co

nt
ac

ts
 p

er
 d

ay

Fr
an

ce

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
index age

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

co
nt

ac
t a

ge

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
index age

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

co
nt

ac
t a

ge

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
index age

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

co
nt

ac
t a

ge

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
index age

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

co
nt

ac
t a

ge

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
index age

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

co
nt

ac
t a

ge

0

2

4

6

8

10

n 
co

nt
ac

ts
 p

er
 d

ay

It
al

y

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
index age

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

co
nt

ac
t a

ge

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
index age

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

co
nt

ac
t a

ge

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
index age

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

co
nt

ac
t a

ge

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
index age

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

co
nt

ac
t a

ge

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
index age

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

co
nt

ac
t a

ge

0

1

2

3

4

5

6

n 
co

nt
ac

ts
 p

er
 d

ay

Sp
ai

n

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
index age

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

co
nt

ac
t a

ge

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
index age

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

co
nt

ac
t a

ge

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
index age

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

co
nt

ac
t a

ge

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
index age

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

co
nt

ac
t a

ge

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
index age

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

co
nt

ac
t a

ge

0

2

4

6

8

n 
co

nt
ac

ts
 p

er
 d

ay

Sw
ed

en

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
index age

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

co
nt

ac
t a

ge

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
index age

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

co
nt

ac
t a

ge

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
index age

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

co
nt

ac
t a

ge

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
index age

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

co
nt

ac
t a

ge

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
index age

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

co
nt

ac
t a

ge

0

1

2

3

4

5

6

7

n 
co

nt
ac

ts
 p

er
 d

ay

U
ni

te
d 

K
in

gd
om

Optimisation by location

Figure S13. Age-specific contact matrices obtained from the optimisations by location.
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5.3 Estimates of proportions of recovered individuals under optimised
scenarios

Figure S14 presents the predicted proportion of recovered individuals over time under the
optimised scenarios of mitigation by age. Recovered individuals were assumed to have
persistent immunity in this analysis.
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Figure S14. Posterior estimates of proportions of recovered individuals over time.
The first waves (past epidemics) are represented in purple while the predictions of the future
epidemics are represented in blue. The future epidemics are those associated with the four different
optimisation configurations: six- or 12-month mitigation minimising total number of deaths or years
of life lost (YLLs). The light shades show the central 95% credible intervals, the dark shades show
the central 50% credible intervals and the solid lines represent the median estimates.
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Figure S15 shows the age-specific proportion of recovered individuals after the opti-
mised mitigation phase for the different optimisation configurations. Since the optimi-
sation was constrained by the fact that herd immunity had to be reached by the end of
the mitigation phase, these proportions could also be interpreted as age-specific vaccine
coverage that would lead to herd immunity using a 100% vaccine.
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Figure S15. Age-specific proportions of recovered individuals at the end of Phase 2.
Recovered individuals assumed to have persistent immunity. Simulations based on the maximum-
likelihood parameter sets. YLLs: years of life lost.
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5.4 Predicted numbers of deaths and YLLs with optimised mitigation
by location

Table S8 presents the predicted numbers of COVID-19-related deaths and YLLs associated
with the optimisation process by location. Recovered individuals were assumed to have
persistent immunity in this analysis.

Table S8. Predicted numbers of deaths and years of life lost (Optimisation by loca-
tion).
Optimisation by location under the assumption of persistent immunity. Numbers are presented in
thousands of deaths and YLLs as median and central 95% credible intervals. YLLs: Years of life
lost.
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5.5 Hospital occupancy with optimised mitigation by location

Figure S16 presents the predicted daily number of beds occupied by COVID-19 patients
over time under the optimised scenarios of mitigation by location. Recovered individuals
were assumed to have persistent immunity in this analysis.
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Figure S16. Hospital occupancy with mitigation optimised by location (assuming
persistent immunity).
The first waves (past epidemics) are represented in purple while the predictions of the future
epidemics are represented in blue. The future epidemics are those associated with the four different
optimisation configurations: six- or 12-month mitigation minimising total number of deaths or years
of life lost (YLLs). The light shades show the central 95% credible intervals, the dark shades show
the central 50% credible intervals and the solid lines represent the median estimates.
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5.6 Age-specific profiles of disease indicators over time

The following figures are the equivalent of Figure 3 (main text) under different configu-
rations of optimisation. The configurations are indicated at the top of each figure and
describe the type of mitigation (by age or by location), the duration of the mitigation
phase (6 or 12 months) and the minimised indicator (deaths or YLLs).

Figure S17. Age-specific profile of disease incidence, COVID-19-related deaths and
proportion recovered over time
The yellow background indicates the intervention phase during which age-specific contacts were
optimised. These projections were produced assuming that recovered individuals have persistent
immunity against SARS-CoV-2 reinfection and using the maximum a posteriori estimates.
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Figure S18. Age-specific profile of disease incidence, COVID-19-related deaths and
proportion recovered over time
The yellow background indicates the intervention phase during which age-specific contacts were
optimised. These projections were produced assuming that recovered individuals have persistent
immunity against SARS-CoV-2 reinfection and using the maximum a posteriori estimates.
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Figure S19. Age-specific profile of disease incidence, COVID-19-related deaths and
proportion recovered over time
The yellow background indicates the intervention phase during which age-specific contacts were
optimised. These projections were produced assuming that recovered individuals have persistent
immunity against SARS-CoV-2 reinfection and using the maximum a posteriori estimates.
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Figure S20. Age-specific profile of disease incidence, COVID-19-related deaths and
proportion recovered over time
The yellow background indicates the intervention phase during which age-specific contacts were
optimised. These projections were produced assuming that recovered individuals have persistent
immunity against SARS-CoV-2 reinfection and using the maximum a posteriori estimates.
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Figure S21. Age-specific profile of disease incidence, COVID-19-related deaths and
proportion recovered over time
The yellow background indicates the intervention phase during which age-specific contacts were
optimised. These projections were produced assuming that recovered individuals have persistent
immunity against SARS-CoV-2 reinfection and using the maximum a posteriori estimates.
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Figure S22. Age-specific profile of disease incidence, COVID-19-related deaths and
proportion recovered over time
The yellow background indicates the intervention phase during which age-specific contacts were
optimised. These projections were produced assuming that recovered individuals have persistent
immunity against SARS-CoV-2 reinfection and using the maximum a posteriori estimates.

35



Figure S23. Age-specific profile of disease incidence, COVID-19-related deaths and
proportion recovered over time
The yellow background indicates the intervention phase during which age-specific contacts were
optimised. These projections were produced assuming that recovered individuals have persistent
immunity against SARS-CoV-2 reinfection and using the maximum a posteriori estimates.
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Figure S24. Age-specific profile of disease incidence, COVID-19-related deaths and
proportion recovered over time
The yellow background indicates the intervention phase during which age-specific contacts were
optimised. These projections were produced assuming that recovered individuals have persistent
immunity against SARS-CoV-2 reinfection and using the maximum a posteriori estimates.

Figure S25. Age-specific profile of disease incidence, COVID-19-related deaths and
proportion recovered over time
The yellow background indicates the intervention phase during which age-specific contacts were
optimised. These projections were produced assuming that recovered individuals have persistent
immunity against SARS-CoV-2 reinfection and using the maximum a posteriori estimates.
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5.7 Epidemic trajectory using different assumptions for the profile of
waning immunity.

The optimisations searches were all performed based on the assumption of persistent
immunity for recovered individuals. However, we also ran epidemic simulations considering
various assumptions of waning immunity while using the optimal mitigation plans obtained
when assuming full immunity. We considered 5 different scenarios regarding post-infection
immunity:

1. immunity against reinfection for an average of 6 months

2. immunity against reinfection for an average of 6 months and 50% reduction in disease
severity

3. immunity against reinfection for an average of 24 months

4. immunity against reinfection for an average of 24 months and 50% reduction in
disease severity

5. persistent immunity against reinfection

The 50% reduction in disease severity was modelled as a 50% reduction in the prob-
ability of presenting symptoms during repeat SARS-CoV-2 infections. The structure of
the model implied that the same reduction also applies to the risk of hospitalisation and
death. Figures S26, S27, S28 and Figure 7 (main text) show the predicted COVID-19
incidence, mortality and hospital occupancy over time for the different assumptions and
considering the optimal plan obtained using different optimisation configurations.
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Optimisation by age minimising years of life lost with 12-month mitigation

Figure S26. Predicted COVID-19 incidence, mortality and hospital occupancy over
time under various assumptions of waning immunity.
The predictions were obtained using the maximum-likelihood parameter estimates and based on the
12-month contact mitigation by age minimising years of life lost (YLLs). The yellow background
indicates the mitigation phase during which age-specific contacts were optimised. Five different
assumptions were used to project the disease indicators: persistent immunity (black), 24-month
immunity with and without 50% reduction in risk of symptoms for repeat infections (red and coral,
respectively), 6-month immunity with and without 50% reduction in risk of symptoms for repeat
infections (blue and turquoise, respectively).
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Optimisation by age minimising deaths with 6-month mitigation

Figure S27. Predicted COVID-19 incidence, mortality and hospital occupancy over
time under various assumptions of waning immunity.
The predictions were obtained using the maximum-likelihood parameter estimates and based on
the 6-month contact mitigation by age minimising deaths. The yellow background indicates the
mitigation phase during which age-specific contacts were optimised. Five different assumptions
were used to project the disease indicators: persistent immunity (black), 24-month immunity with
and without 50% reduction in risk of symptoms for repeat infections (red and coral, respectively),
6-month immunity with and without 50% reduction in risk of symptoms for repeat infections (blue
and turquoise, respectively).
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Optimisation by age minimising deaths with 12-month mitigation

Figure S28. Predicted COVID-19 incidence, mortality and hospital occupancy over
time under various assumptions of waning immunity.
The predictions were obtained using the maximum-likelihood parameter estimates and based on
the 12-month contact mitigation by age minimising deaths. The yellow background indicates the
mitigation phase during which age-specific contacts were optimised. Five different assumptions
were used to project the disease indicators: persistent immunity (black), 24-month immunity with
and without 50% reduction in risk of symptoms for repeat infections (red and coral, respectively),
6-month immunity with and without 50% reduction in risk of symptoms for repeat infections (blue
and turquoise, respectively).
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5.8 Epidemic trajectory under short-lived immunity applying mild mit-
igation after optimised phase.

We ran simulations under our most pessimistic assumption regarding waning immunity (6
month average duration and no effect on repeat disease severity), considering that mild
contact mitigation was applied after the optimised phase. Figure 8 (main text) presents
the predictions associated with the optimal age-mitigation plan obtained by minimising
YLLs over a period of 6 months. The results of the other optimisation configurations are
presented below.
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Optimisation by age minimising years of life lost with 12-month mitigation

Figure S29. Predicted COVID-19 incidence, mortality and hospital occupancy over
time with short-lived post-infection immunity and applying mild mixing reductions
after the optimised phase.
The predictions were obtained using the maximum-likelihood parameter estimates and based on the
12-month contact mitigation by age minimising years of life lost (YLLs). The yellow background
indicates the mitigation phase during which age-specific contacts were optimised. These predictions
were obtained assuming 6-month average duration of immunity with no effect on the severity
of repeat SARS-CoV-2 infections. The mixing factors were defined in the same way as during
optimisation except that the same factor was applied to all age-groups. That is, a 90% mixing
factor corresponds to a situation where every individual reduces their opportunity of contact by
10%.
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Optimisation by age minimising deaths with 6-month mitigation

The predictions were obtained using the maximum-likelihood parameter estimates and
based on the 6-month contact mitigation by age minimising years of life lost (deaths).

The yellow background indicates the mitigation phase during which age-specific contacts
were optimised. These predictions were obtained assuming 6-month average duration of
immunity with no effect on the severity of repeat SARS-CoV-2 infections. The mixing

factors were defined in the same way as during optimisation except that the same factor
was applied to all age-groups. That is, a 90% mixing factor corresponds to a situation

where every individual reduces their opportunity of contact by 10%.
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Optimisation by age minimising deaths with 12-month mitigation

Figure S30. Predicted COVID-19 incidence, mortality and hospital occupancy over
time with short-lived post-infection immunity and applying mild mixing reductions
after the optimised phase.
The predictions were obtained using the maximum-likelihood parameter estimates and based on the
12-month contact mitigation by age minimising years of life lost (deaths). The yellow background
indicates the mitigation phase during which age-specific contacts were optimised. These predictions
were obtained assuming 6-month average duration of immunity with no effect on the severity
of repeat SARS-CoV-2 infections. The mixing factors were defined in the same way as during
optimisation except that the same factor was applied to all age-groups. That is, a 90% mixing
factor corresponds to a situation where every individual reduces their opportunity of contact by
10%.
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