Supplementary Material

Recovery-associated resting-state activity and connectivity alterations

in Anorexia nervosa

Leon D. Lotter, Georg von Polier, Jan Offermann, Kimberly Buettgen, Lukas Stanetzky,

Simon B. Eickhoff, Kerstin Konrad, Jochen Seitz*, Juergen Dukart*

*contributed equally

- ¹Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Germany
- ²Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- ³Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- ⁴Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Germany
- ⁵JARA-Brain Institute II, Molecular Neuroscience and Neuroimaging, Research Center Jülich, Jülich, Germany

Supplementary Methods

Inclusion and exclusion criteria

Only patients meeting the following criteria were included in the acute Anorexia nervosa (AN; T1/T2acu) group: (1) Diagnosis of AN according to DSM-V criteria (American Psychiatric Association, 2013), (2) inpatient admission to specialized eating disorder (ED) treatment at the Department of Child and Adolescent Psychiatry and Psychotherapy of the University Hospital Aachen, Germany, (3) body mass index (BMI) below the 10th age- and sex-adjusted percentile. Patients were included in the recovered patients (ANrec) group if (1) they had received a past AN diagnosis and treatment as stated above, (2) had a current BMI over 18.5 kg/m² or the 10^{th} percentile (if underage), (3) did not fulfill criteria of any ED diagnosis according to a standardized clinical interview (Hilbert et al., 2004) at the time of testing, (4) nor were underweight in the last 12 months or (5) exhibited current amenorrhea. Only subjects with (1) a BMI over 18.5 kg/m^2 or the 10^{th} percentile and (2) without any history of psychiatric or neurological disorders or psychoactive medication use were included in the control groups (HCacu/ HCrec). Additionally, all subjects had to exceed an intelligence quotient (IQ) of 80 and fulfill functional magnetic resonance imaging (fMRI) safety criteria. Anorexia nervosa patients were recruited from the Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital Aachen, Germany. Healthy controls were reached via participation in former studies, flyers and social media from the surrounding of the RWTH Aachen.

In total, we collected resting-state fMRI (rsfMRI) scans of 102 subjects. Applying the listed criteria, we excluded 15 subjects from the final analyses: N = 4 HCacu (2 over-threshold ED-scores, 3 BMI criteria, 1 data processing errors), N = 8 T3rec (5 acute ED

2

diagnosis, 2 BMI criteria, 1 acute suicidal tendencies), N = 3 HCrec (2 BMI criteria, 1 antidepressive medication).

Sensitivity analyses

To control for motion artifacts at the group level, we averaged frame-wise displacement (FWD) parameters to two scores representing mean translation and rotation FWD. These were included as additional covariates in group-level analyses of rsfMRI data.

We furthermore recomputed all post-hoc-comparisons that showed significant group differences by (1) including verbal IQ as covariate (T1/T2acu vs. HCacu) to assess whether differing IQ values observed in cohort 1 influenced rsfMRI group differences; (2) including the time between inpatient admission and T1acu as covariate (T1acu vs. T2acu) to control for the impact of delayed scanning and (3) including BMI-standard deviation score (BMI-SDS) as covariate in all comparisons to assess the extent to which resting-state alterations in AN were mediated by starvation. For this, (repeated measures) analyses of covariances (RM-ANCOVAs) were used.

Additional correlation analyses

Counterintuitively, we observed a strong positive association between T1acu < HCacu network functional connectivity (FC) and the Eating Disorder Inventory 2 (EDI-2) total score. The EDI-2 is composed of 11 subscales that measure eating disorder specific (e.g. *Drive for thinness, Body dissatisfaction, Bulimia*) as well as unspecific, partly state-related characteristics (e.g. *Interpersonal distrust, Impulse regulation, Interoceptive awareness, Maturity fears, Perfectionism, social insecurity*) (Paul & Thiel, 2005; Kappel et al., 2012). To evaluate whether specific patterns of associations between FC and the various traits and states measured by the EDI-2 emerged, we calculated Pearson correlations between T1acu < HCacu network FC and all EDI-2 subscales. Furthermore, we evaluated how the association developed over time (Pearson correlations in T2acu and T3rec groups) and whether it differed between patients with AN in different states of recovery (ANCOVA with EDI-2 total score as dependent variable; group x network FC interaction). Lastly, we explored if the EDI-2 was related to starvation severity in the patients with acute AN by calculating Pearson correlations between EDI-2 total score and BMI-SDS as well as plasma leptin.

Supplementary Results

Impact of potential confounders on rsfMRI results

Including possible confounding variables in group comparisons of rsfMRI results did not introduce major changes to the results. Only BMI-SDS may have a considerable impact on AN-HC-differences in acute patients.

When including FWD in Network Based Statistics (NBS) analyses (T1acu vs. HCacu), the subnetwork size increased and an additional connection between the prefrontal seed ROI and the left calcarine sulcus emerged in the post-hoc seed-to-ROI approach (table S7). When controlling for FWD in the calculation of voxel-wise rsfMRI group differences, original clusters sizes changed slightly, additional clusters of reduced Integrated Local Correlation (LC; right temporal and orbitofrontal cortices) emerged and the T1acu < HCacu x T3rec > HCrec cluster did not remain significant (table S12).

Whilst controlling for verbal IQ in post-hoc comparisons (T1/T2acu vs. HCacu), only group differences in T1acu > HCacu network FC and sensorimotor Global Correlation (GC) lost significance (table S8). Note that verbal IQ was available for only N = 16 patients with acute AN. Including admission-T1-time as covariate in T1acu vs. T2acu post-hoc comparisons affected significance of GC clusters and temporal LC (table S9). When including BMI-SDS as covariate in T1/T2acu vs. HCacu comparisons, only differences of prefrontal GC and LC and parietal fractional Amplitude of Low Frequency Fluctuations (fALFF) were significant. However, T1acu vs. T2acu differences, except for sensorimotor GC, remained stable (table S10).

Exploration of rsfMRI - ED symptom severity correlations

The only significant (positive) correlations emerged between T1acu < HCacu network FC and the EDI-2 scales *Interoceptive awareness* (r = 0.55, p = 0.010), *Maturity fear, Social* *insecurity* (both r = 0.63, p = 0.002) and *Impulse regulation* (r = 0.45, p = 0.041), but not with eating disorder specific scales (figure S3). In T2acu and T3rec, the correlations with EDI-2 total score were not significant; T2acu: r = 0.20, p = 0.440; T3rec: r = -0.37, p = 0.098. However, the slope of the regression function changed significantly; F = 5.62, p = 0.006. EDI-2 total score was not related to BMI-SDS (r = 0.03, p = 0.884), nor to plasma leptin (r = -0.07, p = 0.757) at T1.

References

- American Psychiatric Association. (2013). *Diagnostic and statistical manual of mental disorders* (5.). American Psychiatric Publishing.
- Biezonski, D., Cha, J., Steinglass, J., & Posner, J. (2016). Evidence for Thalamocortical Circuit
 Abnormalities and Associated Cognitive Dysfunctions in Underweight Individuals with
 Anorexia Nervosa. Neuropsychopharmacology, 41(6), 1560–1568.
 https://doi.org/10.1038/npp.2015.314
- Boehm, I., Geisler, D., King, J. A., Ritschel, F., Seidel, M., Deza Araujo, Y., Petermann, J., Lohmeier, H.,
 Weiss, J., Walter, M., Roessner, V., & Ehrlich, S. (2014). Increased resting state functional connectivity in the fronto-parietal and default mode network in anorexia nervosa.
 Frontiers in Behavioral Neuroscience, *8*, 346. https://doi.org/10.3389/fnbeh.2014.00346
- Boehm, I., Geisler, D., Tam, F., King, J. A., Ritschel, F., Seidel, M., Bernardoni, F., Murr, J., Goschke, T.,
 Calhoun, V. D., Roessner, V., & Ehrlich, S. (2016). Partially restored resting-state functional
 connectivity in women recovered from anorexia nervosa. *Journal of Psychiatry & Neuroscience*, *41*(6), 377–385. https://doi.org/10.1503/jpn.150259
- Cha, J., Ide, J. S., Bowman, F. D., Simpson, H. B., Posner, J., & Steinglass, J. E. (2016). Abnormal reward circuitry in anorexia nervosa: A longitudinal, multimodal MRI study. *Human Brain Mapping*, *37*(11), 3835–3846. https://doi.org/10.1002/hbm.23279
- Cowdrey, F. A., Filippini, N., Park, R. J., Smith, S. M., & McCabe, C. (2014). Increased resting state functional connectivity in the default mode network in recovered anorexia nervosa. *Human Brain Mapping*, *35*(2), 483–491. https://doi.org/10.1002/hbm.22202
- Ehrlich, S., Lord, A. R., Geisler, D., Borchardt, V., Boehm, I., Seidel, M., Ritschel, F., Schulze, A., King,
 J. A., Weidner, K., Roessner, V., & Walter, M. (2015). Reduced functional connectivity in the
 thalamo-insular subnetwork in patients with acute anorexia nervosa. *Human Brain Mapping*, *36*(5), 1772–1781. https://doi.org/10.1002/hbm.22736

- Favaro, A., Santonastaso, P., Manara, R., Bosello, R., Bommarito, G., Tenconi, E., & Di Salle, F. (2012).
 Disruption of Visuospatial and Somatosensory Functional Connectivity in Anorexia
 Nervosa. *Biological Psychiatry*, 72(10), 864–870.
 https://doi.org/10.1016/j.biopsych.2012.04.025
- Gaudio, S., Olivo, G., Beomonte Zobel, B., & Schioth, H. B. (2018). Altered cerebellar-insularparietal-cingular subnetwork in adolescents in the earliest stages of anorexia nervosa: A network-based statistic analysis. *Translational Psychiatry*, 8(1), 127. https://doi.org/10.1038/s41398-018-0173-z
- Gaudio, S., Piervincenzi, C., Beomonte Zobel, B., Romana Montecchi, F., Riva, G., Carducci, F., & Cosimo Quattrocchi, C. (2015). Altered resting state functional connectivity of anterior cingulate cortex in drug naïve adolescents at the earliest stages of anorexia nervosa. *Scientific Reports*, 5(1), 10818. https://doi.org/10.1038/srep10818
- Geisler, D., Borchardt, V., Boehm, I., King, J. A., Tam, F. I., Marxen, M., Biemann, R., Roessner, V.,
 Walter, M., & Ehrlich, S. (2019). Altered global brain network topology as a trait marker in patients with anorexia nervosa. *Psychological Medicine*, 1–9. https://doi.org/10.1017/s0033291718004002
- Haynos, A. F., Hall, L. M. J., Lavender, J. M., Peterson, C. B., Crow, S. J., Klimes-Dougan, B., Cullen, K.
 R., Lim, K. O., & Camchong, J. (2019). Resting state functional connectivity of networks associated with reward and habit in anorexia nervosa. *Human Brain Mapping*, 40, 652–662. https://doi.org/10.1002/hbm.24402
- Hilbert, A., Tuschen-Caffier, B., & Ohms, M. (2004). Eating Disorder Examination:
 Deutschsprachige Version des strukturierten Essstörungsinterviews. *Diagnostica*, 50(2), 98–106. https://doi.org/10.1026/0012-1924.50.2.98
- Kappel, V., Thiel, A., Holzhausen-Hinze, M., Jaite, C., Schneider, N., Pfeiffer, E., Lehmkuhl, U., & Salbach-Andrae, H. (2012). Eating Disorder Inventory-2 (EDI-2) Normierung an einer Stichprobe normalgewichtiger Schüler im Alter von 10 bis 20 Jahren und an Patientinnen

mit Anorexia nervosa. *Diagnostica*, *58*, 127–144. https://doi.org/10.1026/0012-1924/a000069

- Kullmann, S., Giel, K. E., Teufel, M., Thiel, A., Zipfel, S., & Preissl, H. (2014). Aberrant network integrity of the inferior frontal cortex in women with anorexia nervosa. *NeuroImage: Clinical*, 4, 615–622. https://doi.org/10.1016/j.nicl.2014.04.002
- Lee, S., Ran Kim, K., Ku, J., Lee, J. H., Namkoong, K., & Jung, Y. C. (2014). Resting-state synchrony between anterior cingulate cortex and precuneus relates to body shape concern in anorexia nervosa and bulimia nervosa. *Psychiatry Research*, 221(1), 43–48. https://doi.org/10.1016/j.pscychresns.2013.11.004

Paul, T., & Thiel, A. (2005). EDI-2. Eating Disorder Inventory-2. Hogreve.

- Phillipou, A., Abel, L. A., Castle, D. J., Hughes, M. E., Nibbs, R. G., Gurvich, C., & Rossell, S. L. (2016).
 Resting state functional connectivity in anorexia nervosa. *Psychiatry Research: Neuroimaging*, 251, 45–52. https://doi.org/10.1016/j.pscychresns.2016.04.008
- Rolls, E. T., Huang, C.-C., Lin, C.-P., Feng, J., & Joliot, M. (2020). Automated anatomical labelling atlas 3. *NeuroImage*, *206*, 116189. https://doi.org/10.1016/j.neuroimage.2019.116189
- Scaife, J. C., Godier, L. R., Filippini, N., Harmer, C. J., & Park, R. J. (2017). Reduced Resting-State Functional Connectivity in Current and Recovered Restrictive Anorexia Nervosa. *Frontiers in Psychiatry*, *8*, 30. https://doi.org/10.3389/fpsyt.2017.00030
- Schaefer, A., Kong, R., Gordon, E. M., Laumann, T. O., Zuo, X.-N., Holmes, A. J., Eickhoff, S. B., & Yeo,
 B. T. T. (2018). Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic
 Functional Connectivity MRI. *Cerebral Cortex, 28*(9), 3095–3114.
 https://doi.org/10.1093/cercor/bhx179
- Seidel, M., Borchardt, V., Geisler, D., King, J. A., Boehm, I., Pauligk, S., Bernardoni, F., Biemann, R.,
 Roessner, V., Walter, M., & Ehrlich, S. (2019). Abnormal Spontaneous Regional Brain
 Activity in Young Patients With Anorexia Nervosa. *Journal of the American Academy of*

 Child
 & Adolescent
 Psychiatry,
 58(11),
 1104–1114.

 https://doi.org/10.1016/j.jaac.2019.01.011

Uniacke, B., Wang, Y., Biezonski, D., Sussman, T., Lee, S., Posner, J., & Steinglass, J. (2019). Restingstate connectivity within and across neural circuits in anorexia nervosa. *Brain and Behavior*, 9(1), e01205. https://doi.org/10.1002/brb3.1205

Supplementary Tables

	T1acu (admission)	T2acu (discharge)	Statistics			
	<i>N</i> = 22	<i>N</i> = 21	<i>N</i> = 22	T1acu vs. HCacu	T2acu vs. HCacu	T1acu vs. T2acu
	mean ± SD (min. – max.)	mean ± SD (min. – max.)	mean ± SD (min. – max.)	T or U p	T or U p	T or W p
General						
Age (y)	15.3 ± 1.9 (10.2 - 18.6)	15.5 ± 2.0 (10.5 – 18.9)	16.0 ± 2.0 (12.8 - 19.2)	T = -1.23 0.227	T = -0.83 0.409	
verbal IQ	108.9 ± 17.0 (92 - 143)	n.a.	98.0 ± 9.7 (82 - 124)	$U = 106.50$ 0.041^*		
ED severity						
BMI (kg/m2)	15.7 ± 1.5 (13.1 - 18.3)	18.2 ± 1.2 (15.0 - 20.1)	22.3 ± 2.1 (18.7 - 26)	$U = -12.08 < 0.001^*$	$T = -8.00 < 0.001^*$	$T = -7.6 < 0.001^*$
BMI-SDS	-2.7 ± 1.4 (-5.5 – -1)	-1.1 ± 0.4 (-1.9 – -0.5)	0.3 ± 0.6 (-1.1 - 1.1)	$U = 1.00 < 0.001^*$	$T = -8.95 < 0.001^*$	$W = 1.00 < 0.001^*$
leptine (ng/ml)	2.0 ± 1.8 (0.9 - 6.9)	6.0 ± 3.9 (0.9 - 14.0)	20.0 ± 12.0 (6.6 - 48.0)	$U = 1.50 < 0.001^*$	$U = 15.00 < 0.001^*$	$W = 6.00 < 0.001^*$
ED history						
age at ED onset (y)	13.9 ± 1.9 (9.1 - 17.9)					
age at first admission (y)	15.2 ± 2 (10.2 - 18.6)					
BMI-SDS at first admission	-2.9 ± 1.2 (-51.4)					
treatment duration (d)		119.2 ± 46.8 (69 – 242)				
admission-scan-delay (d)	19.6 ± 12.3 (4 - 60)					
Symptom scales						
EDE - total score	83.2 ± 29.2 (24 - 138)	46.6 ± 28.4 (2 - 113)				$T = 6.15 < 0.001^*$
EDI-2 - total score	271.5 ± 80.1 (109 - 436)	252.5 ± 58.9 (106 - 335)	187.4 ± 31.9 (115 – 240)	$T = 4.56 < 0.001^*$	$T = 4.42 < 0.001^*$	T = 0.88 0.383
BDI-2 - total score	18.4 ± 13.6 (0 - 38)	13.5 ± 14.2 (0 - 51)	3.1 ± 2.7 (0 - 10)	$U = 83.50$ 0.001^*	$U = 91.00$ 0.004^*	W = 81.50 0.073

table S1: Comparisons of demographic and clinical characteristics: cohort 1

* significant group difference, a = 0.05, *p*-value uncorrected. Group comparisons using independent or paired *t*-tests (*T*), Mann-Whitney-*U*-tests (*U*), or Wilcoxon-tests (*W*) as appropriate.

treatment duration = time from admission to discharge; admission-scan-delay = time from admission to T1-scan; EDE = Eating Disorder Examination; EDI-2 = Eating Disorder Inventory 2; BDI-2 = Beck Depression Inventory 2.

Missing data: T1acu: verbal IQ: *N* = 6, EDE: *N* = 4, EDI-2: *N* = 1, BDI-2: *N* = 3. T2acu: leptin: *N* = 1, EDE: *N* = 4, EDI-2: *N* = 4, BDI-2: *N* = 3.

	T3rec (recovery)	HCrec	Statistics	tics						
	<i>N</i> = 21	<i>N</i> = 22	T3 rec vs. HCr	ec	T1/T2acu vs.	T3rec				
	mean ± SD (min. – max.)	mean ± SD (min. – max.)	T or U p		Т	р				
General										
Age (y)	22.3 ± 3.3 (17.7 - 31.4)	22.5 ± 3.5 (16.6 - 31.3)	T = -0.20	0.843						
verbal IQ	108.2 ± 9.5 (97 - 124)	110.9 ± 12.0 (95 - 130)	U = 201.50	0.639						
ED severity										
BMI (kg/m^2)	21.8 ± 2.6 (18.6 - 26.6)	21.9 ± 2.0 (19.1 - 25.5)	T = -0.08	0.935						
BMI-SDS	-0.3 ± 0.8 (-1.4 – 0.9)	-0.2 ± 0.7 (-1.2 – 0.9)	U = 217.00	0.808						
leptine (ng/ml)	12.6 ± 7.2 (3.7 – 26)	11.1 ± 6.4 (2.8 – 25.6)	T = 0.69	0.495						
ED history										
age at ED onset (y)	14.4 ± 1.6 (11.8 - 17.6)				T = -0.75	0.461				
age at first admission (y)	15.2 ± 1.6 (12 - 18.4)				T = -0.03	0.976				
BMI-SDS at first admission	-2.7 ± 1.5 (-6.20.2)				T = -0.49	0.625				
ED duration (y)	2.1 ± 1.7 (0.1 - 7.1)									
recovery duration (y)	5.3 ± 3.0 (1.5 - 13.2)									
Symptom scales										
EDE - total score	26.8 ± 22.1 (2 - 84)									
EDI-2 - total score	259.8 ± 73.2 (175 - 399)	194.6 ± 32.8 (151 – 263)	U = 91.50	0.002*						
BDI-2 - total score	10.7 ± 11.5 (0 – 37)	$3.9 \pm 3.9 (0 - 12)$	U = 131.50	0.041*						

table S2: Comparisons of demographic and clinical characteristics: cohort 2

* significant group difference, a = 0.05, *p*-value uncorrected. Group comparisons using independent *t*-tests (*T*) or Mann-Whitney-*U*-tests (*U*), as appropriate.

SD = standard deviation; ED = eating disorder; IQ = intelligence quotient; BMI(-SDS) = body mass index (- standard deviation score); ED duration = time from symptom onset to last discharge (if symptom onset not available, from first admission); recovery duration = time from last inpatient discharge or last underweight state to examination; EDE = Eating Disorder Examination; EDI-2 = Eating Disorder Inventory 2; BDI-2 = Beck Depression Inventory 2.

Missing data: T3rec: age at ED onset: N = 12, BMI-SDS at first admission: N = 1. HCrec: verbal IQ: N = 1, EDI-2: N = 2, BDI-2: N = 1.

	Cohort 1			Cohort 2	
	T1acu	T2acu	HCacu	T3rec	HCrec
	N (%)	N (%)	N (%)	N (%)	N (%)
Number of past inpatient admissions					
0	19 (86.4)	0	0	0	0
1	3 (13.6)	18 (85.7)	0	12 (52.2)	0
2	0	3 (14.3)	0	6 (26.1)	0
≥ 3	0	0	0	4 (17.4)	0
Medication					
antidepressants	0	4 (19)	0	3 (13)	0
antipsychotics	4 (18.2)	4 (19)	0	0	0
no medication	18 (81.8)	15 (71.4)	24 (100)	20 (87)	0
Comorbidities					
Major depression	1 (4	4.5)	0	3 (13)	0
Minor depression	15 (68.2)	0	0	0
OCD	2 (9	9.1)	0	0	0
Anxiety disorders	3 (1	3.6)	0	8 (35.8)	0
Adjustment disorder	1 (4	4.5)	0	0	0
No comorbidity	3 (1	3.6)	24 (100)	14 (60.9)	24 (100)
Menstruation					
primary amenorrhoea	5 (22.7)	n.a.	2 (8.3)	0	0
secondary amenorrhoea	17 (77.3)	n.a.	0	0	0
menstruation	0	n.a.	21 (87.5)	21 (91.3)	24 (100)

table S3: Additional clinical characteristic of the study sample

Missing data: T3rec: inpatient admission nr: N = 1, comorbidities: N = 3, menstruation: N = 2

	T1acu vs. HCacu		T2acu vs. H	lCacu	T3 rec vs. H	Crec	T1acu vs. T2acu		
	T or U	р	T or U	р	T or U	р	T or W	р	
FWD									
translation	U = 174.00	0.114	U=177.00	0.196	U = 231.00	1.000	T = 0.04	0.969	
rotation	T = 0.38	0.708	T = 0.63	0.535	T = -0.91	0.368	T = -0.50	0.619	
Signal intensities									
grey matter	T = -2.28	0.028*	T = -1.72	0.093	T = 0.25	0.801	T = -0.50	0.625	
white matter	U = 148.00	0.027*	T = -1.16	0.252	T = 0.38	0.705	W = 68.00	0.103	
cerebrospinal fluid	T = -0.62	0.537	T = 0.21	0.832	T = 0.87	0.388	T = -1.02	0.320	

table S4: Comparison of frame-wise displacement and global signal intensities

* significant group difference, a = 0.05, p-value uncorrected. Comparisons using independent or paired t-tests (T), Mann-Whitney-U-tests (U) or Wilcoxon-tests (W), as appropriate.

Frame-wise displacement (FWD) was averaged from 3 translation and 3 rotation parameters. Maximum FWD for each group: translation: T1acu: 1.14 mm, T2acu: 1.29 mm, HCacu: 2.68 mm, T3rec: 0.65 mm, HCrec: 0.44 mm. rotation: T1acu: 0.03°, T2acu: 0.03°, HCacu: 0.17°, T3rec: 0.01°, HCrec: 0.01°. Signal intensities calculated from realigned and normalized functional images using tissue type masks thresholded at a probability of > 0.8.

Contract	NBS		Seed-to-ROI				
Contrast	Size p		seed ROI	degree change	distant ROIs	Т	p^2
T1acu vs. HCacu	460	0.022	LH_Default_PFC_4 (Frontal_Sup_2_L)	28	RH_DorsAttn_Post_1 (Temporal_Mid_R)	-4.08	< 0.001
					RH_Vis_6 (Calcarine_R)	-3.91	< 0.001
T1acu vs. T2acu	596	0.009	LH_SomMot_2 (Insula_L)	29	LH_Default_PFC_6 (Frontal_Mid_2_L)	-5.58	< 0.001
					LH_Limbic_OFC_1 (OFC_Med_L)	-4.60	< 0.001
					RH_Cont_PFCl_3 (Frontal_Mid_2_R)	-4.53	< 0.001

table S5: Network Based Statistics

 ${}^{1}a = 0.05$, *p*-value family wise error corrected ${}^{2}a = 0.05/115$, *p*-value uncorrected. Significant subnetworks resulting from the NBS procedure. Reported are network-sizes (number of connections) and associated *p*-values estimated by permutation testing. Also reported are the regions of interest (ROIs) with the strongest decrease in node degree and functional connections to other regions that differed significantly between groups. Independent comparisons included age as covariate. Regions of Interest were derived from the Schaefer et al. (2018) and the Neuromophometrics, Inc atlases. ROIs from the Automated Anatomic Labelling atlas (Rolls et al., 2020) corresponding to the centroid coordinates of the Schaefer et al.-atlas are reported in brackets.

Original	Cluster or	T1acu vs. HCacu			T2acu v	s. HCacu		T3* vs. H	ICrec		T1acu vs. T2acu			
contrast	network name	F	р	d	F	р	d	F	р	d	Т	р	d	
				Netw	ork Based	l Statistic	s NBS							
T1acu vs. HCacu	T1acu < HCacu	0	0	-2,17	8.29	0.006*	-0.90	0.66	0.420	n.s.	-5.19	< 0.001*	-1.13	
	T1acu > HCacu	0	0	1,19	8.44	0.006*	0.89	1.65	0.207	n.s.	1.00	0.329	n.s.	
T1acu vs. T2acu	T1acu < T2acu	13.00	< 0.001*	-1.16	2.63	0.113	n.s.	0.00	0.949	n.s.	0	0	-1.73	
	T1acu > T2acu	0.08	0.783	n.s.	31.84	< 0.001*	-1.73	1.48	0.230	n.s.	0	0	1.75	
				G	lobal Cori	elation G	iС							
T1acu < HCacu	prefrontal GC	0	0	-1,47	3.66	0.063	n.s.	0.07	0.795	n.s.	-2,09	0.050	n.s.	
	sensorimotor GC ^a	0	0	-1,21	0.31	0.580	n.s.	1.04	0.313	n.s.	-3.10	0.006*	-0,68	
T1acu < T2acu	sensorimotor GC ^b	7.79	0.008*	-0.91	0.39	0.538	n.s.	1.00	0.325	n.s.	0	0	-0.87	
	insular GC	6.10	0.018	n.s.	1.13	0.294	n.s.	0.43	0.513	n.s.	0	0	-0.88	
				Integr	rated Loca	l Correlat	tion LC							
T1acu < HCacu	sensorimotor LC ^a	0	0	-1,49	2.32	0.136	n.s.	0.16	0.688	n.s.	-3,89	< 0.001*	-0,85	
	prefrontal LC	0	0	-1,71	17.7	< 0.001*	-1.13	1.42	0.240	n.s.	-2,02	0.057	n.s.	
	precuneal LC	0	0	-1,65	5.82	0.021	n.s.	0.25	0.618	n.s.	-2,53	0.020	n.s.	
T1acu < T2acu	sensorimotor LC ^b	11.70	0.001*	-1.06	0.09	0.770	n.s.	0.36	0.552	n.s.	0	0	-1.34	
	temporal LC	5.51	0.024	n.s.	3.83	0.057	n.s.	0.05	0.822	n.s.	0	0	-1.54	
	fusiform LC	5.70	0.022	n.s.	5.70	0.022	n.s.	0.02	0.890	n.s.	0	0	-1.31	
T1acu x T3rec	(frontal LC)	18.39	< 0.001*	-1.65	1.80	0.187	n.s.	3.60	0.065	n.s.	-4.38	< 0.001*	-0.96	
		fra	ictional A	mplitud	e of Low F	requenc	y Fluctua	ations fALI	FF					
T1acu < HCacu	parietal fALFF	0	0	-1,99	8.87	0.005*	-0.94	1.29	0.262	n.s.	-3,07	0.006*	-0,67	
	calcarine fALFF	0	0	-1,53	1.70	0.199	n.s.	0.76	0.390	n.s.	-2,74	0.013	n.s.	
T1acu < T2acu	precuneal fALFF	11.51	0.002*	-1.07	0.79	0.378	n.s.	0.39	0.534	n.s.	0	0	-1.17	
	temporal fALFF	8.02	0.007*	-0.80	3.58	0.066	n.s.	0.711	0.404	n.s.	o	0	-1.57	

table S6: Post-hoc comparisons of resting-state group differences

* significant group difference, a = 0.0125 (Bonferroni-corrected per modality and contrast), *p*-value uncorrected. ° Group comparisons that would have been circular and therefore were not reported.

Results of post-hoc comparisons of primary analyses. For NBS, functional connectivity of each connection included in significant NBS-subnetworks was averaged for the whole network, separately for positive and negative connections. For voxel-wise measures, values of every voxel included in significant clusters were averaged per cluster. The networks or clusters stem from the contrasts listed on the left side; averaged values were compared between all other groups to understand temporal development of resting-state properties that were decreased in acute patients. Independent group comparisons using analyses of covariances (age was included as covariate), T1acu vs. T2acu comparisons using paired *t*-tests. *d* = Cohen's *d*. Superscript a and b refer to the corresponding clusters stemming from T1acu < HCacu and T1acu < T2acu contrast, respectively.

Contract	NBS		Seed-to-ROI				
contrast	Size p		seed ROI	degree change	distant ROIs	Т	p^2
T1acu vs. HCacu	500	0.020	LH_Default_PFC_4	30	RH_DorsAttn_Post_1 (Temporal Mid R)	-4.19	0.018
			(ITOITMI_5up_2_1)		RH_Vis_6 (Calcarine R)	-4.10	0.023
					LH_Vis_6 (Calcarine_L)	-4.00	0.032

table S7: Network-Based Statistics controlled for frame-wise displacement

 1 a = 0.05, *p*-value family wise error corrected. 2 a = 0.05/115, *p*-value uncorrected. Significant subnetworks resulting from the NBS procedure while including two frame-wise displacement (FWD) covariates (averaged translation and averaged rotation) additionally to age. See table S5.

Original	Cluster or	T1acu v	vs. HCacu	T2acu vs. HCacu		
contrast	network name	F	р	F	р	
	Network Bas	ed Statis	tics NBS			
T1acu vs. HCacu	T1acu < HCacu	15.20	0.001*	9.23	0.007*	
	T1acu > HCacu	2.74	0.115	2.79	0.113	
	Global Co	orrelation	n GC			
T1acu < HCacu	prefrontal GC	14.26	0.001*			
	sensorimotor GC	3.58	0.075			
	Integrated Lo	cal Corre	lation LC			
T1acu < HCacu	sensorimotor LC	6.67	0.019*			
	prefrontal LC	16.15	< 0.001*	6.49	0.021*	
	precuneal LC	13.71	0.002*			
T1acu x T3rec	(frontal LC)	5.60	0.029*			
fraction	nal Amplitude of L	ow Frequ	uency Fluc	tutations		
T1acu < HCacu	parietal fALFF	8.28 0.010		3.77	0.069	
	calcarine fALFF	5.31	0.033*			

table S8: Post-hoc comparisons of resting-state group differences controlled for verbal IQ

* significant group difference, α = 0.05, *p*-value uncorrected. Results of post-hoc comparisons of resting-state results, while including verbal intelligence quotient (IQ) as covariate in addition to age. IQ was available for only 16 out of 22 patients with acute AN. See table S6.

Original	Cluster or	T1acu v	/s. T2acu
contrast	network name	F	р
Netw	ork Based Statist	ics NBS	
T1acu vs. T2acu	T1acu < T2acu	15.00	0.001*
	T1acu > T2acu	22.72	< 0.001*
(Global Correlation	GC	
T1acu < T2acu	sensorimotor GC ^b	4.05	0.059
	insular GC	3.11	0.094
Integ	rated Local Correl	ation LC	
T1acu < T2acu	sensorimotor LC ^b	4.56	0.046*
	temporal LC	4.35	0.051
	fusiform LC	5.41	0.031*
	fALFF		
T1acu < T2acu	precuneal fALFF	7.70	0.012*
	temporal fALFF	7.56	0.013*

table S9: Post-hoc comparisons of restingstate group differences controlled for admission-scan-delay

* significant group difference, a = 0.05, *p*-value uncorrected.

Results of post-hoc comparisons of resting-state results, while including admission-scan-delay (time between inpatient admission and actual T1 scan) as covariate in addition to age in repeated measurement analyses of covariances. See table S6.

Original	Cluster or	T1acu v	vs. HCacu	T2acu v	/s. HCacu	T1acu vs. T2acu		
contrast	network name	F	р	F	р	F	р	
T1acu vs. HCacu	T1acu < HCacu	16.67	< 0.001*	7.03	0.012*	7,39	0,014	
	T1acu > HCacu	2.63	0.113	0.70	0.410			
T1acu vs. T2acu	T1acu < T2acu	4.20	0.047*			20.30	< 0.001*	
	T1acu > T2acu			12.80	< 0.001*	21.81	< 0.001*	
		Global Co	rrelation	GC				
T1acu < HCacu	prefrontal GC	8.98	0.005*					
	sensorimotor GC ^a	2.18	0.147			1.12	0.303	
T1acu < T2acu	sensorimotor GC ^b	1.16	0.289			2.09	0.165	
	insular GC					6.37	0.021*	
	Inte	grated Lo	cal Correla	ation LC				
T1acu < HCacu	sensorimotor LC ^a	2.64	0.112			5,04	0.037*	
	prefrontal LC	11.50	0.002*	7.09	0.011*			
	precuneal LC	0.94	0.338					
T1acu < T2acu	sensorimotor LC ^b	1.58	0.216			14.83	0.001*	
	temporal LC					16.24	< 0.001*	
	fusiform LC					8.99	0.007*	
T1acu x T3rec	(frontal LC)	4.49	0.040*			8.43	0.009*	
	fractional Amplitu	ide of Low	Frequen	cy Fluctu	ations fAL	FF		
T1acu < HCacu	parietal fALFF	8.59	0.006*	5.13	0.029*	1,52	0.233	
	calcarine fALFF	2.41	0.128					
T1acu < T2acu	precuneal fALFF	2.00	0.165			15.12	< 0.001*	
	temporal fALFF	0.27	0.607			15.70	< 0.001*	

table S10: Post-hoc comparisons of resting-state group differences controlled for BMI-SDS

* significant group difference, α = 0.05, *p*-value uncorrected.

Results of post-hoc comparisons of resting-state results significantly differing between groups while including the body mass index - standard deviation score (BMI-SDS) as covariate in addition to age in (repeated measures) analyses of covariances. See table S6.

Contrast	Cluster name	Permutat	ion sta	tistics	T stat	istic	s (pe	eak)	AAL regions		
contrast	cluster hame	Threshold	Size	p^{1}	Т	CO	ordin	ates	peak region	regions covered over 10%	
						Glo	bal C	Correl	ation GC		
T1acu < HCacu	prefrontal GC	439	1610	0.010	5.46	-21	66	-3	Frontal_Sup_2_L	Frontal_Sup_2_L, Frontal_Sup_2_R, Frontal_Sup_Medial_R, Frontal_Sup_Medial_L, ACC_pre_L, ACC_pre_R, Frontal_Med_Orb_R, Frontal_Med_Orb_L,	
	sensorimotor GC ^a		871	0.021	4.37	12	-12	72	Supp_Motor_Area_R	Supp_Motor_Area_R, Supp_Motor_Area_L, Paracentral_Lobule_L, Cingulate_Mid_L, Cingulate_Mid_R, Parietal_Sup_R	
T1acu < T2acu	sensorimotor GC ^b	416	913	0.019	4.91	27	-21	72	Precentral_R	Supp_Motor_Area_L, Paracentral_Lobule_L, Paracentral_Lobule_R, Postcentral_R, Precentral_R,	
	insular GC		507	0.039	4.65	3	6	0	Putamen_R	Rolandic_Oper_R, Insula_R, Putamen_R, Pallidum_R	
Integrated Local Correlation LC											
T1acu < HCacu	sensorimotor LC ^a	223	654	0.011	5.24	-24	-27	69	Precentral_L	Supp_Motor_Area_L, Supp_Motor_Area_R, Paracentral_Lobule_L	
	prefrontal LC		292	0.042	5.1	24	60	15	Frontal_Sup_2_R	Frontal_Sup_2_R	
	precuneal LC		289	0.043	4.77	3	-66	21	Precuneus_R	Cingulate_Post_L	
T1acu < T2acu	sen sorimotor LC ^b	192	656	0.011	6.02	-6	-15	48	Supp_Motor_Area_L	Supp_Motor_Area_L, Precentral_L Paracentral_Lobule_L, Cingulate_Mid_L, Supp_Motor_Area_R	
	temporal LC		304	0.029	6.84	-45	-30	0	Temporal_Mid_L	Temporal_Mid_L	
	fusiform LC		285	0.031	5.47	45	-45	-24	Fusiform_R	Fusiform_R, ParaHippocampal_R	
T1acu x T3rec	(frontal LC)	332	380	0.046	3.97	6	30	42	Frontal_Sup_Medial_R	Supp_Motor_Area_L, Supp_Motor_Area_R	
			fra	actional	Amplitu	de o	of Lo	w Fre	quency Fluctuations f	ALFF	
T1acu < HCacu	parietal fALFF	223	377	0.022	4.76	-48	-45	36	Parietal_Inf_L	Parietal_Inf_L, Parietal_Sup_L, Angular_L	
	calcarine fALFF		310	0.029	4.09	-3	-72	18	Calcarine_L	Calcarine_L, Cingulate_Post_L	
T1acu < T2acu	precuneal fALFF	203	327	0.028	6.3	-3	-60	15	Precuneus_L	Precuneus_L, Cingulate_Post_L	
	temporal fALFF		210	0.048	5.63	-48	-33	0	Temporal_Mid_L	Temporal_Mid_L	

table S11: Voxel-wise resting-state measures

¹ α = 0.05, *p*-value family-wise error corrected.

The statistic was based on a combination of an uncorrected voxel-wise threshold of p < 0.01 and an exact permutation based (1000 permutations) cluster threshold of p < 0.05. Reported are cluster thresholds, sizes of the resulting clusters and associated p-values. Additionally, we listed T-value, coordinates and corresponding regions in the Automated Anatomic Labelling atlas (AAL, Rolls et al, 2020) of each cluster's peak coordinates. Independent comparisons included age as covariate.

Contrast	Corresponding	Permutat	ion sta	tistics	T stat	istic	s (pe	eak)	AAL regions	
contrast	cluster name	Threshold	Size	p^{1}	Т	CO	ordin	ates	peak region	regions covered over 10%
					G	loba	l Cor	relat	ion GC	
T1acu < HCacu	prefrontal GC	446	1806	0.010	5.85	-21	66	-3	Frontal_Sup_2_L	Frontal_Sup_2_L, Frontal_Sup_2_R, Frontal_Sup_Medial_R, Frontal_Sup_Medial_L, ACC_pre_L, ACC_pre_R, ACC_sup_L, ACC_sub_l Frontal_Med_Orb_R, Frontal_Med_Orb_L, OFCant_L,
	sensorimotor GC ^a		510	0.045	4.26	-3	-24	75	Paracentral_Lobule_L	Paracentral_Lobule_L, Cingulate_Mid_L
					Integr	ated	l Loc	al Cor	relation LC	
T1acu < HCacu	sensorimotor LC ^a	212	415	0.021	4.22	0	-18	48	Supp_Motor_Area_L	Supp_Motor_Area_L, Supp_Motor_Area_R
	prefrontal LC		309	0.029	4.80	24	60	18	Frontal_Sup_2_R	Frontal_Sup_2_R
	precuneal LC		299	0.030	4.41	3	-66	21	Precuneus_R	Cingulate_Post_L
	-		278	0.032	4.58	42	0	-36	Temporal_Inf_R	Temporal_Pole_Mid_R, Frontal_Inf_Orb_2_R
	-		255	0.037	5.14	3	60	-9	Frontal_Med_Orb_R	Frontal_Med_Orb_L, Frontal_Med_Orb_R, ACC_sub_L
	-		227	0.045	4.86	39	-63	30	Angular_R	(Temporal_Mid_R)
T1acu x T3rec	(frontal LC)	365	n.s.							
			fract	ional Aı	nplitud	e of l	Low	Frequ	uency Fluctuations f	ALFF
T1acu < HCacu	parietal fALFF	216	233	0.044	4.38	-54	-60	42	Angular_L	Parietal_Sup_L, Angular_L
	calcarine fALFF		264	0.039	4.31	-3	-72	18	Calcarine_L	Calcarine_L, Cingulate_Post_L

table S12: Voxel-wise resting-state measures controlled for frame-wise displacement

¹ α = 0.05, *p*-value family-wise error corrected.

Two frame-wise displacement (FWD) covariates (averaged translation and averaged rotation) were, in addition to age, included in the comparisons of independent groups. See table S11.

Modality	Cluster or network name	BMI-SI	DS	leptin		EDE		EDI-2		untrea	ted ¹	T1-T2-	time ²
		r	р	r	р	r	р	r	р	r	р	r	р
					basel	ine (T1ac	u)						
NBS	T1acu < HCacu	0.12	0.609	0.07	0.757	-0.13	0.621	0.53	0.014*	-0.06	0.791		
NBS	T1acu > HCacu	-0.05	0.832	-0.13	0.563	0.13	0.610	0.23	0.306	0.11	0.617		
GC	prefrontal GC	0.01	0,978	-0.13	0.578	-0.11	0.666	0,35	0,117	0.05	0,826		
GC	sensorimotor GC ^a	0.22	0,318	0.31	0.158	-0.14	0.586	0,10	0,675	-0.11	0,629		
LC	sensorimotor LC ^a	0.24	0,272	0.15	0.505	0.03	0.910	-0,01	0,982	-0.01	0,972		
LC	prefrontal LC	0.13	0,556	-0.34	0.127	0.09	0.723	0,34	0,130	0.13	0,556		
LC	precuneal LC	0.49	0.020*	0.36	0.104	0.24	0.344	0,43	0.049*	-0.03	0,892		
fALFF	parietal fALFF	0.19	0,395	-0.16	0.490	-0.09	0.732	-0,15	0,509	-0.01	0,956		
fALFF	calcarine fALFF	0.18	0,427	0.12	0.599	0.05	0.853	0,16	0,482	0.07	0,763		
					delt	a (T2-T1))						
NBS	T1acu < T2acu	0,09	0,706	0,00	0,983	0,24	0,350	-0,13	0,624			0,24	0,304
NBS	T1acu > T2acu	-0,06	0,798	-0,31	0,180	0,24	0,357	0,16	0,552			0,12	0,592
GC	sensorimotor GC ^b	0,30	0,185	0,05	0,849	0,15	0,572	-0,31	0,234			0,37	0,094
GC	insular GC	-0,03	0,907	-0,22	0,348	0,13	0,613	-0,13	0,622			0,26	0,261
LC	sensorimotor LC ^b	-0,04	0,877	-0,13	0,582	0,44	0,075	-0,28	0,285			0,30	0,192
LC	temporal LC	0,07	0,750	-0,02	0,936	0,39	0,118	-0,18	0,501			0,34	0,129
LC	fusiform LC	0,21	0,365	-0,07	0,754	0,51	0.037*	-0,27	0,292			0,44	0.046*
fALFF	precuneal fALFF	-0,17	0,462	-0,12	0,624	0,33	0,192	0,06	0,826			0,07	0,779
fALFF	temporal fALFF	0,12	0,608	-0,08	0,749	0,23	0,368	-0,30	0,241			0,43	0.050*

table S13: Correlations of resting-state results with clinical variables

* significant correlation, a = 0.05, *p*-value uncorrected. ¹ Time between symptom onset and inpatient admission. ² Time between T1acu and T2acu scans. Reported are Pearson correlations (*r*) between results from resting-state analyses (network- or cluster-wise averaged) and clinical variables. The correlations were calculated for the T1acu group (baseline) and between changes in measures from T1 to T2 (delta).

BMI-SDS = body mass index (- standard deviation score); EDE = Eating Disorder Examination; EDI-2 = Eating Disorder Inventory 2; NBS = Network Based Statistics; GC = Global Correlation; LC = Integrated Local Correlation; fALFF = fractional Amplitude of Low Frequency Fluctuations. Superscript a and b refer to the corresponding clusters stemming from T1acu < HCacu and T1acu < T2acu contrast, respectively.

Original	Cluster or	T1acu vs. HCacu			T2acu vs. HCacu			T1acu vs. T2acu		
contrast	network name	F	р	d	F	р	d	Т	р	d
	Regio	ns include	ed in Netw	ork Base	ed Statisti	cs subnet	works			
T1acu vs. HCacu	T1acu < HCacu	13.52	< 0.001*	-1.17	4.23	0.046*	-0.66	-6.06	< 0.001*	-1.32
	T1acu > HCacu	18.33	< 0.001*	-1.32	5.85	0.020*	-0.76			
T1acu vs. T2acu	T1acu < T2acu	13.59	< 0.001*	-1.17				-5.99	< 0.001*	-1.31
	T1acu > T2acu				3.70	0.061	n.s.	-5.75	< 0.001*	-1.25
			Global Co	rrelatio	n clusters					
T1acu < HCacu	prefrontal GC	7.92	0.007*	-0.90						
	sensorimotor GC ^a	7.89	0.008*	-0.89				-3.01	0.007*	-0,66
T1acu < T2acu	sensorimotor GC ^b	9.02	0.005*	-0.96				-4.18	< 0.001*	-0.91
	insular GC							-6.38	< 0.001*	-1.39
Integrated Local Correlation clusters										
T1acu < HCacu	sensorimotor LC ^a	7.35	0.010*	-0.87				-2,85	0.010*	-0,62
	prefrontal LC	8.85	0.005*	-0.98	1.93	0.172	n.s.			
	precuneal LC	19.12	< 0.001*	-1.40						
T1acu < T2acu	sensorimotor LC ^b	10.52	0.002*	-1.03				-3.11	0.006*	-0.68
	temporal LC							-5.45	< 0.001*	-1.19
	fusiform LC							-4.89	< 0.001*	-1.07
T1acu x T3rec	(frontal LC)	6.64	0.014*	0.82				-2.81	0.011*	-0.61
fractional Amplitude of Low Frequency Fluctuations clusters										
T1acu < HCacu	parietal fALFF	16.91	< 0.001*	-1.32	5.90	0.020*	-0.78	-3,89	< 0.001*	-0,85
	calcarine fALFF	17.83	< 0.001*	-1.35						
T1acu < T2acu	precuneal fALFF	17.73	< 0.001*	-1.35				-6.79	< 0.001*	-1.48
	temporal fALFF	15.73	< 0.001*	-1.21				-4.85	< 0.001*	-1.06

table S14: Post-hoc comparisons of voxel-wise grey matter volumes

* significant group differences, α = 0.05, *p*-value uncorrected.

Results of group comparisons of network- or cluster-wise grey matter volume (GMV), estimated from individual voxelwise GMV-maps. Only comparisons of values showing significant differences in resting-state measures (see table S6) were conducted. For NBS, GMV of all regions included in the resulting subnetworks was averaged, separately for positive and negative connections. For voxel-wise measures, GMV was averaged per cluster. Independent group comparisons using analyses of covariances (age was included as covariate), T1acu vs. T2acu comparisons using paired *t*-tests.

d = Cohen's d; Superscript a and b refer to the corresponding clusters stemming from T1acu < HCacu and T1acu < T2acu contrast, respectively.

Original	Cluster or	T1acu vs. HCacu			T2acu vs. HCacu			T1acu vs. T2acu		
contrast	network name	F	р	d	F	р	d	F / T	р	d
		Netwo	ork Based	Statisti	cs NBS ¹					
T1acu vs. HCacu	T1acu < HCacu	29.34	< 0.001*	-1.61	3.77	0.059	n.s.	-4.25	< 0.001*	-0.93
	T1acu > HCacu	11.55	0.002*	1.03	6.82	0.013*	0.80			
T1acu vs. T2acu	T1acu < T2acu	7.41	0.009*	-0.88				-7.45	< 0.001*	-1.62
	T1acu > T2acu				30.47	< 0.001*	-1.69	8.18	< 0.001*	1.78
		Gl	obal Corr	elation	GC ²					
T1acu < HCacu	prefrontal GC	17.19	< 0.001*	-1,29						
	sensorimotor GC ^a	11.50	0.002*	-1.09				-2.90	0.009*	-0.63
T1acu < T2acu	sensorimotor GC ^b	5.97	0.019*	-0.81				-3.81	0.001*	-0.83
	insular GC							-3.75	0.001*	-0.82
		Integra	ated Local	Correla	tion LC ²					
T1acu < HCacu	sensorimotor LC ^a	14.28	< 0.001*	-1.20				-3,18	0.005*	-0.69
	prefrontal LC	25.86	< 0.001*	-1.44	15.07	< 0.001*	-1.03			
	precuneal LC	17.39	< 0.001*	-1.21						
T1acu < T2acu	sensorimotor LC ^b	7.29	0.010*	-0.85				-5.41	< 0.001*	-1.18
	temporal LC							-6.52	< 0.001*	-1.42
	fusiform LC							-5.61	< 0.001*	-1.22
T1acu x T3rec	(frontal LC)	9.97	0.003*	-1.01				-3.31	0.004*	-0.72
	fractional A	mplitude	e of Low F	requen	cy Fluctua	ations fAL	FF ²			
T1acu < HCacu	parietal fALFF	37.13	< 0.001*	-1.85	7.29	0.010*	-0.86	-2,84	0.010*	-0.62
	calcarine fALFF	14.79	< 0.001*	-1.17						
T1acu < T2acu	precuneal fALFF	7.07	0.011*	-0.84				-4.94	< 0.001*	-1.08
	temporal fALFF	5.23	0.027*	-0.63				-6.80	< 0.001*	-1.48

table S15: Post-hoc comparisons of resting-state group differences controlled for (voxelwise) grey matter volume

* significant group differences, α = 0.05, *p*-value uncorrected.

Resting-state group differences controlled for grey matter volume (GMV). ¹ In case of NBS, averaged GMV was regressed out of the averaged network FC separately for each cohort. ² For voxel-wise resting-state measures (GC, LC, fALFF) GMV was regressed out of the beta-maps of each measure in a voxel-wise manner, values were averaged per cluster and compared between groups. Only comparisons showing significant differences in resting-state measures (see table S6) were repeated. Independent group comparisons using analyses of covariances (age was included as covariate), T1acu vs. T2acu comparisons using paired *t*-tests. Superscript a and b refer to the corresponding clusters stemming from T1acu < HCacu and T1acu < T2acu contrast, respectively.

Modality	Cluster or	GMV				
Mouality	network name	r	р			
	baseline (T1a	cu)				
NBS	T1acu < HCacu	0,18	0,417			
NBS	T1acu > HCacu	0,25	0,257			
GC	prefrontal GC	0,14	0,531			
GC	sensorimotor GC ^a	0,06	0,795			
LC	sensorimotor LC ^a	0,11	0,629			
LC	prefrontal LC	0,16	0,474			
LC	precuneal LC	0,26	0,246			
fALFF	parietal fALFF	-0,04	0,871			
fALFF	calcarine fALFF	0,16	0,483			
delta (T2-T1)						
NBS	T1acu < T2acu	0.07	0.772			
NBS	T1acu > T2acu	-0,07	0,765			
GC	sensorimotor GC ^b	0,00	0,995			
GC	insular GC	-0,09	0,682			
LC	sensorimotor LC ^b	0,01	0,956			
LC	temporal LC	0,08	0,731			
LC	fusiform LC	0,33	0,148			
fALFF	precuneal fALFF	0,02	0,942			
fALFF	temporal fALFF	0,05	0,827			

table S16: Correlations of resting-state results with grey matter volumes

Correlations (Pearson's r) between results from resting-state analyses (network- or cluster-wise averaged) and grey matter volumes (GMV). The correlations were calculated for the T1acu group (baseline) and between changes in measures from T1 to T2 (delta).

Superscript a and b refer to the corresponding clusters stemming from T1acu < HCacu and T1acu < T2acu contrast, respectively.

	Present study (T1acu)	Biezonski et al., 2015	Boehm et al., 2014/ Ehrlich et al., 2015/ Geisler et al., 2016	Favaro et al., 2012	Gaudio et al., 2015 ¹	Gaudio et al., 2018 ¹
		Seed-to-voxel	ICA/NBS/GT	ICA	ICA	NBS
	<i>N</i> = 22	<i>N</i> = 28	N = 35	N = 29	<i>N</i> = 16	<i>N</i> = 15
	mean ± SD (min. – max.)	mean ± SD (min. – max.)	mean ± SD (min. – max.)	mean ± SD (min. – max.)	mean ± SD (min. – max.)	mean ± SD (min. – max.)
age at ED onset (y)	13.9 ± 1.9 (9.1 - 17.9)	14.9 ± 0.4 (<i>n.a.</i>)	13.5 ± 1.7 (<i>n.a.</i>)	18.2 ± 4.4 (<i>n.a.</i>)	15.4 ± 1.6 (<i>n.a.</i>)	15.2 ± 1.6 (<i>n.a.</i>)
age at examination (y)	15.3 ± 1.9 (10.2 - 18.6)	19.4 ± 0.4 (<i>n.a.</i>)	16.1 ± 2.6 (12 - 23)	25.8 ± 6.9 (<i>n.a.</i>)	15.8 ± 1.7 (13 - 18)	15.7 ± 1.7 (13 – 18)
BMI at examination (kg/m^2)	15.7 ± 1.5 (13.1 - 18.3)	17.2 ± 0.3 (<i>n.a.</i>)	14.8 ± 1.3 (n.a.)	14.5 ± 2.3 (n.a.)	16.2 ± 1.2 (<i>n.a.</i>)	16.1 ± 1.2 (<i>n.a.</i>)
ED duration (y)	1.6 ± 1.3 (0.5 - 4.8)	4.5 ± 0.6 (<i>n.a.</i>)	2.6*	6.2 ± 6.9 (<i>n.a.</i>)	0.3 ± 0.2 (<i>n.a.</i>)	0.3 ± 0.2 (<i>n.a.</i>)
	Haynos et al., 2019	Kullmann et al., 2014	Lee et al., 2014	Phillipou et al., 2016	Scaife et al., 2017	Seidel et al., 2019
	Seed-to-voxel	degree centrality	Seed-to-voxel	ROI-to-ROI	ICA	fALFF, ReHo
	<i>N</i> = 19	<i>N</i> = 12	<i>N</i> = 18	<i>N</i> = 26	<i>N</i> = 12	N = 74
age at ED onset (y)	14.3*	n.a.	21.4*	16.0 ± 3.4 (<i>n.a.</i>)	20.1 ± 5.9 (<i>n.a.</i>)	14.5*
age at examination (y)	22.3 ± 3.9 (n.a.)	23.3 ± 4.7 (n.a.)	25.2 ± 4.2 (20 - 35)	22.8 ± 6.7 (<i>n.a.</i>)	29.4 ± 6.0 (<i>n.a.</i>)	16.0 ± 2.9 (12.1 – 28.5)
BMI at examination (kg/m^2)	17.0 ± 1.4 (n.a.)	15.5 ± 1.5 (<i>n.a.</i>)	16.0 ± 1.7 (<i>n.a.</i>)	16.6 ± 1.2 (<i>n.a.</i>)	15.4 ± 1.9 (<i>n.a.</i>)	14.6 ± 1.3 (n.a.)
ED duration (y)	8.0 ± 3.7 (n.a.)	n.a.	3.8 ± 2.6 (n.a.)	6.4 ± 7.4 (<i>n.a.</i>)	10.3 ± 5.2 (<i>n.a.</i>)	1.5 ± 1.9 (<i>n.a.</i>)

table S17: Sample data from selected current resting-state studies in acute Anorexia nervosa

Sample data as reported by the authors. ¹ participants were drawn from the same sample. * ED duration or age of onset were not reported by the authors, but calculated from age at onset and examination, respectively age at examination and ED duration.

SD = standard deviation; ED = eating disorder; BMI = body mass index; ICA = Independent Component Analysis; NBS = Network Based Statistics; GT = graph theory; fALFF = fractional Amplitude of Low Frequency Fluctuations; ReHo = Regional Homogeneity; *n.a.* = not reported by the authors.

	Present study (T1/T2acu)	Cha et al., 2016	Uniacke et al., 2019		
		Seed-to-voxel	Seed-to-voxel		
	N = 22/21	N = 22	N = 25		
	mean ± SD (min. – max.)	mean ± SD (min. – max.)	mean ± SD (min. – max.)		
age at ED onset (y)	13.9 ± 1.9 (9.1 – 17.9)	n.a.	15.5*		
age at first scan (y)	15.3 ± 1.9 (10.2 - 18.6)	19.5 ± 2.4 (16 - 25)	19.1 ± 3.5 (14 – 26)		
BMI at first scan (kg/m ²)	15.7 ± 1.5 (13.1 - 18.3)	17.3 ± 1.2 (14.8 - 19.0)	16.5 ± 2.0 (<i>n.a.</i>)		
time between scans (d)	90.8 ± 40.8 (41 - 183)	47.6 ± 10.1 (<i>n.a.</i>)	57.1 ± 21.2 (<i>n.a.</i>)		
BMI at second scan (kg/m ²)	18.2 ± 1.2 (15.0 - 20.1)	20.0 ± 1.6 (<i>n.a.</i>)	20.8 ± 1.1 (<i>n.a.</i>)		
ED duration (at first scan; y)	1.6 ± 1.3 (0.5 - 4.8)	n.a.	3.6 ± 2.8 (<i>n.a.</i>)		

table S18: Sample data from current longitudinal resting-state studies in acute and short-term-recovered Anorexia nervosa

Sample data as reported by the authors. * ED onset age was not directly reported but calculated from age at first scan and ED duration.

 \overrightarrow{SD} = standard deviation; ED = eating disorder; BMI = body mass index; *n.a.* = not reported by the authors.

	Present study (T3rec)	Boehm et al., 2016	Cowdrey et al., 2014	Favaro et al., 2012	Scaife et al., 2017	Geisler et al., 2019
		ICA	ICA	ICA	ICA	NBS
	<i>N</i> = 21	N = 31	N = 16	N = 16	N = 14	N = 55
	mean ± SD (min. – max.)	mean ± SD (min. – max.)	mean ± SD (min. – max.)	mean ± SD (min. – max.)	mean ± SD (min. – max.)	mean ± SD (min. – max.)
inclusion criteria (m)	12	6	12	6	12	6
age at ED onset (y)	14.4 ± 1.6 (11.8 - 17.6)	14.4 ± 1.9 (n.a.)	14.7 ± 1.7 (<i>n.a.</i>)	17.9 ± 2.8 (n.a.)	16.5 ± 2.1 (<i>n.a.</i>)	n.a.
age at examination (y)	22.3 ± 3.3 (17.7 - 31.4)	22.3 ± 3.1 (<i>n.a</i> .)	23.1 ± 3.6 (<i>n.a</i> .)	23.8 ± 4.8 (<i>n.a.</i>)	27 ± 6.5 (<i>n.a.</i>)	22.4 ± 3.3 (n.a.)
ED duration (y)	2.0 ± 1.7 (0.1 - 7.1)	3.7 ± 2.7 (n.a.)	3.5 ± 2.4 (<i>n.a.</i>)	2.3 ± 1.7 (n.a.)	5.8 ± 4.2 (<i>n.a.</i>)	n.a.
recovery duration (y)	5.3 ± 3 (1.5 - 13.2)	$4.4 \pm 2.8 (0.8 - n.a.)$	4.9*	2.8 ± 2.6 (0.5 - 7.5)	4.7*	n.a.

table S19: Sample data from current resting-state studies in long-term-recovered Anorexia nervosa

Sample data as reported by the authors. "Inclusion criteria" refers to the minimum recovery time allowed for Anorexia nervosa patients to be included in the studies. *Recovery durations were not directly reported, but calculated from onset age, ED duration and age at examination. All listed studies found alterations in recovered Anorexia nervosa patients compared to healthy controls. However, results were inconsistent and different approaches were used in the single studies. We did not refer to Geisler et al. (2019) in our main text, due to missing methodological overlap. SD = standard deviation; ED = eating disorder; *n.a.* = not reported by the authors.

Supplementary Figures

figure S1: Animated visualisation of Network Based Statistics results

A: Subnetwork resulting from T1acu vs. HCacu comparison with primarily decreased connections in patients at T1. B: Subnetwork resulting from T1acu vs. T2acu comparison with mainly decreased connections in T1acu. Animated versions of these figures in GIF file format are available separately.

figure S2: Visualisation of node degree changes in Network Based Statistics subnetworks

Colour of brain regions reflects extend of changes (decreases) of the degree of each region (yellow = strong decrease) in AN. Node degree refers to the number of connections between a certain node and all other nodes. A: Results from T1acu vs. HCacu comparison. The strongest change was observed in prefrontal regions. B: Results from T1acu vs. T2acu comparison. The insula displayed the largest degree decrease. Animated versions of these figures in GIF file format are available separately.

figure S3: Correlations between T1acu < HCacu network FC and EDI-2 subscales

Pearson correlations between T1acu < HCacu network functional connectivity (FC) and Eating Disorder Inventory 2 (EDI-2) subscales in acute Anorexia nervosa patients (T1acu). Blue scatter points represent patients with acute AN at T1. Blue lines display the fitted linear regression function, blue areas the corresponding 95% confidence interval. For descriptive purposes, HCacu subjects are shown as white squares, but do not influence the correlation calculation. r = Pearson's *r*.