
1 
 

SUPPLEMENTARY APPENDIX  

 

Transmission dynamics of the COVID-19 epidemic in India and modelling optimal 

lockdown exit strategies  

 

Mohak Gupta1# (MBBS), Saptarshi Soham Mohanta2#, Aditi Rao1*, Giridara Gopal Parameswaran1* (MD), Mudit Agarwal1 (MBBS), 

Mehak Arora1, Archisman Mazumder1, Ayush Lohiya3 (MD), Priyamadhaba Behera4 (MD), Agam Bansal5 (MBBS), Rohit Kumar1 

(MD), Ved Prakash Meena1 (MD), Pawan Tiwari1 (MD), Anant Mohan1 (MD), Sushma Bhatnagar1 (MD) 

 

# Joint first authors 

* Joint second authors 

 

1 All India Institute of Medical Sciences (AIIMS), New Delhi, India 

2 Indian Institute of Science Education and Research (IISER), Pune, India 

3 Super Specialty Cancer Institute & Hospital, Lucknow, India 

4 All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India 

5 Cleveland Clinic, OH USA 

 

 

CONTENTS 
1. Model Description 

1.1. From SEIR to SEIR-QDPA Model 

1.2. An alternate interpretation of testing 

2. Reporting Lag and Incidence by Onset 

2.1. Table S1. Reporting Lag Raw Data (n=53) 

2.2. Methodology for choosing the best fit distribution 

2.3. Table S2. Reporting Lag Distribution Fit Parameters 

2.4. Table S3. Reporting Lag Distribution Goodness-of-Fit Analysis 

2.5. Sampling of Lag-adjusted Onset Dates 

3. R0 Estimates with EG and ML methods and R0 for states of India 

3.1. Methodology for Estimating R0 

3.2. Table S4. Fit Parameters for R0 estimation 

3.3. R0 Estimation for States with more than 50 cases on 20/04/20 

3.4. Table S5. R0 estimates for 12 Indian States 

3.5. Figure S1. Sensitivity of India R0 estimates to Serial Interval and Time Period.  

4. Testing criteria for COVID-19 in India  

4.1. Table S6. Federal testing recommendations provided by the Indian Council of Medical Research (ICMR) 

5. Estimation of Effective Reproduction Number (Rt) 

5.1. Additional Information about estimation of Rt 

5.2. Table S7. Raw Data for Imported Cases 

5.3. Rt estimates for States 

5.4. Table S8. Rt point estimates for national COVID-19 incidence data (without import adjustment) 

5.5. Table S9. Rt point estimates for national COVID-19 incidence data (import adjusted 

5.6. Figure S2: Incidence by onset and effective reproduction rates (Rt) up to 11 April 2020 for Indian states of Maharashtra, 

Gujarat, Kerala, Delhi, Rajasthan, and Madhya Pradesh. 



2 
 

5.7. Figure S3. Rt for other Indian States up to 11 April 2020. 

6. Model fitting and Fit Sensitivity Analysis 

6.1. Fitting Methods, Initial Conditions and Uncertainty estimation 

6.2. Figure S4. Best Fit to Data for Base Assumptions (ai = 0·5, pa = 0·6, fa = 0·1).  

6.3. Assumption of constant Recovery Rate and Mortality Rate 

6.4. Estimated model parameters for all assumed values of ai, pa, and fa 

6.5. Figure S5. Sensitivity of fit parameters α, β, δs to assumptions of ai, pa, and fa.  

6.6. Figure S6. Sensitivity of fit parameters λ and κ to assumptions of ai, pa, and fa. 

6.7. Figure S7. Sensitivity of fit parameters δs to assumptions of ai, pa, and fa 

7. Prediction Sensitivity 

7.1. Figure S8. Sensitivity of predictions to assumptions of ai, pa, and fa. 

8. Calculation of R0 from the Model Parameters 

8.1. Calculating R0 from SEIR-QDPA Model 

8.2. Figure S9. Estimation and Sensitivity of Model R0 to assumptions. 

9. Sensitivity Analysis of the effect of testing rate and social distancing policies 

9.1. Figure S10. Sensitivity of effect of testing rate and social distancing policies on total symptomatic cases to probability 

of asymptomaticity at 15 days after lockdown relaxation. 

9.2. Figure S11. Sensitivity of effect of testing rate and social distancing policies on total symptomatic cases to probability 

of asymptomaticity at 45 days after lockdown relaxation.  

9.3. Figure S12. Sensitivity of the number of symptomatic cases to probability of asymptomaticity over a 75-day period 

after lockdown relaxation if the testing rate and social distancing policies are not changed after relaxation.  

9.4. Figure S13. Sensitivity of effect of testing rate and social distancing policies on total infections to probability of 

asymptomaticity at 15 days after lockdown relaxation. 

9.5. Figure S14. Sensitivity of effect of testing rate and social distancing policies on total infections to probability of 

asymptomaticity at 45 days after lockdown relaxation.  

10. Effect of Gradual Lockdown Relaxation 

10.1. Simulating gradual lockdown relaxation 

10.2. Figure S15. Gradual complete lockdown relaxation at three different points of time. 

10.3. Figure S16. Lag before new rise in active case after Slow Lockdown Relaxation. 

10.4. Figure S17. Gradual lockdown relaxation for 14 days at two different points of time. 

11. Lockdown Relaxation and the Healthcare System Capacity 

11.1. Estimating the Indian Healthcare System Capacity 

11.2. Estimating the time taken to reach the Healthcare system capacity under lockdown relaxation scenarios. 

11.3. Figure S18. Time taken to reach the healthcare system capacity under lockdown relaxation scenarios. 

12. Google COVID-19 Mobility Reports 

12.1.  Background Information on how Google’s mobility reports are generated 

  
  



3 
 

1. Model Description 
 
1.1 From SEIR to SEIR-QDPA Model 
In order to accurately describe the progression of the epidemic in the population, we generalize and redefine the 4 compartments of a 
SEIR model ie. [S(t), E(t), I(t), R(t)]. We redefine the I(t) compartment as the number of undetected infective people and split it into two 
compartments signifying the undetected symptomatic infectives Is(t) and undetected asymptomatic infectives Ia(t). Exposed patients go 
to either of the compartments at a fixed ratio of asymptomatics to symptomatics given by r = pa/(1-pa) where pa is the probability of being 
asymptomatic. We set the rates of transition from E(t) to Ia(t) and Is(t) as rγ and γ respectively. This results in the distribution of exposed 
cases into the two infective compartments such that for each symptomatic case, there are r asymptomatic cases, causing a fixed fraction 
(pa) of the cases being asymptomatic. 
 
In our model, we further assume that a fixed fraction of asymptomatic infectious cases gets detected (fa) and go to the asymptomatic 
quarantine compartment Qa(t) with detection rate atδa where at = fa/(1-fa), and the rest go into an undetected recovery compartment Ru(t) 
with recovery rate for asymptomatics δa. The choice of rates leads to the distribution of asymptomatics into detected quarantined and 
undetected recovered in the ratio of at, i.e. a fixed fraction (fa) of asymptomatics are detected. 
 
He et. al. determined that infectiousness declines significantly after a period of 7 days by studying the distributions of incubation period 
and serial interval.1 Wölfel et al found that live virus could not be isolated after day 8 in spite of continuing high viral loads in young 
cases with mild symptoms.2 Backed by both epidemiological and biological evidence, we set the time spent by an asymptomatic being 
infectious as 8 days. The δa then becomes ⅛ days-1.  
 
We assume that all symptomatic cases get detected with an average reporting lag δs

-1 after which they go to the symptomatic quarantine 
compartment Qs(t). We refer to the symptomatic and asymptomatic quarantine compartment together as the quarantine compartment Q(t). 
We assume that transition of a case from Ia(t) and Is(t) to Q(t) entails isolating, testing and reporting the case and that this isolation is 
100% effective. From the symptomatic quarantine compartment, cases go to either the Rs(t) or D(t) denoting symptomatic recovered 
cases and fatal cases with recovery rate λ and mortality rate κ respectively. We assume that the recovery of asymptomatic cases in 
quarantine occurs at the same rate as symptomatics. Thus, from the asymptomatic quarantine compartment, cases go to Ra(t) denoting 
detected asymptomatic recovered cases with the recovery rate λ. We assume here that no asymptomatic case dies due to the infection. 
We refer to the symptomatic and detected asymptomatic recovered compartment together as the recovered compartment R(t). 
 
Q(t) = Qa(t)+Qs(t) 
R(t) = Ra(t)+Rs(t) 
 
Finally, we introduce an extension previously described by Peng et al where a new compartment P(t) is added to account for the combined 
effect of social-distancing by individuals and lockdown of infected regions within the country thus reducing the pool of susceptible 
individuals in the population at a protection rate α.3 Further, to model the effect of the relaxation of such measures, we introduce a 
deprotection rate σ with which individuals can leave the P(t) compartment thus increasing the susceptible population S(t). The value of 
σ is set to zero till any preventive policies are withdrawn. 
 
The dynamics of the model are described by the following ordinary differential equations (ODEs): 
 
dS(t)/dt = –β S(t)Is(t)/N – aiβS(t)Ia(t)/N – αS(t) + σP(t) 
dE(t)/dt = βS(t)Is(t)/N + aiβS(t)Ia(t)/N – γ(1+r)E(t) 
dIs(t)/dt = γE(t) – δsIs(t) 
dIa(t)/dt = rγE(t) – δaIa(t) – atδaIa(t) 
dQs(t)/dt = δsIs(t) – λQs(t) – κQs(t) 
dQa(t)/dt = atδaIa(t) – λQa(t) 
dRs(t)/dt = λQs(t) 
dRa(t)/dt = λQa(t) 
dD(t)/dt = κQs(t) 
dRu(t)/dt = δaIa(t) 
dP(t)/dt = αS(t) – σP(t) 
 
where N is the total population of the country and is assumed to be constant. The compartments [S(t), E(t), Is(t), Ia(t), Qs(t), Qa(t), Rs(t), 
Ra(t), D(t), Ru(t), P(t)] denote the susceptible, exposed, undetected symptomatic, undetected asymptomatic, quarantined symptomatic, 
quarantined asymptomatic, recovered symptomatic, recovered asymptomatic, fatalities, undetected recovered, and protected individuals 
respectively at time t. 
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1.2. An alternate interpretation of testing in our model 
 
An increase in testing criteria and capacity would naturally have the largest impact on increasing the detection of infections with no or 
mild symptoms, considering that most infections with moderate-severe symptoms are more likely to be detected even at baseline testing. 
Since our primary goal in this study was to evaluate the effect of detecting more asymptomatics, we assumed that increased testing 
increases the detection of asymptomatics only, while in reality it would detect more cases across the clinical spectrum. However, the 
interpretations regarding impact of increased testing are not sensitive to this assumption, which has been discussed here through an 
alternate interpretation of the model.  
 
Our 11-compartment model allows some flexibility in terms of interpretation. If instead of interpreting the Is and Ia compartment as the 
Symptomatic and Asymptomatic infected individuals, we consider them as the Detectable and Undetectable infections (irrespective of 
symptoms), our model parameter pa now represents 1-ascertainment proportion (ascertainment proportion is the proportion of total 
infections that are considered detectable at baseline) and increasing the fa now becomes equivalent to improving the testing by reducing 
the bias towards detectable cases and improves detection of all cases irrespective of symptoms. Our model takes into account that 
undetected infected spend more time in an infective state in the population(δa

-1) compared to the detected cases(δs
-1), which reflects reality.  

 
Thus, this alternate view allows us to generalize our results with respect to how the testing policies affect the epidemic after lockdown 
relaxations. One limitation of this interpretation is that we assume asymptomatic cases (here, undetectable cases) have lower infectivity 
than symptomatics (here, detectable cases) in a homogenous social mixing environment. Although undetectable cases are more likely to 
be asymptomatic, this assumption does not necessarily hold true in this alternate interpretation. Still, this limitation would result in an 
underestimation of the impact of testing rather than an overestimation. 
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2. Reporting Lag and Incidence by Onset 
 
 
2.1 Table S1. Reporting Lag Raw Data (n=53) 
 

Sl. 
no. 

Date of 
Admission  

Days since onset 
of symptoms 

Sl. 
no. 

Date of 
Admission  

Days since onset 
of symptoms 

Sl. 
no. 

Date of 
Admission  

Days since onset 
of symptoms 

1 27/3/20 2 19 31/3/20 7 37 2/4/20 2 

2 30/3/20 3 20 31/3/20 8 38 5/4/20 3 

3 31/3/20 2 21 31/3/20 9 39 7/4/20 5 

4 31/3/20 2 22 31/3/20 10 40 7/4/20 7 

5 31/3/20 2 23 1/4/20 1 41 8/4/20 1 

6 31/3/20 2 24 1/4/20 1 42 8/4/20 7 

7 31/3/20 2 25 1/4/20 2 43 10/4/20 2 

8 31/3/20 2 26 1/4/20 2 44 10/4/20 2 

9 31/3/20 3 27 1/4/20 2 45 10/4/20 3 

10 31/3/20 3 28 1/4/20 2 46 11/4/20 3 

11 31/3/20 3 29 1/4/20 2 47 12/4/20 5 

12 31/3/20 3 30 1/4/20 2 48 16/4/20 7 

13 31/3/20 3 31 1/4/20 2 49 16/4/20 5 

14 31/3/20 3 32 1/4/20 2 50 17/4/20 2 

15 31/3/20 4 33 1/4/20 2 51 17/4/20 2 

16 31/3/20 4 34 1/4/20 3 52 17/4/20 2 

17 31/3/20 5 35 1/4/20 3 53 17/4/20 3 

18 31/3/20 7 36 1/4/20 4    

Delay from onset to admission was available for 53 out of 55 symptomatic patients.  
 
 
 
 
2.2 Methodology for choosing the best fit distribution 
Gamma and Exponential distributions were fit to the Reporting Lag data with Maximum Likelihood Estimation using the fitdistrplus 
package in R 3·6·3.4 Due to the small sample size and lack of reliable prior information about the distribution of reporting lag, the 
maximum likelihood method was chosen. Since the data was found to have a heavy tail, we chose to fit gamma and exponential 
distributions. The goodness of fit was estimated using the Akaike information criterion (AIC) and Bayesian Information Criterion (BIC). 
The distribution with a better BIC was selected as the appropriate descriptor of the Reporting Lag distribution. 
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2.3 Table S2. Reporting Lag Distribution Fit Parameters.  
 

Fitting of the Exponential distribution by Maximum Likelihood Estimation (MLE)  

Parameter Estimate Std. Error (SE) Median (Bootstrap) 95% CI (Bootstrap) 

rate 0·294 0·040 0·296 0·229–0·389  

Fitting of the Gamma distribution by Maximum Likelihood Estimation (MLE) 

Parameter Estimate Std. Error (SE) Median (Bootstrap) 95% CI (Bootstrap) 

shape 3·325 0·616 3·450 2·422–5·193 

rate  0·979 0·196 1·017 0·702–1·607 

The distribution was found to have a heavy tail and was fit on a very small number of samples likely leading to high uncertainty observed 
in the fits. 
 
 
 
2.4 Table S3. Reporting Lag Distribution Goodness-of-Fit Analysis.  
 

Goodness-of-fit statistics Gamma Distribution Exponential Distribution 

Kolmogorov-Smirnov statistic 0·2314472 0·3884527 

Cramer-von Mises statistic  0·5809448 1·2872294 

Anderson-Darling statistic  3·1523223 6·5702843 

Goodness-of-fit criteria Gamma Distribution Exponential Distribution 

Akaike's Information Criterion 208·8763  237·6025 

Bayesian Information Criterion 212·8169 239·5728 

δ BIC > 10 and δ AIC > 10. The difference in fit is very strong suggesting the gamma distribution is a much better fit. 
 
 
 
2.5 Sampling of Lag-adjusted Onset Dates 
From the estimated distribution of Reporting Lag, 1000 samples of the fitted distribution parameters (φi) were drawn taking into account 
the uncertainty in the distribution parameters ie. shape and scale for the gamma distribution and rate for the exponential distribution to 
serve as the posterior distribution of reporting lag. For each of the 1000 samples of fitted parameters, the reporting dates (ri) were 
transformed to give the symptom onset date (oi) by the formula: 
oi = ri - li 

where li ~ Gamma(φi) or Exp(φi) resulting in 1000 lag adjusted datasets. This process was applied to the reporting incidence data for the 
nation and the different states.  
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3. R0 Estimates with both EG and ML methods and R0 for states of India 
 
3.1 Methodology for Estimating R0 

For the estimation of R0, we use Maximum Likelihood (ML) method as described by White & Pagano and the Exponential Growth (EG) 
method as described by Wallinga & Lipsitch in R 3·6·3 using the R0 package.5,6 The best fit time period was chosen for calculation of 
confidence intervals for R0. As we had adjusted for imported cases, we reported the results of the method which gave a more reliable fit 
with a better R2 score as the R0. We also analysed the sensitivity of R0 to the serial interval distribution chosen by keeping standard 
deviation fixed at 3 and varying the mean from 2 days to 7 days.  
 
 
3.2 Table S4. Fit Parameters for R0 estimation 
 

 Exponential Growth Maximum Likelihood 

R0 Estimate 2·083 2·717 

95% CI 2·044–2·122 2·496–2·950 

Goodness of fit (R2) 0·972 0·914 

Best Fit Time-period 32 days 5 days  

 
 
3.3 R0 Estimation for States with more than 50 cases on 20/04/20 
The R0 could be estimated for the states of Kerala, Maharashtra, Delhi, Rajasthan, Tamil Nadu, Uttar Pradesh, Telangana, Andhra 
Pradesh, Karnataka, Jammu & Kashmir, Haryana and Punjab. The ML algorithm failed to converge for the states of Gujarat, West Bengal,  
Madhya Pradesh and Bihar. The fits for the states had a very low R2 due to multiple factors such as a major impact of import of new cases 
from other states (significant for some states due to import of cases from the Delhi cluster) in the estimation of R0 and policies 
implemented by the government to curb the spread. When calculating the R0, we were unable to adjust for imported cases as state-wise 
imported case data was not available. Thus, we used Maximum Likelihood approach for estimating R0 for the states as it is more robust 
for unaccounted import of cases. 
 
 
3.4 Table S5. R0 estimates for 12 Indian States 
 

State R0 Estimate 95% CI Goodness of fit (R2) 

Kerala 1·783 1·417–2·207 0·413 

Maharashtra 1·533 1·467–1·599 0·708 

Delhi 1·897 1·765–2·036 0·618 

Rajasthan 1·954 1·756–2·166 0·784 

Tamil Nadu 3·998 3·316–4·769 0·791 

Uttar Pradesh 1·514 1·402–1·633 0·675 

Telangana 2·413 1·997–2·884 0·813 

Andra Pradesh 1·374 1·237–1·521 0·432 

Karnataka 1·436 1·235–1·659 0·622 

Jammu & Kashmir 1·775 1·410–2·199 0·556 

Haryana 1·814 1·407–2·294 0·503 

Punjab 1·723 1·337–2·130 0·372 
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3.5 Figure S1. Sensitivity of India R0 estimates to Serial Interval and Time Period. (A,B) Sensitivity Analysis of R0 estimates with 
respect to the choice of the time period over which the R0 was calculated for EG and ML methods. (C,D) Goodness of Fit across a choice 
of time periods over which the R0 was calculated for EG and ML methods. Red represents the best fit. (E,F) Sensitivity Analysis of R0 
estimates with respect to the distribution of Serial Intervals across which the R0 was calculated for EG and ML methods. All graphs were 
generated in R0 package with R 3·6·3.  
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4. Testing criteria for COVID-19 in India7  
 
4.1 Table S6. Federal testing recommendations provided by the Indian Council of Medical Research (ICMR) 
 

Date  ICMR testing criteria for COVID-19  

9 March 2020 
 

1. All contacts of laboratory confirmed positive cases IF they become symptomatic (fever, cough, 
difficulty in breathing etc.) within 14 days of home quarantine.  

2. All people with history of international travel to COVID-19 affected countries within the last 
14 days IF they become symptomatic (fever, cough, difficulty in breathing etc.) within 14 days 
of home quarantine.  

 

17 March 2020 1. All contacts of laboratory confirmed positive cases IF they become symptomatic (fever, cough, 
difficulty in breathing etc.) within 14 days of home quarantine. 

2. All people with history of international travel IF they become symptomatic (fever, cough, difficulty 
in breathing etc.) within 14 days of home quarantine. 

3. Health care workers managing respiratory distress / Severe Acute Respiratory Illness should 
be tested when they are symptomatic. 

 

20 March 2020 1. All symptomatic* individuals who have undertaken international travel in the last 14 days. 
2. All symptomatic contacts of laboratory confirmed cases. 
3. All symptomatic health care workers. 
4. All hospitalized patients with Severe Acute Respiratory Illness (SARI: fever AND cough and/or 

shortness of breath). 
5. Asymptomatic direct and high-risk contacts** of a confirmed case should be tested once 

between day 5 and day 14 of coming in his/her contact. 
 

9 April 2020 1. All symptomatic individuals who have undertaken international travel in the last 14 days 
2. All symptomatic contacts of laboratory confirmed cases 
3. All symptomatic health care workers 
4. All patients with Severe Acute Respiratory Illness (fever AND cough and/or 

shortness of breath) 
5. Asymptomatic direct and high-risk contacts# of a confirmed case should be tested once between day 

5 and day 14 of coming in his/her contact 
6. In hotspots/cluster (as per MoHFW) and in large migration gatherings/ evacuees centres: All 

symptomatic Influenza like illness (ILI: fever, cough, sore throat, runny nose) 
a. Within 7 days of illness – rRT-PCR 
b. After 7 days of illness – Antibody test (If negative, confirmed by rRT-PCR) 

 

Testing policies are updated with time to reflect the pandemic situation. Newly added criteria are written in bold.  
MoHFW = Ministry of Health and Family Welfare, Government of India. 
*Symptomatic refers to fever/cough/shortness of breath. 
# Direct and high-risk contacts include those who live in the same household with a confirmed case and HCP who examined a confirmed 
case. 
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5. Estimation of Effective Reproduction Number (Rt) 
 
5.1 Additional Information about estimation of Rt 

When evaluating the Rt in EpiEstim package in R 3·6·3 with the method described by Wallinga and Teunis, we consider a gamma prior 
with mean 2·6 and SD 2, and 5-day sliding windows.8 The serial interval distribution was assumed to follow a gamma distribution with 
mean 3·96 days (95% CI 3·53–4·39, SD = 0·215) and a standard deviation of 4·75 (95% CI 4·46–5·07, SD = 0·145) days based on a 
study done in Wuhan on 468 infector-infectee pairs.9 Correction for the imported cases was done for the national incidence data after 
adjusting for reporting lag. The estimates of the effective reproduction number for each day were combined for the 1000 lag adjusted 
datasets by calculating pooled mean and pooled standard deviation and a net estimate for 50% and 95% confidence intervals were 
calculated. All simulations were done in Python 3·6 and plots were made in matplotlib 2·2·2. 
 
 
5.2 Table S7. Raw Data for Imported Cases. (Source- COVID19India10) 
 

Date Imported Cases Date Imported Cases Date Imported Cases 

3/1/2020 0 3/14/2020 11 3/27/2020 40 

3/2/2020 2 3/15/2020 5 3/28/2020 16 

3/3/2020 1 3/16/2020 12 3/29/2020 20 

3/4/2020 15 3/17/2020 14 3/30/2020 11 

3/5/2020 2 3/18/2020 21 3/31/2020 20 

3/6/2020 1 3/19/2020 27 4/1/2020 7 

3/7/2020 2 3/20/2020 34 4/2/2020 8 

3/8/2020 3 3/21/2020 35 4/3/2020 6 

3/9/2020 6 3/22/2020 45 4/4/2020 3 

3/10/2020 2 3/23/2020 55 4/5/2020 1 

3/11/2020 7 3/24/2020 38 4/6/2020 0 

3/12/2020 10 3/25/2020 34 4/7/2020 0 

3/13/2020 5 3/26/2020 24 4/8/2020 0 
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5.3 Table S8. Rt point estimates for national COVID-19 incidence data (without import adjustment). 
 

Date Rt Estimate (95% CI) Date Rt Estimate (95% CI) 

3/10/2020 1.814 (1.337,2.291) 4/1/2020 1.608 (1.497,1.72) 

3/11/2020 1.647 (1.241,2.052) 4/2/2020 1.524 (1.426,1.623) 

3/12/2020 1.573 (1.209,1.936) 4/3/2020 1.44 (1.355,1.526) 

3/13/2020 1.577 (1.238,1.916) 4/4/2020 1.369 (1.295,1.443) 

3/14/2020 1.639 (1.316,1.962) 4/5/2020 1.326 (1.261,1.390) 

3/15/2020 1.737 (1.427,2.048) 4/6/2020 1.306 (1.248,1.365) 

3/16/2020 1.808 (1.513,2.102) 4/7/2020 1.301 (1.246,1.356) 

3/17/2020 1.862 (1.585,2.138) 4/8/2020 1.301 (1.248,1.354) 

3/18/2020 1.861 (1.606,2.117) 4/9/2020 1.298 (1.247,1.349) 

3/19/2020 1.8 (1.57,2.031) 4/10/2020 1.293 (1.243,1.342) 

3/20/2020 1.715 (1.51,1.919) 4/11/2020 1.278 (1.23,1.326) 

3/21/2020 1.630 (1.448,1.812) 4/12/2020 1.25 (1.205,1.295) 

3/22/2020 1.565 (1.403,1.728) 4/13/2020 1.224 (1.182,1.266) 

3/23/2020 1.524 (1.376,1.672) 4/14/2020 1.213 (1.173,1.252) 

3/24/2020 1.516 (1.379,1.654) 4/15/2020 1.214 (1.176,1.252) 

3/25/2020 1.541 (1.41,1.673) 4/16/2020 1.217 (1.18,1.254) 

3/26/2020 1.584 (1.456,1.713) 4/17/2020 1.213 (1.176,1.249) 

3/27/2020 1.642 (1.514,1.77) 4/18/2020 1.208 (1.172,1.244) 

3/28/2020 1.709 (1.579,1.838) 4/19/2020 1.202 (1.167,1.236) 

3/29/2020 1.746 (1.614,1.877) 4/20/2020 1.19 (1.156,1.223) 

3/30/2020 1.733 (1.603,1.862) 4/21/2020 1.175 (1.143,1.207) 

3/31/2020 1.681 (1.559,1.803) 4/22/2020 1.159 (1.129,1.19) 
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5.4 Table S9. Rt point estimates for national COVID-19 incidence data (import adjusted). 
 

Date Rt Estimate (95% CI) Date Rt Estimate (95% CI) 

3/10/2020 0.716 (0.432,0.999) 4/1/2020 1.58 (1.471,1.69) 

3/11/2020 0.605 (0.371,0.838) 4/2/2020 1.506 (1.409,1.604) 

3/12/2020 0.537 (0.335,0.739) 4/3/2020 1.43 (1.345,1.515) 

3/13/2020 0.507 (0.326,0.688) 4/4/2020 1.363 (1.29,1.437) 

3/14/2020 0.512 (0.345,0.68) 4/5/2020 1.322 (1.258,1.387) 

3/15/2020 0.549 (0.389,0.709) 4/6/2020 1.305 (1.247,1.364) 

3/16/2020 0.592 (0.44,0.745) 4/7/2020 1.301 (1.246,1.356) 

3/17/2020 0.653 (0.505,0.801) 4/8/2020 1.301 (1.248,1.354) 

3/18/2020 0.713 (0.571,0.856) 4/9/2020 1.298 (1.247,1.349) 

3/19/2020 0.753 (0.619,0.887) 4/10/2020 1.293 (1.243,1.343) 

3/20/2020 0.772 (0.648,0.896) 4/11/2020 1.278 (1.23,1.326) 

3/21/2020 0.807 (0.69,0.923) 4/12/2020 1.249 (1.204,1.295) 

3/22/2020 0.863 (0.751,0.975) 4/13/2020 1.223 (1.181,1.265) 

3/23/2020 0.937 (0.828,1.046) 4/14/2020 1.212 (1.173,1.252) 

3/24/2020 1.037 (0.928,1.145) 4/15/2020 1.213 (1.175,1.251) 

3/25/2020 1.161 (1.052,1.271) 4/16/2020 1.217 (1.18,1.254) 

3/26/2020 1.299 (1.187,1.412) 4/17/2020 1.213 (1.177,1.25) 

3/27/2020 1.435 (1.319,1.551) 4/18/2020 1.208 (1.173,1.244) 

3/28/2020 1.56 (1.439,1.681) 4/19/2020 1.202 (1.168,1.237) 

3/29/2020 1.642 (1.517,1.767) 4/20/2020 1.19 (1.157,1.224) 

3/30/2020 1.665 (1.54,1.789) 4/21/2020 1.175 (1.143,1.208) 

3/31/2020 1.637 (1.518,1.757) 4/22/2020 1.159 (1.129,1.19) 
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5.5 Rt trends for States 
The Rt was evaluated for states with more than 50 cases on 20th April 2020 other than Odisha due to a lack of active cases until very 
recently. The method to estimate was the same as the method used for the national data. Imported cases could not be adjusted due to 
lack of state-wise data of internationally imported cases and for interstate transport of COVID-19 cases. The estimates of the effective 
reproduction number for each day were combined for the 100 lag adjusted datasets by calculating pooled mean and pooled standard 
deviation and a net estimate for 50% and 95% confidence intervals were calculated. All bootstraps were done in Python 3·6 and plots 
were made in matplotlib 2·2·2. 
 
We examined the Rt curves of the states of Maharashtra, Gujarat, Delhi, Rajasthan and Madhya Pradesh which together accounted for 
66% of total cases in India as on 28 April 2020. Delhi, Maharashtra, Rajasthan and Madhya Pradesh showed the Nizammudin cluster-
related rise in Rt during late-March, with Delhi being the origin of the cluster showing the highest rise. Gujarat, in contrast, showed a 
rise later in early-April which was probably linked to increased local transmission in the state capital of Ahmedabad. We also included 
Kerala since it was the first state to reach Rt=1 in early April and has sustained low transmission levels since then. All states except 
Madhya Pradesh showed a continuing downtrend on the last examined date. The composite of these trends roughly depicts the trend of 
Rt of India. Kerala’s ability to maintain a low Rt may be attributed to its high literacy rate, active community participation and 
decentralisation of power- village councils taking the initiative to contain cases locally, use of drones for cluster containment, and 
social welfare initiatives which provided isolation rooms for people with cramped homes which didn't allow social distancing from 
family. Kerala’s health-system response has been proven to be robust in earlier outbreaks like the Nipah virus outbreak in 2018.  
 
 

 
5.5 Figure S2: Incidence by onset and effective reproduction rates (Rt) up to 11 April 2020 for Indian states of Maharashtra, 
Gujarat, Kerala, Delhi, Rajasthan, and Madhya Pradesh. The state name is green if the most recent 50% CI of Rt is below 1 as on 11 
April 2020, otherwise red. State-level Incidence by Onset and Effective Reproductive Number (Rt) number calculated with time-
dependent Maximum Likelihood Method with 5 day sliding windows and 100 lag adjusted datasets. All bootstraps were done in Python 
3·6 and plots were made in matplotlib 2·2·2. 
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5.6 Figure S3. Rt for other Indian States up to 11 April 2020. The state name is green if the most recent 50% CI of Rt is below 1, 
otherwise red. State-level Incidence by Onset and Effective Reproductive Number (Rt) number calculated with time-dependent 
Maximum Likelihood Method with 5 day sliding windows and 100 lag adjusted datasets. All bootstraps were done in Python 3·6 and 
plots were made in matplotlib 2·2·2. 
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6. Model fitting and Fit Sensitivity Analysis 
 
6.1 Fitting Methods, Initial Conditions and Uncertainty estimation 
Fitting was done using Least-Square Fitting with Trust Region Reflective algorithm in Scipy package (Python 3·7). This method was 
chosen as it allows for a bound on the fitted parameters and was found to converge reliably. The data was fit from the date the number of 
active cases crossed 100 individuals. Due to lack of data for E(t) and Is(t) compartment, we also fit for the initial conditions for these 
compartments. Initial conditions for Ia(t) and Ru(t) were set in the ratio of asymptomatics to symptomatics with respect to the initial values 
of Is(t) and R(t) compartments respectively. Since the number of detected recovered cases was very small we assume all of them were 
asymptomatic and thus Ra(t) was initially set to zero. All other compartments were set to zero with the exception of S(t) which was set 
to ensure the sum of all compartments was N. Newer values were given higher weightage for the fitting by supplying the fitting algorithm 
with errors given by e = w (1-w)t where t is the index of the sample and w = 0·5 is an arbitrary error weightage parameter as described 
by Chowell. 11 In order to estimate the uncertainty in the parameter fit we adapt the Bootstrap approach described by Chowell using a 
Poissonian error structure without overdispersion and determine the 95% confidence intervals of the parameters with 1000 bootstrap 
samples. 11 All simulations were done in Python 3·6 and plots were made in matplotlib 2·2·2. 
 

 
6.2 Figure S4. Best Fit to Data for Base Assumptions (ai = 0·5, pa = 0·6, fa = 0·1). ‘+’ represent data with which the model was trained, 
‘o’ refers to data points for dates after the training limit. Bands represent 95% confidence intervals for the mean prediction. All simulations 
were done in Python 3·6 and plots were made in matplotlib 2·2·2. 
 
 
6.3 Assumption of constant Recovery Rate (λ) and Mortality Rate (κ) 
Our model fails to predict the increased rise in recovery as it assumes a constant recovery rate (λ) but in reality, the recovery rate (λ) is 
often found to increase during the progress of an outbreak due to multiple factors. Similarly, mortality (κ) is also found to reduce. Due to 
lack of sufficient data about the nature of the increase in these rates, the model was assumed to have a constant value that fits well to 
early dynamics of epidemics. In reality, a more flexible form such as a sigmoid may be a better assumption. 
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6.4 Estimated model parameters for all assumed values of ai, pa, and fa 

Table S10 shows the best-fit parameter estimates for the base assumptions of pa=0·6 (chosen based upon the asymptomatic proportion 

estimated from primary patient data), ai= 0·5, and fa= 0·1. 

 

Table S10: Estimated parameters for the model for base assumptions (ai= 0·5, pa= 0·6, fa= 0·1). 

PARAMETER BEST-FIT ESTIMATE (95% CI) 

Transmission Rate (β) 1·421 (1·287–1·553) 

Reporting Lag (δs
-1) 2·118 (2·069–2·200) 

Protection Rate (α) 0·043 (0·038–0·048) 

Recovery Rate (λ) 0·0191 (0·0184–0·0198) 

Mortality Rate (κ) 0·0047 (0·0043–0·005) 

Initial Exposed (E0) 50 (24–74) 

Initial Symptomatic Infected (I0) 40 (29–54) 

 
The sensitivity of the fit parameters to our assumptions were evaluated and it was found that recovery rate (λ) and mortality rate (κ) is 
independent of the assumptions, which is expected as these parameters are directly dependent on the relation between quarantine, recovery 
and fatality data. On the other hand, while there was some variability in the values of protection rate (between 0·032–0·048) and reporting 
rate (between 0·40–0·48) many of which were within the confidence interval, a large variability was observed in the value of transmission 
rate (0·8–2·0) with higher transmission rates favoured when the ratio of asymptomatic was low and their relative infectivity is also low. 
 

 
 

6.5 Figure S5. Sensitivity of fit parameters α and β to assumptions of ai, pa, and fa. All values are reported with 95% CI (empirical 
estimate) with 1000 bootstrapped fits to the dataset as described in Chowell (2012)11. All plots were made in matplotlib 2·2·2. 
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6.6 Figure S6. Sensitivity of fit parameters λ and κ to assumptions of ai, pa, and fa. All values are reported with 95% CI with 1000 
bootstrapped fits to the dataset as described in Chowell (2012)11. All plots were made in matplotlib 2·2·2. 
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6.7 Figure S7. Sensitivity of fit parameters δs to assumptions of ai, pa, and fa. All values are reported with 95% CI with 1000 
bootstrapped fits to the dataset as described in Chowell (2012)11. All plots were made in matplotlib 2·2·2. 
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 7. Prediction Sensitivity 

 
 
7.1 Figure S8. Sensitivity of predictions to assumptions of ai, pa, and fa. All values are reported with 95% CI with 1000 bootstrapped 
fits to the dataset as described in Chowell (2012).11 Cases counts are reported in thousands and dates are reported with respect to 18th 
April 2020. All plots were made in matplotlib 2·2·2.  
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8. Calculation of R0 from the Model Parameters 
 
8.1 Calculating R0 from SEIR-QDPA Model 
 
The Basic Reproduction number (R0)  can be calculated for the model using the next-generation matrix method as described by van den 
Driessche (2017).12 When there is a non-zero probability of asymptomaticity (pa), the R0 is given by: 
 

R0 = (δaβ(1+at) + δsaiβr)/(δaδs(1+r)(1+at)) 
 
When the probability of asymptomaticity is zero, the model reduces to an SEIR at the initial time point and the R0 is simply given by: 

 
R0=β/δs  

 
A very important factor that should be taken into consideration when interpreting the value of R0 given by the model is that unlike other 
simpler models such as SIR or SEIR models, R0 is not a descriptor of the dynamics at all points of time of the epidemic. This is because 
of the introduction of the “Protected” compartment. The better descriptor of the dynamics is given by the  effective R0 given by: 

 
R0(t) = R0exp(-αt) 

 
which is a function of time that takes into account the reduction in the number of susceptibles in the population as they enter the 
“Protected” compartment. The true effective reproductive number Rt is given by: 

 
Rt(t) = R0S(t)/N 

 
Since our reduction in susceptible population necessarily decays exponentially from N and asymptotic to zero, our estimates of R0 from 
the model are artificially higher than R0 directly estimated from data in order to explain the dynamics of the epidemic where the spread 
is very fast in early stages but saturates before the spread to less than the growth limit of Rt = 1. While our assumption of the constant 
protection rate with no leakage, may stand true for small ideal communities, for a country with non-homogenous responses to the crisis 
this assumption may not stand true.  
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8.2 Figure S9. Estimation and Sensitivity of Model R0 to assumptions. All values are reported with 95% CI with 1000 bootstrapped 
fits to the dataset as described in Chowell (2012).11 The R0 is found to be lowest in the scenarios of low asymptomatic infectivity, high 
probability of asymptomaticity and high detection rate and conversely the highest at high asymptomatic infectivity, low probability of 
asymptomaticity and low detection rate. All plots were made in matplotlib 2·2·2.  
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9. Sensitivity Analysis of effect of testing rate and social distancing policies 
 

 
 
9.1 Figure S10. Sensitivity of effect of testing rate and social distancing policies on total symptomatic cases to the probability of 
asymptomaticity at 15 days after lockdown relaxation. All values are reported in thousands of cases.  All simulations were done in 
Python 3·6 and plots were made in matplotlib 2·2·2. When the proportion of asymptomatics is 80%, and detection is increased from 10% 
to 20% for 15 days– for every extra asymptomatic detected by increased testing, the number of infections prevented is 7.2 at β, 5.5 at 
0·8β and 3.8 at 0·5β. When the proportion of asymptomatics is 40%, and detection is increased from 10% to 20% for 15 days– for every 
extra asymptomatic detected by increased testing, the number of infections prevented is 9.2 at β, 7.1 at 0·8β and 3.8 at 0·5β. 
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9.2 Figure S11. Sensitivity of effect of testing rate and social distancing policies on total symptomatic cases to probability of 
asymptomaticity at 45 days after lockdown relaxation. All values are reported in thousands of cases.  All simulations were done in 
Python 3·6 and plots were made in matplotlib 2·2·2. 
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9.3 Figure S12. Sensitivity of the number of symptomatic cases to the probability of asymptomaticity over a 75-day period after 
lockdown relaxation if the testing rate and social distancing policies are not changed after relaxation. It is observed that the order 
of the trends reverses over time. This can be explained by the fact that when the epidemic was under control due to a large fraction of the 
population being protected, lower values of pa reduced the total number of infections due to decreased asymptomatic spread. But when 
the lockdown was relaxed, the incidence of symptomatic cases reflected the probability of being symptomatic which is higher when pa is 
lower and vice versa. All simulations were done in Python 3·6 and plots were made in matplotlib 2·2·2. 
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9.4 Figure S13. Sensitivity of effect of testing rate and social distancing policies on total infections to the probability of 
asymptomaticity at 15 days after lockdown relaxation. All values are reported in thousands of cases. All simulations were done in 
Python 3·6 and plots were made in matplotlib 2·2·2. 
 
 

 
9.5 Figure S14. Sensitivity of effect of testing rate and social distancing policies on total infections to probability of 
asymptomaticity at 45 days after lockdown relaxation. All values are reported in thousands of cases.  All simulations were done in 
Python 3·6 and plots were made in matplotlib 2·2·2.  
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10. Effect of Slow Lockdown Relaxation 
 
10.1 Simulating gradual lockdown relaxation 
In order to simulate a slow lockdown release, instead of setting the value of deprotection rate (σ) as a large value, we set it equal to the 
value of protection rate (α) such that the lockdown reverts itself at the same rate as it occurred. All simulations were done in Python 3·6 
and plots were made in matplotlib 2·2·2. 
 

 
10.2 Figure S15. Gradual complete lockdown relaxation at three different points of time. The delayed gradual relaxation of the 
lockdown buys more time before the number of active cases starts rising again as observed in the fast lockdown relaxation.  Bands 
represent 95% confidence intervals for the mean prediction.  All simulations were done in Python 3·6 and plots were made in matplotlib 
2·2·2. 

 
10.3 Figure S16. Lag before new rise in active case after Slow Lockdown Relaxation. The time gained by delaying the relaxation is 
found to be linearly increasing (Pearson’s R: 0·987; 95% CI 0·949–0·997; p<0·0001). The gain in time in the case of a slow lockdown 
relaxation is found to be more than the case of a fast lockdown relaxation. All simulations were done in Python 3·6 and plots were made 
in matplotlib 2·2·2. 
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10.4 Figure S17. Gradual lockdown relaxation for 14 days at two different points of time. The delayed gradual relaxation of the 
lockdown reduced the number of active cases in the second as observed in the fast lockdown relaxation. A slow relaxation reduced the 
effect of relaxation on the growth of the second peak compared to the fast lockdown relaxation. Bands represent 95% confidence intervals 
for the mean prediction. All simulations were done in Python 3·6 and plots were made in matplotlib 2·2·2. 
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11. Lockdown Relaxation and the Healthcare System Capacity 
 
11.1 Estimating the Indian Healthcare System Capacity 
 
Previous studies have estimated the number of ICU beds in India to be around 35,699 to 57,119 ICU beds.13 We assume the number of 
ICU beds in India to be around 70,000 to account for growth in the healthcare system. If we assume that 50% of these beds are equipped 
with ventilators and are allocated exclusively to COVID-19 patients, that gives us 35,000 COVID-19 ready ICU beds. Previous studies 
suggest that approximately 5% of symptomatic patients need ICU support,14 that gives us an upper bound for the healthcare system 
capacity of 7,00,00 active symptomatic cases. 
 
11.2 Estimating the time taken to reach the Healthcare system capacity under lockdown relaxation scenarios. 
 
We simulate the model under the different (fast) lockdown relaxation scenarios we described earlier and determined the time taken to 
reach the healthcare system capacity of 7,00,000 active symptomatic cases from the date of relaxation. We find that for all finite relaxation 
durations, there exists a delay in lockdown relaxation that prevents the scenario of the health capacity being overloaded. For smaller 
relaxation periods, this delay is found to be smaller. It should be noted that these assumptions assume fast and complete lockdown 
relaxations periods for the entire country at once. In reality, the lockdown relaxations will likely be introduced on a state-by-state basis 
and may be more of a slow staggered response. 
 

 
11.3 Figure S18. Time taken to reach the healthcare system capacity under lockdown relaxation scenarios. Blank blocks represent 
the scenario where the healthcare system capacity is never reached and the epidemic is under control. Figure shows the heatmap for the 
mean time taken to hit the healthcare capacity under different lockdown durations and dates of start of lockdown relaxations.  
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12. Google COVID-19 Mobility Reports 
 
12.1 Background Information on how Google’s mobility reports are generated15 
 
The mobility scores are calculated by comparing visits and length of stay at different places change compared to a baseline value for the 
day of the week. The baseline values were calculated from the median values during the 5-week period Jan 3–Feb 6, 2020. These values 
were calculated on the basis of anonymized data from users who have opted-in to Location History for their Google Account. We 
acknowledge that this mobility data may be biased towards users of this service, and may or may not represent the exact behavior of a 
wider population. 
 
For the analysis of mobility, Google has divided the mobility into 6 categories relevant to social distancing policies and practices. They 
are: Grocery & Pharmacy (places like grocery markets, food warehouses, farmers markets, speciality food shops, drug stores, and 
pharmacies), Parks (places like local parks, national parks, public beaches, marinas, dog parks, plazas, and public gardens), Transit 
stations (places like public transport hubs such as subway, bus, and train stations), Retail & Recreation (places like restaurants, cafes, 
shopping centres, theme parks, museums, libraries, and movie theatres), Residential (places of residence), Workplaces (places of work 
such as offices). 
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