Supplementary Appendix (Salazar et al.)

Table of Contents

Supplementary Methods	2
Table S1. ELISA Titers	5
Table S2. Clinical Outcomes	7
Table S3. Laboratory Results of Plasma Recipients	9
Figure S1. Alignment	10

Supplemental Methods

RBD and ECD Domains: Spike Protein Expression

The stabilized prefusion S-ectodomain was previously cloned into the mammalian expression vector pαH (pNCOV-1), which contains an HRV3C cleavage site upstream of TwinStrep- and 8xHis-purification tags. The ColE1 vector was transformed and maintained in *E. coli* DH10B at 37C using ampicillin selection at 100 ug/mL. Plasmids from single colonies were recovered using a Qiagen Mini-prep kit after growing cells overnight to confluence in Superior broth (100 ug/mL ampicillin).

Expi293F cells (Thermo Fisher Scientific) were passaged twice and seeded to a density of 7.5 x 107 cells in 25.5 mL Expi293 Expression Medium (2.9 x 106 cells/ml in a 125-ml flask). For each 30 mL transfection, plasmid DNA (30 ug) was added to Opti-MEM I Reduced Serum Medium to a total volume of 1.5 ml and gently mixed. ExpiFectamine 293 Reagent (81 µL) was diluted in Opti-MEM I medium to a total volume of 1.5 mL. After gently mixing, it was incubated for 5 min at RT. After incubation, the diluted DNA was added to the diluted ExpiFectamine 293 Reagent to obtain a total volume of 3 mL and gently mixed. The mixture was incubated for 20 min at RT to allow the DNA-ExpiFectamine 293 Reagent complexes to form and then added to the Expi293F cells. After incubating cells for 20 h, 150 µL of ExpiFectamine 293 Transfection Enhancer 1 and 1.5 mL of ExpiFectamine[™] 293 Transfection Enhancer 2 were added to each flask. Cells were harvested at 7 days.

Protein Purification

IMAC purification columns were used with 1 mL bed volume for each Ni-NTA column. Each prepared column was used to purify proteins from 200-250 mL of filtered tissue culture media. Following filtration, filtered tissue culture media was applied to a previously prepared and equilibrated Ni-NTA column. Each column was washed with 20 mL equilibration buffer (50 mM phosphate buffer, pH 7.5, 300 mM NaCl, 20 mM imidazole). The target protein was eluted with 5

2

mL elution buffer (50 mM phosphate buffer, pH 7.5, 300 mM NaCl, 250 mM imidazole). The eluate was applied to a spin concentrator with 100 kD MWCO to (1) concentrate target protein prior to FPLC purification and (2) for buffer exchange into cold 1x PBS. Spin concentrators were centrifuged at 3000 *g*, at 4°C for 15 min. The 100 kD MWCO assists in purification by allowing flow through of most contaminating proteins. Following buffer exchange, the eluate was concentrated to approximately 600 µL. The concentrated eluate was further purified using size-exclusion chromatography (SEC) with a 24 ml Superose 6 10/300 GL column (GE Healthcare). The 0.5 mL sample loop was injected with 1 mL each of the following: 0.1 M NaOH, RNase-free water, and 1x PBS. The buffer-exchanged eluate was applied to the FPLC sample loop and run with a flow rate 0.25 ml/min. Fractions were collected after 0.2 CV and fractionation volumes collected at 0.33 mL.

ELISA protocol

Plates were blocked with 2% milk in PBS at room temperature (RT) for 2 hrs and washed 3X with PBST (PBS with 0.1% Tween20). For serial dilutions of primary Ab (plasma or mAb), a 1:1 mix of 2% milk in PBS and PBST was used (final PBSMT: 1% milk in PBS with 0.05% Tween20) in 50 μL/well across the entire 96-well plate. Samples were then prepared in PCR plates or 8-well strips by diluting plasma 1:16.67 in PBSMT in 100 μL volumes. Negative plasma control was included on each antigen plate. For the positive control, mAb CR3022 was used. CR3022 is a neutralizing antibody that was originally cloned from a convalescent SARS patient that targets the receptor-binding domain (RBD) of SARS-CoV 1 and can bind to the RBD of SARS-CoV-2 with a binding affinity of 6.3 nM.2 CR3022 was included on each antigen plate diluted to 9 μg/mL in PBSMT. Samples were then centrifuged at maximum speed for two minutes at RT. For each of the two antigens (spike ECD and spike RBD), 25 μL was transferred from sample well, avoiding any pelleted material at bottom, into the top well of each ELISA plate and serially diluted (final dilution in top row at 1:50 for each sample, positive control at 3 μg/mL,

volumes at 75 μ L). Binding was performed at RT for 1 hr. Plates were then washed 3X with PBST. Anti-human IgG Fab HRP (Sigma A0293) was prepared at 1:5000 dilution in PBSTM, added to plate at 50 μ L volumes, and incubated at RT for 30 min. Plates were then washed 3X with PBST. ELISA substrate (1-step Ultra TMB, Thermo Scientific cat# 34028) was warmed to RT and added to plate at 50 μ L /well. Plates were developed until top dilution reached saturation point (1 min for spike RBD; 5 min for spike ECD) and then stopped with 50 μ L of H₂SO₄. Plates were read at 450 nm absorbance.

References:

 ter Meulen J, van den Brink EN, Poon LL, et al. Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants.
PLoS Med 2006;3:e237.

2. Tian X, Li C, Huang A, et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes Infect 2020;9:382-5.

Table S1. ELISA Titers for the ECD and RBD Domains of the SARS-CoV-2 Spike Protein

Transfused to COVID-19 Patients.

Patient	Donor	Donation	Donor Visit	RBD Titor	ECD Titor	
ratient	Donor	Date	Number			
1	1	3/27/20	1	1350	150	
2	1	3/27/20	1	1350	150	
3	2	3/31/20	1	1350	450	
4	1	3/31/20	2	NA	NA	
5	2	3/31/20	1	1350	450	
6	2	4/3/20	2	450	150	
7	3	4/3/20	1	50	0	
8	3	4/3/20	1	50	0	
9	2	4/3/20	2	450	150	
10	1	3/31/20	1	NA	NA	
11	1	4/3/20	3	450	150	
12	1	4/3/20	3	450	150	
13	2	4/8/20	3	450	450	
14	2	4/8/20	3	450	450	
15	1	4/7/20	4	450	150	
16a	4	4/9/20	1	0	0	
16b*	5	4/10/20	1	1350	1350	
17	6	4/9/20	1	450	450	
18	1	4/7/20	4	450	150	
19	4	4/9/20	1	0	0	
20	6	4/9/20	1	450	450	

21	7	4/7/20	1	50	50
22	8	4/10/20	1	1350	1350
23	8	4/10/20	1	1350	1350
24	9	4/13/20	1	150	150
25	9	4/13/20	1	150	150

*Patient 16 received a second transfusion on day 6.

	Score at		
Dationt	Baseline	Day 7 Post-	Day 14 Post-
Falleni	(Day of	Transfusion	Transfusion
	Transfusion)		
1	5	5	5
2	5	5	5
3	5	5	1
4	5	5	2
5	5	5	3
6	5	5	3
7	5	5	3
8	5	5	6
9	5	5	3
10	5	5	3
11	5	1	1
12	3	1	1
13	4	5	5
14	3	3	1
15	3	1	1
16	5	5	3
17	3	1	1
18	3	1	1
19	3	4	1

Table S2. Clinical Outcomes of COVID-19 Patients 7 and 14 Days after ConvalescentPlasma Transfusion.

20	3	5	5
21	3	1	1
22	4	3	2
23	5	5	5
24	4	3	1
25	3	1	1

Table S3. Laboratory Results of Plasma Recipients on Days 0, 3, 7, and 14 Post-

Transfusion.

	WBC (total) normal range: 4.5-11 k/ul					CRP normal range: 0 - 0.5 mg/dL			Total Bilirubin normal range: 0 - 1.2 mg/dL				Ferritin normal range: 13 - 150 ng/mL			
Patient	Baseline	Day 3	Day 7	Day 14	Baseline	Day 3	Day 7	Day 14	Baseline	Day 3	Day 7	Day 14	Baseline	Day 3	Day 7	Day 14
1	5.3	9.1	10.9	15.18	40.5	37.4	2.9	12.11	0.4	0.6	0.7	1	629	2011	1053	963
2	15	16.5	27.5	18.34	33.9	26.9	3	0.56	0.1	0.4	0.4	0.4	438	602	444	322
3	13.2	15.2	17.9	NA	1.8	0.32	0.2	NA	3.7	1	0.8	NA	2118	2413	1228	NA
4	6	12.7	10	8.77	43.5	30.82	3.6	NA	0.4	0.4	0.9	0.8	816	1713	929	NA
5	7.8	11.8	14.8	13.1	40.6	NA	11.81	0.55	NA	NA	1.3	1	573	NA	661	345
6	6.15	9.14	11.3	5	NA	NA	NA	1.19	1.1	0.7	0.6	0.4	4630	7140	3943	3203
7	4.15	7.93	5.56	4.63	24.6	12.16	1.47	0.34	0.9	0.8	0.5	0.5	1534	2767	1963	718
8	10.13	7.85	9.67	NA	5.4	27.77	6.53	NA	0.9	1.4	0.3	NA	840	706	721	NA
9	18.57	39.7	23.6	8.02	6.5	6.7	0.77	NA	1.1	5.7	1.1	0.5	2815	2888	1158	NA
10	10.9	14.2	26	13.06	31.0	NA	13	0.11	0.5	1.6	1.2	1.4	808	996	1304	NA
11	20.5	7.9	NA	NA	0.2	NA	NA	NA	0.3	0.4	NA	NA	24	NA	NA	NA
12	40	NA	NA	NA	2.2	NA	NA	NA	0.1	NA	NA	NA	NA	NA	NA	NA
13	12.6	8.2	18.2	22.88	NA	41.73	5.99	0.2	0.5	NA	0.8	0.5	4660	5397	1969	1240
14	11.2	NA	12	NA	NA	NA	NA	NA	0.1	NA	0.3	NA	1149	1420	1978	NA
15	14.1	24	DC	NA	6.5	3.04	NA	NA	0.4	0.8	NA	NA	1392	1296	NA	NA
16	4.5	7.4	6	21.25	8.7	24.69	NA	0.2	0.2	0.5	0.6	2.1	362	329	NA	177
17	27	30	DC	NA	22.5	15.02	NA	NA	0.3	NA	NA	NA	916	727	NA	NA
18	7.4	5	DC	NA	NA	NA	NA	NA	0.4	0.4	na	NA	NA	NA	NA	NA
19	9.6	4	10.5	NA	14.7	4.71	0.5	NA	1.4	2.2	0.8	NA	21707	26919	NA	NA
20	18	13	7	13.39	14.3	14.7	16.56	NA	0.7	0.8	0.5	1.1	351	482	259	NA
21	15.2	8.4	DC	NA	30.3	12.19	NA	NA	0.3	0.1	NA	NA	814	NA	NA	NA
22	NA	7.2	17.5	6.78	NA	2.81	0.39	NA	NA	0.5	1.6	NA	999	961	1046	NA
23	NA	6.4	9	10.19	NA	6.87	1.02	NA	NA	0.3	0.3	2.6	NA	958	770	NA
24	10.1	11.7	7.8	NA	4.3	3.26	0.48	NA	0.6	0.7	0.9	NA	1064	2424	1972	NA
25	9	19.8	25.2	NA	31.0	NA	NA	NA	NA	NA	NA	NA	815	NA	NA	NA

				A	т			A	ST		Procalcitonin					
	no	rmal range	: 87 - 225 U	1/L	normal range: 5 - 50 U/L normal range: 10 - 35 U/L					nc	normal range: <0.07 ng/ml					
Patient	Baseline	Day 3	Day 7	Day 14	Baseline	Day 3	Day 7	Day 14	Baseline	Day 3	Day 7	Day 14	Baseline	Day 3	Day 7	Day 14
1	362	306	496	NA	25	61	29	15	43	49	37	25	0.32	0.42	0.1	1
2	430	423	367	NA	18	24	35	74	35	51	28	46	1.91	1.86	0.34	0.4
3	NA	726	NA	NA	262	527	197	NA	152	157	40	NA	NA	NA	NA	NA
4	466	345	354	NA	29	31	80	136	43	28	50	35	0.57	5.43	0.11	0.8
5	322	336	326	286	10	NA	122	103	17	58	95	35	NA	NA	NA	1
6	352	399	456	382	52	67	45	40	129	89	56	31	20.53	5.56	NA	0.4
7	286	453	338	324	48	43	83	52	56	67	99	25	2.7	NA	NA	0.5
8	720	441	449	NA	15	12	15	NA	42	40	32	NA	1.07	1.84	NA	NA
9	591	1047	440	NA	38	120	100	34	64	192	50	19	40.03	19	NA	0.5
10	562	533	1350	NA	24	83	279	54	36	174	281	36	0.39	NA	NA	1.4
11	190	NA	NA	NA	56	45	NA	NA	24	29	NA	NA	NA	NA	NA	NA
12	324	NA	NA	NA	47	NA	NA	NA	51	NA	NA	NA	NA	NA	NA	NA
13	648	406	394	NA	81	NA	29	120	135	NA	52	75	NA	NA	NA	0.5
14	431	521	NA	NA	82	NA	85	NA	67	NA	41	NA	8.84	NA	NA	NA
15	381	290	NA	NA	86	130	NA	NA	97	64	NA	NA	0.36	NA	NA	NA
16	362	462	NA	NA	9	12	15	19	30	34	41	22	0.14	0.14	NA	2.1
17	378	305	NA	NA	17	NA	NA	NA	31	NA	NA	NA	0.07	NA	NA	NA
18	NA	NA	NA	NA	80	68	na	NA	86	44	na	NA	NA	NA	NA	NA
19	528	642	NA	NA	36	49	89	NA	93	NA	62	NA	NA	NA	NA	NA
20	356	449	313	270	19	18	14	14	46	48	24	25	0.19	NA	NA	1.1
21	166	NA	NA	NA	48	41	NA	NA	48	41	NA	NA	NA	NA	NA	NA
22	382	328	290	NA	NA	24	30	NA	NA	41	36	NA	NA	NA	NA	NA
23	NA	296	NA	NA	NA	32	25	42	NA	24	25	33	NA	NA	NA	2.6
24	323	529	444	NA	42	39	76	NA	51	35	38	NA	NA	0.16	NA	NA
25	408	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

NA, indicates no value was obtained for the respective time point.

Figure S1. Alignment of donor and recipient SARS-CoV-2 spike protein. An analysis of the first four donors found that donor and recipient spike (S) proteins matched when their SARS-CoV-2 isolates were from the same clade. This is primarily a result of the D614G amino acid change in S protein that defines the clade A2a. However, there are at least three instances of an additional amino acid change in the S2 domain of the S protein, one in a donor (M731I) and two in recipients (S967R and L1203F).