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I. SOLUTION OF THE ODE FOR F (k, t)

Consider the ODE

−F + (N − t)Ḟ = −Fn, (S1)

where F = F (k, t), with the initial condition

F (k, t = 0) = F (k). (S2)

Using separation of variables we get

dF

F − Fn
=

dt

N − t
.

Thus,

1

n− 1
log

∣∣∣∣ Fn

Fn − F

∣∣∣∣ = − log(N − t) + C1∣∣∣∣ Fn

Fn − F

∣∣∣∣ = e(n−1)(− log(N−t)+C1)

F 1−n = 1 + C2e
(n−1) log(N−t)

F =
(

1 + C2e
(n−1) log(N−t)

)− 1
n−1

Recalling that F (k, t = 0) = F (k), and substituting t = 0
gives

F (k)1−n = 1 + C2e
(n−1) log(N)

C2 =
(
F (k)1−n − 1

)
e−(n−1) log(N).

As a result,

F (k, t) =
(

1 +
(
F (k)1−n − 1

)
e(n−1) log[(N−t)/N ]

)− 1
n−1

,

(S3)
or

Fp(k) =
(
1 +

(
F (k)1−n − 1

)
pn−1

)− 1
n−1 , (S4)

where Fp(k) is the cumulative distribution of degree of
the occupied nodes after removing 1−p fraction of nodes.
For n = 1, the solution of the ODE is F = Const., name-
ly Fp(k) = F (k) as expected. Also Eq. (S4) converges to
it if we take the limit n→ 1.
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II. DERIVATION OF THE EXPONENTIAL
CONVERGENCE OF pc FOR LARGE n

First, we find Fp(k) and Pp(k) for large n. Examining
Eq. (S4) where n→∞, as elaborated below, we recognize
two behaviors depending on F (k) < p or F (k) > p. For
the leading term

F∞p (k) =

{
F (k)
p , F (k) < p

1, F (k) > p
(S5)

See Fig. S1 for illustration.
Let us denote the next term as

FIG. S1. Illustration of theory for Fp(k) for large n.
For small k, F (k) < p, Fp(k) → F (k)/p, and for large k,
F (k) > p, Fp(k) → 1. The dashed horizontal line is at the
value of p. k< and k> are the consecutive degrees for which
F (k<) < p < F (k>) respectively. For determining the decay
rate α in Eq. (S17), one should take p = pc, and find the
minimum of | log(F (k)/p∞c )| among all k, which is in fact
among k< and k>.

Fp(k) = F∞p (k) + ε(k, p, n) (S6)

Then, we approach finding the next term, ε, in each
range of degree k.
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For small k, such that F (k) < p,

Fp(k) ≈
(

1 +
( p
F

)n
− pn

)− 1
n

≈
(

1 +
( p
F

)n)− 1
n

=
F

p

(
1 +

(
F

p

)n)− 1
n

=
F

p
exp

[
− 1

n
log

(
1 +

(
F

p

)n)]
≈ F

p
exp

[
− 1

n

(
F

p

)n]
≈ F (k)

p

[
1− 1

n

(
F (k)

p

)n]
≈ F (k)

p
− 1

n
e−(n+1)[log p−logF (k)]

(S7)

For the particular case that there exists a degree satis-
fying F (k) = p,

Fp(k) ≈
(

1 +
( p
F

)n
− pn

)− 1
n

≈ 2−
1
n = e−

1
n log 2 ≈ 1− log 2

n

(S8)

For the limit F (k) → p such that (p/F (k))n → 1, let
us define ζ = 1− p/F which is small. Then,

(p/F )n = (1− ζ)n = exp(n ln(1− ζ))

≈ 1 + n ln(1− ζ) ≈ 1− ζn
= 1− n(1− p/F ).

Thus,

Fp(k) ≈
(

1 +
( p
F

)n
− pn

)− 1
n

≈ (2− n(1− p/F )− pn)
− 1

n

≈ exp

[
− 1

n
ln (2− n(1− p/F )− pn)

]
≈ exp

[
− 1

n
ln 2− 1

n
ln (1− n(1− p/F )/2− pn/2)

]
≈ exp

[
− ln 2

n
+

1− p/F
2

+
pn

2n

]
≈ 1− ln 2

n
+

1− p/F
2

+
pn

2n
(S9)

For large k, namely p < F (k) < 1,

Fp(k) ≈
(

1 +
( p
F

)n
− pn

)− 1
n

= exp

[
− 1

n
log
(

1 +
( p
F

)n
− pn

)]
≈ exp

[
− 1

n

( p
F

)n
+
pn

n

]
≈ 1− 1

n

(
p

F (k)

)n
+
pn

n

≈ 1− 1

n
exp (−n [logF (k)− log p]) .

(S10)

In the limit F (k) → 1, we should keep the last term
above, pn/n, in order to get Fp(k)→ 1. In more detail, if
F (k)n → 1 we can denote a small term ξ(k) = 1− F (k),
which satisfies

F (k)−n = exp(−n lnF (k)) ≈ 1− n lnF (k)

= 1− n ln(1− ξ(k)) ≈ 1 + nξ(k).

Substituting this into Eq. (S10) gives

Fp(k) ≈ 1− 1

n

(
p

F (k)

)n
+
pn

n

≈ 1− ξ(k)pn = 1− pn(1− F (k)).

(S11)

Finally, for F (k) = 1, it easy to see that also
Fp(k) = 1.

To summarize, the next term of Fp(k) is

ε(k, p, n) =

{
− 1
ne
−αkn, F (k) < 1

0, F (k) = 1
, (S12)

where αk = |log [p/F (k)]|.
If there are degrees which obey the limits F (k)n → 1, or
[F (k)/p]n → 1, then they satisfy

ε(k, p, n) =

{
− 1
n

(
ln 2− n

[
1− p

F (k)

])
,
(

p
F (k)

)n
→ 1

−pn(1− F (k)), F (k)n → 1
.

(S13)

Having an approximation for Fp(k), we approach now
to find pc using the equation for criticality,

1 =
p

〈k〉

∞∑
k=0

k(k − 1)Pp(k). (S14)

Before, we denote several special degrees: the degrees
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where F (k) is close to p, and the maximal degree, as
following

k< = max
F (k)<p

k,

k> = min
F (k)≥p

k,

K = min
F (k)=1

k.

Plugging Eqs. (S5),(S12),(S6) into Eq. (S14), and using
change of summation indexes, one can obtain

〈k〉
pc

=

∞∑
k=2

k(k − 1)∆Fp(k)

=

∞∑
k=2

k(k − 1)∆F∞p (k) +

K∑
k=2

k(k − 1)∆ε(k, pc, n)

=

k<∑
k=2

k(k − 1)
P (k)

pc
+

∞∑
k=k>+1

k(k − 1) · 0

+ k>k<

[
1− F (k<)

pc

]
− 2

K∑
k=1

kε(k, pc, n).

Hence,

〈k〉
pc

=

k<∑
k=2

k(k − 1)
P (k)

pc

+ k>k<

[
1− F (k<)

pc

]
− 2

K∑
k=1

kε(k, pc, n)

(S15)

and for n→∞, for the leading term, p∞c ,

〈k〉
p∞c

=

k<∑
k=2

k(k − 1)
P (k)

p∞c
+ k>k<

[
1− F (k<)

p∞c

]

p∞c = F (k<) +
1

k>k<

(
〈k〉 −

k<∑
k=2

k(k − 1)P (k)

)
,

where k< and k> are determined by p∞c , but are inde-
pendent of n.
For the next term, returning to the equation (S15) and
obtain

pc = p∞c +
2p∞c
k>k<

K∑
k=1

kε(k, p∞c , n) (S16)

The terms ε(k, p∞c , n) in the summation decay exponen-
tially with n by rate αk = |ln[p∞c /F (k)]|, and because
n → ∞, the dominant term is the one with the lowest
rate α = mink{αk}, and the corresponding k will be de-
noted by kslow, meaning α = αkslow .
Therefore,

pc ∼ p∞c −A
1

n
e−αn (S17)

where α = mink | log[p∞c /F (k)]| and A =
(2p∞c kslow)/(k>k<). It is obvious that kslow is k<
or k> because F (k) is monotonic.

We know that if F (k) = 1 then ε = 0, so if
F (kslow) = F (k>) = 1 then k< should be taken as kslow.
It should also be noted that if F (kslow) = p∞c or very
close, then ε(kslow, p

∞
c , n) = −n−1 log 2. Another special

case is where kslow is not unique, then we take all of
them, and kslow is replaced by

∑
kslow

kslow.

FIG. S2. Examples of F (k). The decay rate α deter-
mines the regimes of power law or exponential convergence
of pc(n → ∞). α depends on the minimal ratio between p∞c
and F (k). Hence α is influenced by the density of F (k) in the
neighborhood of p∞c . Here we show the patterns of F (k) for
ER network with N = 104 and k = 2 (a), and for SF network
with N = 104 and γ = 2.5 (b). One can see that for larger
p∞c , F (k) is much more dense for SF network, which makes α
become small and extend the power-law regime.

The behavior of Eq. (S17) depends on the value
of n, and splits into two regimes. Where n � 1/α,
convergence will be according to a power-law, and where
n � 1/α the convergence is exponential. It means that
the width of these two regimes depends on α. The value
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of α depends on the value of p∞c and the details of the
degree distribution. Therefore, taking conditions provid-
ing p∞c → 1 might lead to a broader power law regime.
That is because the tail of the degree distribution, P (k),
has very small values, which can be ∼ 1/N . That implies
that there are values of F (k) ∼ 1 − 1/N , which yields
α = mink |log (p∞c /F (k))| ≈ log(1)−log(1−1/N) ≈ 1/N ,
and makes the power law regime being any n � N in
this case. In contrast, if p∞c is not very close to 1, then
α is expected to be finite because F (k) in not very dense
in this regime. Therefore, the exponential behavior will
rule even for small n. See in Fig. S2 examples of ER
and SF networks.

III. DERIVATION OF pc VS n FOR
SCALE-FREE NETWORKS WITH SMALL n

Here we consider SF network with 2 < γ < 3. If
n = 1, then pc → 0. In order to find out for which n,
pc becomes non-zero, we analyze Eqs. (S4) and (S14) for
large k (high degrees govern the behavior in SF network),
small n and p as follows.
It can be shown that

F (k) ≈ 1− (k/m)
1−γ

, (S18)

Then,

F (k)n ≈
(

1− (k/m)
1−γ
)n
≈ exp

[
n log

(
1− (k/m)

1−γ
)]

≈ exp
[
−n (k/m)

1−γ
]
≈ 1− n (k/m)

1−γ
,

F (k)1−n ≈ 1 + (n− 1) (k/m)
1−γ

,

where we assume (k/m)γ−1 � n for large degrees. Plug-
ging this into Eq. (S4),

Fp(k) =
(
1 +

(
F (k)1−n − 1

)
pn−1

)− 1
n−1

≈
(
1 + (n− 1) (k/m)

1−γ
pn−1

)− 1
n−1

≈ exp

[
− 1

n− 1
log
(
1 + (n− 1) (k/m)

1−γ
pn−1

)]
≈ exp

[
− 1

n− 1
(n− 1) (k/m)

1−γ
pn−1

]
≈ 1− pn−1 (k/m)

1−γ
.

That leads to

Pp(k) ≈ ∂Fp(k)

∂k
≈ γ − 1

m
pn−1

(
k

m

)−γ
= pn−1P (k).

(S19)

Now we should notice that Pp(k) has a new natural cut-
off, Kp, which depends on p as following

∞∫
Kp

pn−1Ak−γ =
1

Np
,

Kp ∼ pn/(γ−1)N1/(γ−1).

(S20)

Taking the result of Eq. (S19) into Eq. (S14) and keep-
ing the leading terms, where 〈kpc〉 (average degree of the
remaining nodes) is finite and 〈k2pc〉 increases with N , we
obtain

1 =
pc
〈k〉

∞∑
k=0

k(k − 1)Ppc(k) ∼ pc
〈k〉
〈k2pc〉.

But

〈k2pc〉 ∼
Kpc∫
m

k2pn−1c Ak−γ ∼ pn−1c Kpc
3−γ ∼ pn−1+nβc Nβ ,

(S21)

where β = (3− γ)/(γ − 1).
Substituting 〈k2pc〉 into the Eq. above provides

1 ∼ pc
〈k〉
〈k2pc〉 ∼

pn+nβc

〈k〉
Nβ .

Therefore

pc ∼ N−δ/n ∼ exp [−δ log(N)/n] , (S22)

where

δ =
β

1 + β
=

3− γ
2

. (S23)

This scaling is with N . The pre-factor depends on n but
not in N . The scaling is valid for large N .
From Eq. (S22), it is easy to see that if n � logN ,
pc → 0, while if n ∼ logN , pc becomes non-zero.
After we completed the calculation, for consistency, we
should return to check our initial assumption saying
(k/m)γ−1 � n for the large degrees. We should apply
this condition on Kpc that we found. n� (Kpc/m)γ−1 ∼
pncN/m

γ−1, and substituting pc that we found, we get
n � N1−δ = N (γ−1)/2. To conclude, we can say that
Eq. (S22) is valid for

n� N (γ−1)/2. (S24)

IV. EXAMPLE OF A SIMPLE NETWORK
WITH ONLY TWO DEGREES

Here we consider an example of a simple degree distri-
bution which can be analyzed simply as following

P (k) =


r, k = 1

1− r, k = 3

0, else

(S25)

Then F (1) = r, F (2) = r, F (3) = 1.
Assuming that r < pc < 1, one can observe that this

assumption is consistent with the final result. Hence,
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from Eq. (S7)

Fp(k) =



0, k = 0

r
pc
− 1

n

(
r
pc

)n+1

, k = 1

r
pc
− 1

n

(
r
pc

)n+1

, k = 2

1, k = 3

(S26)

Thus

〈k〉
pc

=

3∑
k=2

k(k − 1)∆Fp(k) = 2 · 1 · 0

+ 3 · 2 ·

[
1− r

pc
+

1

n

(
r

pc

)n+1
]
,

3− 2r

pc
= 6

[
1− r

pc
+

1

n

(
r

pc

)n+1
]
,

pc =
3 + 4r

6
− r

n

(
r

pc

)n
.

For the limit of n→∞

p∞c =
1

2
+

2r

3
. (S27)

Note that r < 3/4, otherwise, there is no giant compo-
nent even without attack.
Then, we conclude for large n that pc = p∞c + o(1). As a
result, for the leading term

pc = p∞c −
r

n

(
r

p∞c

)n
= p∞c −

r

n
exp(−αn), (S28)

where α = log(2/3 + 1/(2r)).

The other limit of n = 1 is the random attack, and pc is
obtained by the simple known formula for configuration
model pc = 1/(κ− 1). Is is easy to find that 〈k〉 = 3− 2r
and 〈k2〉 = 9− 8r, resulting

pc(n = 1) =
1

2
+

1

6

r

1− r
. (S29)

Now we analyze a similar but a little bit different case
where

P (k) =


r, k = 2

1− r, k = 3

0, else

(S30)

Here F (1) = 0, F (2) = r, F (3) = 1. Thus,

Fp(k) =


0, k = 1

r
pc
− 1

n

(
r
pc

)n+1

, k = 2

1, k = 3

(S31)

Therefore,

〈k〉
pc

=

3∑
k=2

k(k − 1)∆Fp(k) = 2 · 1 ·

[
r

pc
− 1

n

(
r

pc

)n+1
]

+ 3 · 2 ·

[
1− r

pc
+

1

n

(
r

pc

)n+1
]
,

3− r
pc

= 6− 4

[
r

pc
− 1

n

(
r

pc

)n+1
]
,

pc =
1 + r

2
− 2r

3n

(
r

pc

)n
.

For the limit of n→∞

p∞c =
1

2
+
r

2
. (S32)

Therefore, for the next leading term

pc =
1 + r

2
− 2r

3n

(
2r

1 + r

)n
. (S33)

Now, if we will take r ∼ 1− b/N , where b is finite, then

pc ≈ 1− 2

3n

(
1− b

N

)n
≈ 1− 2

3n
e−b

n
N . (S34)

Hence, if n� N then

1− pc ∼
1

n
. (S35)

This happens because pc → 1 where r → 1, but F (2) = r,
hence F (2) → pc, which yields a power law behavior of
pc(n).


