Supplementary Materials - Efficient network immunization under limited knowledge

Yangyang Liu, ${ }^{1, *}$ Hillel Sanhedrai, ${ }^{2, *}$ GaoGao Dong, ${ }^{3, \dagger}$ Louis M. Shekhtman, ${ }^{2,4, \dagger}$ Fan Wang, ${ }^{2}$ Sergey V. Buldyrev, ${ }^{5}$ and Shlomo Havlin ${ }^{2}$
${ }^{1}$ Department of Systems Science, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, China
${ }^{2}$ Department of Physics, Bar-Ilan University, Ramat Gan 5290002, Israel
${ }^{3}$ Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu 212013, China
${ }^{4}$ Networks Science Institute, Northeastern University, Boston, MA 02115
${ }^{5}$ Department of Physics, Yeshiva University, New York, New York 10033, USA

(Dated: April 2, 2020)

I. SOLUTION OF THE ODE FOR $F(k, t)$

Consider the ODE

$$
\begin{equation*}
-F+(N-t) \dot{F}=-F^{n} \tag{S1}
\end{equation*}
$$

where $F=F(k, t)$, with the initial condition

$$
\begin{equation*}
F(k, t=0)=F(k) \tag{S2}
\end{equation*}
$$

Using separation of variables we get

$$
\frac{\mathrm{d} F}{F-F^{n}}=\frac{\mathrm{d} t}{N-t}
$$

Thus,

$$
\begin{gathered}
\frac{1}{n-1} \log \left|\frac{F^{n}}{F^{n}-F}\right|=-\log (N-t)+C_{1} \\
\left|\frac{F^{n}}{F^{n}-F}\right|=e^{(n-1)\left(-\log (N-t)+C_{1}\right)} \\
F^{1-n}=1+C_{2} e^{(n-1) \log (N-t)} \\
F=\left(1+C_{2} e^{(n-1) \log (N-t)}\right)^{-\frac{1}{n-1}}
\end{gathered}
$$

Recalling that $F(k, t=0)=F(k)$, and substituting $t=0$ gives

$$
\begin{gathered}
F(k)^{1-n}=1+C_{2} e^{(n-1) \log (N)} \\
C_{2}=\left(F(k)^{1-n}-1\right) e^{-(n-1) \log (N)}
\end{gathered}
$$

As a result,

$$
\begin{equation*}
F(k, t)=\left(1+\left(F(k)^{1-n}-1\right) e^{(n-1) \log [(N-t) / N]}\right)^{-\frac{1}{n-1}} \tag{S3}
\end{equation*}
$$

or

$$
\begin{equation*}
F_{p}(k)=\left(1+\left(F(k)^{1-n}-1\right) p^{n-1}\right)^{-\frac{1}{n-1}} \tag{S4}
\end{equation*}
$$

where $F_{p}(k)$ is the cumulative distribution of degree of the occupied nodes after removing $1-p$ fraction of nodes. For $n=1$, the solution of the ODE is $F=$ Const., namely $F_{p}(k)=F(k)$ as expected. Also Eq. (S4) converges to it if we take the limit $n \rightarrow 1$.

[^0]
II. DERIVATION OF THE EXPONENTIAL CONVERGENCE OF p_{c} FOR LARGE n

First, we find $F_{p}(k)$ and $P_{p}(k)$ for large n. Examining Eq. (S4) where $n \rightarrow \infty$, as elaborated below, we recognize two behaviors depending on $F(k)<p$ or $F(k)>p$. For the leading term

$$
F_{p}^{\infty}(k)= \begin{cases}\frac{F(k)}{p}, & F(k)<p \tag{S5}\\ 1, & F(k)>p\end{cases}
$$

See Fig. S1 for illustration.
Let us denote the next term as

FIG. S1. Illustration of theory for $F_{p}(k)$ for large n. For small $k, F(k)<p, F_{p}(k) \rightarrow F(k) / p$, and for large k, $F(k)>p, F_{p}(k) \rightarrow 1$. The dashed horizontal line is at the value of $p . k_{<}$and $k_{>}$are the consecutive degrees for which $F\left(k_{<}\right)<p<F\left(k_{>}\right)$respectively. For determining the decay rate α in Eq. (S17), one should take $p=p_{c}$, and find the minimum of $\left|\log \left(F(k) / p_{c}^{\infty}\right)\right|$ among all k, which is in fact among $k_{<}$and $k_{>}$.

$$
\begin{equation*}
F_{p}(k)=F_{p}^{\infty}(k)+\epsilon(k, p, n) \tag{S6}
\end{equation*}
$$

Then, we approach finding the next term, ϵ, in each range of degree k.

For small k, such that $F(k)<p$,

$$
\begin{align*}
F_{p}(k) & \approx\left(1+\left(\frac{p}{F}\right)^{n}-p^{n}\right)^{-\frac{1}{n}} \approx\left(1+\left(\frac{p}{F}\right)^{n}\right)^{-\frac{1}{n}} \\
& =\frac{F}{p}\left(1+\left(\frac{F}{p}\right)^{n}\right)^{-\frac{1}{n}} \\
& =\frac{F}{p} \exp \left[-\frac{1}{n} \log \left(1+\left(\frac{F}{p}\right)^{n}\right)\right] \\
& \approx \frac{F}{p} \exp \left[-\frac{1}{n}\left(\frac{F}{p}\right)^{n}\right] \approx \frac{F(k)}{p}\left[1-\frac{1}{n}\left(\frac{F(k)}{p}\right)^{n}\right] \\
& \approx \frac{F(k)}{p}-\frac{1}{n} e^{-(n+1)[\log p-\log F(k)]} \tag{S7}
\end{align*}
$$

For the particular case that there exists a degree satisfying $\boldsymbol{F}(\boldsymbol{k})=\boldsymbol{p}$,

$$
\begin{align*}
F_{p}(k) & \approx\left(1+\left(\frac{p}{F}\right)^{n}-p^{n}\right)^{-\frac{1}{n}} \tag{S8}\\
& \approx 2^{-\frac{1}{n}}=e^{-\frac{1}{n} \log 2} \approx 1-\frac{\log 2}{n}
\end{align*}
$$

For the limit $\boldsymbol{F}(\boldsymbol{k}) \rightarrow \boldsymbol{p}$ such that $(p / F(k))^{n} \rightarrow 1$, let us define $\zeta=1-p / F$ which is small. Then,

$$
\begin{aligned}
(p / F)^{n} & =(1-\zeta)^{n}=\exp (n \ln (1-\zeta)) \\
& \approx 1+n \ln (1-\zeta) \approx 1-\zeta n \\
& =1-n(1-p / F)
\end{aligned}
$$

Thus,

$$
\begin{align*}
F_{p}(k) & \approx\left(1+\left(\frac{p}{F}\right)^{n}-p^{n}\right)^{-\frac{1}{n}} \\
& \approx\left(2-n(1-p / F)-p^{n}\right)^{-\frac{1}{n}} \\
& \approx \exp \left[-\frac{1}{n} \ln \left(2-n(1-p / F)-p^{n}\right)\right] \\
& \approx \exp \left[-\frac{1}{n} \ln 2-\frac{1}{n} \ln \left(1-n(1-p / F) / 2-p^{n} / 2\right)\right] \\
& \approx \exp \left[-\frac{\ln 2}{n}+\frac{1-p / F}{2}+\frac{p^{n}}{2 n}\right] \\
& \approx 1-\frac{\ln 2}{n}+\frac{1-p / F}{2}+\frac{p^{n}}{2 n} \tag{S9}
\end{align*}
$$

For large k, namely $p<F(k)<1$,

$$
\begin{align*}
F_{p}(k) & \approx\left(1+\left(\frac{p}{F}\right)^{n}-p^{n}\right)^{-\frac{1}{n}} \\
& =\exp \left[-\frac{1}{n} \log \left(1+\left(\frac{p}{F}\right)^{n}-p^{n}\right)\right] \\
& \approx \exp \left[-\frac{1}{n}\left(\frac{p}{F}\right)^{n}+\frac{p^{n}}{n}\right] \tag{S10}\\
& \approx 1-\frac{1}{n}\left(\frac{p}{F(k)}\right)^{n}+\frac{p^{n}}{n} \\
& \approx 1-\frac{1}{n} \exp (-n[\log F(k)-\log p])
\end{align*}
$$

In the limit $\boldsymbol{F}(\boldsymbol{k}) \rightarrow \mathbf{1}$, we should keep the last term above, p^{n} / n, in order to get $F_{p}(k) \rightarrow 1$. In more detail, if $F(k)^{n} \rightarrow 1$ we can denote a small term $\xi(k)=1-F(k)$, which satisfies

$$
\begin{gathered}
F(k)^{-n}=\exp (-n \ln F(k)) \approx 1-n \ln F(k) \\
=1-n \ln (1-\xi(k)) \approx 1+n \xi(k) .
\end{gathered}
$$

Substituting this into Eq. (S10) gives

$$
\begin{align*}
F_{p}(k) & \approx 1-\frac{1}{n}\left(\frac{p}{F(k)}\right)^{n}+\frac{p^{n}}{n} \tag{S11}\\
& \approx 1-\xi(k) p^{n}=1-p^{n}(1-F(k))
\end{align*}
$$

Finally, for $\boldsymbol{F}(\boldsymbol{k})=\mathbf{1}$, it easy to see that also $F_{p}(k)=1$.

To summarize, the next term of $F_{p}(k)$ is

$$
\epsilon(k, p, n)= \begin{cases}-\frac{1}{n} e^{-\alpha_{k} n}, & F(k)<1 \tag{S12}\\ 0, & F(k)=1\end{cases}
$$

where $\alpha_{k}=|\log [p / F(k)]|$.
If there are degrees which obey the limits $F(k)^{n} \rightarrow 1$, or $[F(k) / p]^{n} \rightarrow 1$, then they satisfy
$\epsilon(k, p, n)=\left\{\begin{array}{ll}-\frac{1}{n}\left(\ln 2-n\left[1-\frac{p}{F(k)}\right]\right), & \left(\frac{p}{F(k)}\right)^{n} \rightarrow 1 \\ -p^{n}(1-F(k)), & F(k)^{n} \rightarrow 1\end{array}\right.$.

Having an approximation for $F_{p}(k)$, we approach now to find p_{c} using the equation for criticality,

$$
\begin{equation*}
1=\frac{p}{\langle k\rangle} \sum_{k=0}^{\infty} k(k-1) P_{p}(k) . \tag{S14}
\end{equation*}
$$

Before, we denote several special degrees: the degrees
where $F(k)$ is close to p, and the maximal degree, as following

$$
\begin{aligned}
k_{<} & =\max _{F(k)<p} k, \\
k_{>} & =\min _{F(k) \geq p} k, \\
K & =\min _{F(k)=1} k
\end{aligned}
$$

Plugging Eqs. (S5),(S12),(S6) into Eq. (S14), and using change of summation indexes, one can obtain

$$
\begin{aligned}
\frac{\langle k\rangle}{p_{c}} & =\sum_{k=2}^{\infty} k(k-1) \Delta F_{p}(k) \\
& =\sum_{k=2}^{\infty} k(k-1) \Delta F_{p}^{\infty}(k)+\sum_{k=2}^{K} k(k-1) \Delta \epsilon\left(k, p_{c}, n\right) \\
& =\sum_{k=2}^{k_{<}} k(k-1) \frac{P(k)}{p_{c}}+\sum_{k=k_{>}+1}^{\infty} k(k-1) \cdot 0 \\
& +k_{>} k_{<}\left[1-\frac{F\left(k_{<}\right)}{p_{c}}\right]-2 \sum_{k=1}^{K} k \epsilon\left(k, p_{c}, n\right) .
\end{aligned}
$$

Hence,

$$
\begin{align*}
\frac{\langle k\rangle}{p_{c}} & =\sum_{k=2}^{k_{<}} k(k-1) \frac{P(k)}{p_{c}} \\
& +k_{>} k_{<}\left[1-\frac{F\left(k_{<}\right)}{p_{c}}\right]-2 \sum_{k=1}^{K} k \epsilon\left(k, p_{c}, n\right) \tag{S15}
\end{align*}
$$

and for $n \rightarrow \infty$, for the leading term, p_{c}^{∞},

$$
\begin{gathered}
\frac{\langle k\rangle}{p_{c}^{\infty}}=\sum_{k=2}^{k_{<}} k(k-1) \frac{P(k)}{p_{c}^{\infty}}+k_{>} k_{<}\left[1-\frac{F\left(k_{<}\right)}{p_{c}^{\infty}}\right] \\
p_{c}^{\infty}=F\left(k_{<}\right)+\frac{1}{k_{>} k_{<}}\left(\langle k\rangle-\sum_{k=2}^{k_{<}} k(k-1) P(k)\right),
\end{gathered}
$$

where $k_{<}$and $k_{>}$are determined by p_{c}^{∞}, but are independent of n.
For the next term, returning to the equation (S15) and obtain

$$
\begin{equation*}
p_{c}=p_{c}^{\infty}+\frac{2 p_{c}^{\infty}}{k_{>} k_{<}} \sum_{k=1}^{K} k \epsilon\left(k, p_{c}^{\infty}, n\right) \tag{S16}
\end{equation*}
$$

The terms $\epsilon\left(k, p_{c}^{\infty}, n\right)$ in the summation decay exponentially with n by rate $\alpha_{k}=\left|\ln \left[p_{c}^{\infty} / F(k)\right]\right|$, and because $n \rightarrow \infty$, the dominant term is the one with the lowest rate $\alpha=\min _{k}\left\{\alpha_{k}\right\}$, and the corresponding k will be denoted by $k_{\text {slow }}$, meaning $\alpha=\alpha_{k_{\text {slow }}}$.
Therefore,

$$
\begin{equation*}
p_{c} \sim p_{c}^{\infty}-A \frac{1}{n} e^{-\alpha n} \tag{S17}
\end{equation*}
$$

where $\quad \alpha=\min _{k}\left|\log \left[p_{c}^{\infty} / F(k)\right]\right| \quad$ and $A=$ $\left(2 p_{c}^{\infty} k_{\text {slow }}\right) /\left(k_{>} k_{<}\right)$. It is obvious that $k_{\text {slow }}$ is $k_{<}$ or $k_{>}$because $F(k)$ is monotonic.

We know that if $F(k)=1$ then $\epsilon=0$, so if $F\left(k_{\text {slow }}\right)=F\left(k_{>}\right)=1$ then $k_{<}$should be taken as $k_{\text {slow }}$. It should also be noted that if $F\left(k_{\text {slow }}\right)=p_{c}^{\infty}$ or very close, then $\epsilon\left(k_{\text {slow }}, p_{c}^{\infty}, n\right)=-n^{-1} \log 2$. Another special case is where $k_{\text {slow }}$ is not unique, then we take all of them, and $k_{\text {slow }}$ is replaced by $\sum_{k_{\text {slow }}} k_{\text {slow }}$.

FIG. S2. Examples of $F(k)$. The decay rate α determines the regimes of power law or exponential convergence of $p_{c}(n \rightarrow \infty)$. α depends on the minimal ratio between p_{c}^{∞} and $F(k)$. Hence α is influenced by the density of $F(k)$ in the neighborhood of p_{c}^{∞}. Here we show the patterns of $F(k)$ for ER network with $N=10^{4}$ and $k=2$ (a), and for SF network with $N=10^{4}$ and $\gamma=2.5$ (b). One can see that for larger $p_{c}^{\infty}, F(k)$ is much more dense for SF network, which makes α become small and extend the power-law regime.

The behavior of Eq. (S17) depends on the value of n, and splits into two regimes. Where $n \ll 1 / \alpha$, convergence will be according to a power-law, and where $n \gg 1 / \alpha$ the convergence is exponential. It means that the width of these two regimes depends on α. The value
of α depends on the value of p_{c}^{∞} and the details of the degree distribution. Therefore, taking conditions providing $p_{c}^{\infty} \rightarrow 1$ might lead to a broader power law regime. That is because the tail of the degree distribution, $P(k)$, has very small values, which can be $\sim 1 / N$. That implies that there are values of $F(k) \sim 1-1 / N$, which yields $\alpha=\min _{k}\left|\log \left(p_{c}^{\infty} / F(k)\right)\right| \approx \log (1)-\log (1-1 / N) \approx 1 / N$, and makes the power law regime being any $n \ll N$ in this case. In contrast, if p_{c}^{∞} is not very close to 1 , then α is expected to be finite because $F(k)$ in not very dense in this regime. Therefore, the exponential behavior will rule even for small n. See in Fig. S2 examples of ER and SF networks.

III. DERIVATION OF p_{c} VS n FOR SCALE-FREE NETWORKS WITH SMALL n

Here we consider SF network with $2<\gamma<3$. If $n=1$, then $p_{c} \rightarrow 0$. In order to find out for which n, p_{c} becomes non-zero, we analyze Eqs. (S4) and (S14) for large k (high degrees govern the behavior in SF network), small n and p as follows.
It can be shown that

$$
\begin{equation*}
F(k) \approx 1-(k / m)^{1-\gamma} \tag{S18}
\end{equation*}
$$

Then,

$$
\begin{gathered}
F(k)^{n} \approx\left(1-(k / m)^{1-\gamma}\right)^{n} \approx \exp \left[n \log \left(1-(k / m)^{1-\gamma}\right)\right] \\
\approx \exp \left[-n(k / m)^{1-\gamma}\right] \approx 1-n(k / m)^{1-\gamma}, \\
F(k)^{1-n} \approx 1+(n-1)(k / m)^{1-\gamma},
\end{gathered}
$$

where we assume $(k / m)^{\gamma-1} \gg n$ for large degrees. Plugging this into Eq. (S4),

$$
\begin{aligned}
F_{p}(k) & =\left(1+\left(F(k)^{1-n}-1\right) p^{n-1}\right)^{-\frac{1}{n-1}} \\
& \approx\left(1+(n-1)(k / m)^{1-\gamma} p^{n-1}\right)^{-\frac{1}{n-1}} \\
& \approx \exp \left[-\frac{1}{n-1} \log \left(1+(n-1)(k / m)^{1-\gamma} p^{n-1}\right)\right] \\
& \approx \exp \left[-\frac{1}{n-1}(n-1)(k / m)^{1-\gamma} p^{n-1}\right] \\
& \approx 1-p^{n-1}(k / m)^{1-\gamma} .
\end{aligned}
$$

That leads to

$$
\begin{equation*}
P_{p}(k) \approx \frac{\partial F_{p}(k)}{\partial k} \approx \frac{\gamma-1}{m} p^{n-1}\left(\frac{k}{m}\right)^{-\gamma}=p^{n-1} P(k) \tag{S19}
\end{equation*}
$$

Now we should notice that $P_{p}(k)$ has a new natural cutoff, K_{p}, which depends on p as following

$$
\begin{gather*}
\int_{K_{p}}^{\infty} p^{n-1} A k^{-\gamma}=\frac{1}{N p}, \tag{S20}\\
K_{p} \sim p^{n /(\gamma-1)} N^{1 /(\gamma-1)} .
\end{gather*}
$$

Taking the result of Eq. (S19) into Eq. (S14) and keeping the leading terms, where $\left\langle k_{p_{c}}\right\rangle$ (average degree of the remaining nodes) is finite and $\left\langle k_{p_{c}}^{2}\right\rangle$ increases with N, we obtain

$$
1=\frac{p_{c}}{\langle k\rangle} \sum_{k=0}^{\infty} k(k-1) P_{p_{c}}(k) \sim \frac{p_{c}}{\langle k\rangle}\left\langle k_{p_{c}}^{2}\right\rangle .
$$

But

$$
\begin{equation*}
\left\langle k_{p_{c}}^{2}\right\rangle \sim \int_{m}^{K_{p_{c}}} k^{2} p_{c}^{n-1} A k^{-\gamma} \sim p_{c}^{n-1} K_{p_{c}}{ }^{3-\gamma} \sim p_{c}^{n-1+n \beta} N^{\beta}, \tag{S21}
\end{equation*}
$$

where $\beta=(3-\gamma) /(\gamma-1)$.
Substituting $\left\langle k_{p_{c}}^{2}\right\rangle$ into the Eq. above provides

$$
1 \sim \frac{p_{c}}{\langle k\rangle}\left\langle k_{p_{c}}^{2}\right\rangle \sim \frac{p_{c}^{n+n \beta}}{\langle k\rangle} N^{\beta} .
$$

Therefore

$$
\begin{equation*}
p_{c} \sim N^{-\delta / n} \sim \exp [-\delta \log (N) / n] \tag{S22}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta=\frac{\beta}{1+\beta}=\frac{3-\gamma}{2} \tag{S23}
\end{equation*}
$$

This scaling is with N. The pre-factor depends on n but not in N. The scaling is valid for large N.
From Eq. (S22), it is easy to see that if $n \ll \log N$, $p_{c} \rightarrow 0$, while if $n \sim \log N, p_{c}$ becomes non-zero.
After we completed the calculation, for consistency, we should return to check our initial assumption saying $(k / m)^{\gamma-1} \gg n$ for the large degrees. We should apply this condition on $K_{p_{c}}$ that we found. $n \ll\left(K_{p_{c}} / m\right)^{\gamma-1} \sim$ $p_{c}^{n} N / m^{\gamma-1}$, and substituting p_{c} that we found, we get $n \ll N^{1-\delta}=N^{(\gamma-1) / 2}$. To conclude, we can say that Eq. (S22) is valid for

$$
\begin{equation*}
n \ll N^{(\gamma-1) / 2} \tag{S24}
\end{equation*}
$$

IV. EXAMPLE OF A SIMPLE NETWORK WITH ONLY TWO DEGREES

Here we consider an example of a simple degree distribution which can be analyzed simply as following

$$
P(k)= \begin{cases}r, & k=1 \tag{S25}\\ 1-r, & k=3 \\ 0, & \text { else }\end{cases}
$$

Then $F(1)=r, F(2)=r, F(3)=1$.
Assuming that $r<p_{c}<1$, one can observe that this assumption is consistent with the final result. Hence,
from Eq. (S7)

$$
F_{p}(k)= \begin{cases}0, & k=0 \tag{S26}\\ \frac{r}{p_{c}}-\frac{1}{n}\left(\frac{r}{p_{c}}\right)^{n+1}, & k=1 \\ \frac{r}{p_{c}}-\frac{1}{n}\left(\frac{r}{p_{c}}\right)^{n+1}, & k=2 \\ 1, & k=3\end{cases}
$$

Thus

$$
\begin{gathered}
\frac{\langle k\rangle}{p_{c}}=\sum_{k=2}^{3} k(k-1) \Delta F_{p}(k)=2 \cdot 1 \cdot 0 \\
+3 \cdot 2 \cdot\left[1-\frac{r}{p_{c}}+\frac{1}{n}\left(\frac{r}{p_{c}}\right)^{n+1}\right] \\
\frac{3-2 r}{p_{c}}=6\left[1-\frac{r}{p_{c}}+\frac{1}{n}\left(\frac{r}{p_{c}}\right)^{n+1}\right] \\
p_{c}=\frac{3+4 r}{6}-\frac{r}{n}\left(\frac{r}{p_{c}}\right)^{n}
\end{gathered}
$$

For the limit of $n \rightarrow \infty$

$$
\begin{equation*}
p_{c}^{\infty}=\frac{1}{2}+\frac{2 r}{3} \tag{S27}
\end{equation*}
$$

Note that $r<3 / 4$, otherwise, there is no giant component even without attack.
Then, we conclude for large n that $p_{c}=p_{c}^{\infty}+o(1)$. As a result, for the leading term

$$
\begin{equation*}
p_{c}=p_{c}^{\infty}-\frac{r}{n}\left(\frac{r}{p_{c}^{\infty}}\right)^{n}=p_{c}^{\infty}-\frac{r}{n} \exp (-\alpha n) \tag{S28}
\end{equation*}
$$

where $\alpha=\log (2 / 3+1 /(2 r))$.

The other limit of $n=1$ is the random attack, and p_{c} is obtained by the simple known formula for configuration model $p_{c}=1 /(\kappa-1)$. Is is easy to find that $\langle k\rangle=3-2 r$ and $\left\langle k^{2}\right\rangle=9-8 r$, resulting

$$
\begin{equation*}
p_{c}(n=1)=\frac{1}{2}+\frac{1}{6} \frac{r}{1-r} \tag{S29}
\end{equation*}
$$

Now we analyze a similar but a little bit different case where

$$
P(k)= \begin{cases}r, & k=2 \tag{S30}\\ 1-r, & k=3 \\ 0, & \text { else }\end{cases}
$$

Here $F(1)=0, F(2)=r, F(3)=1$. Thus,

$$
F_{p}(k)= \begin{cases}0, & k=1 \tag{S31}\\ \frac{r}{p_{c}}-\frac{1}{n}\left(\frac{r}{p_{c}}\right)^{n+1}, & k=2 \\ 1, & k=3\end{cases}
$$

Therefore,

$$
\begin{gathered}
\frac{\langle k\rangle}{p_{c}}=\sum_{k=2}^{3} k(k-1) \Delta F_{p}(k)=2 \cdot 1 \cdot\left[\frac{r}{p_{c}}-\frac{1}{n}\left(\frac{r}{p_{c}}\right)^{n+1}\right] \\
+3 \cdot 2 \cdot\left[1-\frac{r}{p_{c}}+\frac{1}{n}\left(\frac{r}{p_{c}}\right)^{n+1}\right] \\
\frac{3-r}{p_{c}}=6-4\left[\frac{r}{p_{c}}-\frac{1}{n}\left(\frac{r}{p_{c}}\right)^{n+1}\right] \\
p_{c}=\frac{1+r}{2}-\frac{2 r}{3 n}\left(\frac{r}{p_{c}}\right)^{n}
\end{gathered}
$$

For the limit of $n \rightarrow \infty$

$$
\begin{equation*}
p_{c}^{\infty}=\frac{1}{2}+\frac{r}{2} \tag{S32}
\end{equation*}
$$

Therefore, for the next leading term

$$
\begin{equation*}
p_{c}=\frac{1+r}{2}-\frac{2 r}{3 n}\left(\frac{2 r}{1+r}\right)^{n} \tag{S33}
\end{equation*}
$$

Now, if we will take $r \sim 1-b / N$, where b is finite, then

$$
\begin{equation*}
p_{c} \approx 1-\frac{2}{3 n}\left(1-\frac{b}{N}\right)^{n} \approx 1-\frac{2}{3 n} e^{-b \frac{n}{N}} \tag{S34}
\end{equation*}
$$

Hence, if $n \ll N$ then

$$
\begin{equation*}
1-p_{c} \sim \frac{1}{n} \tag{S35}
\end{equation*}
$$

This happens because $p_{c} \rightarrow 1$ where $r \rightarrow 1$, but $F(2)=r$, hence $F(2) \rightarrow p_{c}$, which yields a power law behavior of $p_{c}(n)$.

[^0]: * Y. Liu and H. Sanhedrai contributed equally to this work \dagger To whom correspondence may be addressed. Email: dfocus.gao@gmail.com or lsheks@gmail.com

