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DeePaN: A deep patient graph convolutional network integrating 

clinico-genomic evidence to stratify lung cancers benefiting from 

immunotherapy 
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I. Supplemental Figures 

Cohort characteristics 

The cohort selection process, baseline demographic and pathologic characteristics is shown 

in Supplemental Figure 1: (A) shows how the cohort was identified with inclusion and 

exclusion criteria. (B) shows the clinical features, such as hemoglobin, erythrocytes, 

hematocrit, etc. They can be categorized as molecular pathological features, blood test, and 

demographic behavioral and vital pathologic features. (C) shows the genomic features 

visualized by the waterfall plot of gene mutation profiling. Each row represents a gene and 

each column represents a patient. The mutation type can be SV (structural variant), CN 

(copy number variations), and RE (rearrangement). The potentially actionable somatic 

mutations found in this study are consistent with prior studies1-3.  

 

 (A) 
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(B) 

 

(C) 

Supplemental Figure 1. NSCLC IO treated patient cohort and visualization of their 

clinical and genomic features A) Cohort Identification: an illustration of how patient 

cohort was identified using inclusion and exclusion criteria in this study. B) visualization 
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of clinical and genomic features in the study cohort. Features are categorized into 

molecular pathology features, blood test features, etc. Gray color indicates missingness in 

the feature. Note that “Tumor response” is not included as an input feature. C) Waterfall 

plot of DNA alterations in the study cohort. The genes are sorted based on frequency.  
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II. Supplemental Tables 

 
Supplemental Table 1: Baseline demographic and pathologic characteristics for the 
overall IO cohort, IO beneficial subgroup, and IO non-beneficial subgroup.  
 
 

Table 1. Baseline Demographic and Pathologic Characteristics
Characteristics All IO Beneficial Subgroup IO Non-beneficial Subgroups
number of patients 1,937 400 897
Age (year)
  Median, MAD 67.0, 10.4 67.0, 10.4 67.0, 10.4
  Range 26.0-85.0 26.0-85.0 28.0-85.0
Sex: no., %
  Male 984 (50.8) 148 (37.0) 522 (58.2)
  Female 953 (49.2) 252 (63.0) 375 (41.8)
Race
  African American 144 (7.4) 31 (7.8) 80 (8.9)
  White 1,428 (73.7) 289 (72.3) 648 (72.2)
  Asian 46 (2.4) 10 (2.5) 19 (2.1)
  Other Race 143 (7.4) 41 (10.3) 68 (7.6)
Histology
  Non-squamous cell carcinoma 1,433 (73.9) 329 (82.2) 601 (67.0)
  Squamous cell carcinoma 419 (21.6) 62 (15.5) 259 (28.9)
  NSCLC histology NOS 75 (3.8) 9 (2.3) 37 (4.1)
Stage: no., %
  Stage I 164 (8.5) 45 (11.3) 69 (7.7)
  Stage II 122 (6.3) 30 (7.5) 55 (6.1)
  Stage III 372 (19.2) 95 (23.8) 176 (19.6)
  Stage IV 1,241 (64.1) 225 (56.3) 571 (63.7)
ECOG Score: no., %
  0 375 (19.4) 104 (26.0) 129 (14.4)
  1 856 (44.2) 176 (44.0) 430 (47.9)
  2 273 (14.1) 27 (6.8) 149 (16.6)
  3 50 (2.6) 6 (1.5) 27 (3.0)
  4 2 (0.1) 0 (0.0) 2 (0.2)
Smoking Status: no., %
  History of smoking 1,657 (85.5) 342 (85.5) 775 (86.4)
  No history of smoking 276 (14.2) 57 (14.3) 120 (13.4)
Previous Treatment: no., %
  No 718 (37.1) 170 (42.5) 228 (25.4)
  Yes 1,219 (62.9) 230 (57.5) 669 (74.6)
Eastern Cooperative Oncology Group (ECOG)
MAD: Median Absolute Deviation.
(·) represents percentage of patients
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Supplemental Table 2: Enriched clinical and genomics characteristics differentiating 
the IO beneficial vs non-beneficial subgroups. Enriched features with significant 
difference between the IO beneficial and non-beneficial subgroups were identified by chi-
square test with the multiple-hypothesis adjustment of FDR less than 0.05.  
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III Supplemental Methods 

Clinico-genomic feature encoding and defining linked patients based on feature 
similarity in the deep patient graph convolutional network modeling 

In the deep patient graph convolutional network modeling, patients are represented 

as nodes in the graph with associated clinic-genomic features, and patients with similar 

clinico-genomic features are linked by edges. The node features are encoded by categorical 

feature vectors X. In particular, the genomic features are binary encoding, i.e. if a patient 

carries one or more known or likely genetic alternations in a gene, the corresponding gene 

feature is 1; otherwise, 0. For numerical features, we used the high- and low-bound 

measurement annotations provided by EHRs to bin the numerical features into categorical 

features. For example, a patient has the hemoglobin measurement as 8.3 grams per deciliter, 

the low- and high-bound references for hemoglobin is 14 and 18 grams per deciliter, 

respectively. Since it falls between two bounds, it is categorized as the “normal” class. The 

two nodes are connected if the node feature vectors are similar. Here we employed cosine 

similarity to define similarity 4 and used the cosine similarity of 0.5 as an empirical cutoff. 

If cosine similarity is less than 0.5, then there is not a link between two nodes; otherwise, 

connected. 

Graph convolutional network  

Graph convolutional network (GCN) 5 applies the convolution operation on a graph 

from the spectral domain. Given the adjacency matrix A and content matrix X of a graph, 

the spectral convolution function f used to calculate layer-wise transformation is defined 

as: 

𝑍("#$) = 𝑓(𝑍("), 𝐴) 
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Here, 𝑍(") ∈ 𝑅&×( (n nodes and d features) defines the input for layer l. The input layer 

contains the patient clinical and genomic feature matrix for our problem. The feature 

dimension of the input layer is 227, which was derived from the original 100 features. Our 

graph model has three hidden layers and the embedding dimension is the same as input 

layer 227. The MGAE embedding method reconstructs the feature matrix of a node without 

hidden layers. 

GCN 5 applies Chebyshev polynomials 6 to approximate the convolution filter. The 

layer-wise propagation rule for GCN can then be defined as: 

𝑓(𝑍("), 𝐴) = 𝜎(𝐷𝑍(")𝑊(")) 

Here, D is the degree matrix for A. 𝑊(") is the learnable weights for the l-th layer. 𝜎(⋅) is 

an activation function such as ReLU 7.  

Marginalized graph autoencoder (MGAE) 

The MGAE 8 is a content and structure augmented autoencoder. MGAE 

reconstructs the input 𝑋 = {𝑥$, … , 𝑥&} ∈ 𝑅&×(  by using a single mapping function 𝑓(∙), 

that minimizes the squared reconstruction loss: 

‖𝑋 − 𝑓(𝑋)‖) 

For graph convolution networks, the loss function becomes: 

‖𝑋 − 𝐷𝑋𝑊‖) + 𝜆‖𝑊‖*)  

Here, D is the degree matrix for A. W is the parameter matrix. ‖𝑊‖*)  is a Frobenius norm 

regularization term with coefficient 𝜆 being a tradeoff.  

The marginalized graph autoencoder provides an effective way to integrate both 

content and structure information. To encourage the interplay between content and 

structure information, MGAE introduces some random noises into the content features 
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during training. The corruption process can be randomly removing some features or setting 

them to 0. Given the corrupted version of the original input X, the corrupted version of 

original input X is: 

𝑋8 = {𝑋8$, … , 𝑋8&} 
The objective function becomes the following where 𝑚 is the number of corruption times: 

1
𝑚;<𝑋 − 𝐷𝑋8"𝑊<)

+

,-$

+ 𝜆‖𝑊‖*)  

And the final graph embedded representation Z is defined as: 

𝑍 = 𝐴=𝑋𝑊 

Patient subtype clustering with MGAE 

We applied the spectral clustering algorithm 8 for patient subtyping. The symbol 

used and pseudo-code is defined as follows:  

 

Given the patient graph network 𝐺 with n nodes, each patient node is a 𝑑-dimension 
attribute vector. The patient attribute matrix 𝑋 ∈ 𝑅&×( of 𝐺, the total number of patient 
subtypes 𝑘, the corruption probability p, and the number of stacked autoencoder layers 
𝑙. In our problem formulation, 𝑙 = 3.  𝑍 = 𝑋 is the input to the first layer. 
Step-1:  
	 For	each	layer:	
	 Construct	a	single	layer	denoise	autoencoder	with	input	data	𝑍	
	 Learn	the	output	representation	𝑍	according	to	MGAE	algorithm	

𝑍 = 𝐴=𝑋𝑊	
Step-2:  
 Refine representation by apply a linear kernel function: 

𝑍. ⇐ 𝑍	
𝑍$ ⇐ 𝑍.𝑍./	

	 Make	representation	symmetric	and	nonnegative:	

𝑍) ⇐
1
2 (
|𝑍$| + |𝑍$0|)	

 
Step-3:  
 Run spectral clustering on 𝑍) (Running k-means on the top-‘numberOfCluster’ 
eigenvectors of the normalized Laplacian) 
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