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SUPPLEMENTARY MATERIALS AND METHODS 

SECTION 1: IMMUNOHISTOCHEMISTRY 

1A. Immunohistochemistry for WT1  

Immunohistochemistry (IHC) for WT1 was performed on the Leica Bond III Autostainer using protocol 

F. WT1 IHC used 1:1000 dilution anti-human WT1 monoclonal mouse antibody clone 6F-H2 (DAKO).  

Samples with any WT1 nuclear staining in tumour cells were recorded as WT1 positive and those with 

complete absence of staining as WT1 negative. Positive nuclear staining of vascular endothelial cells 

served as internal controls.  

1B. Immunohistochemistry for CK7 and CK20 

CK7 staining was performed using a 1:100 dilution of the monoclonal mouse CK7 antibody (Leica, 

Clone RN7, HIER1 – 20 minutes). A WT1 positive high grade serous ovarian carcinoma tissue section 

was used as a positive control. CK7 staining was considered positive with any positive nuclear 

staining of tumour cells.  

CK20 staining was performed using a 1:50 dilution of the monoclonal mouse CK20 antibody (Leica, 

clone KS20.8, HIER1-20 minutes). Normal stomach tissue was used as a positive control. CK20 staining 

was considered positive with any positive nuclear staining of tumour cells.  
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SECTION 2: WHOLE EXOME SEQUENCING 

2A. Generation of sequence libraries and Exome sequencing 

 
Libraries were prepared from each DNA sample using the Illumina TruSeq Exome Library Prep kit (#FC-

150-1002 - Illumina) according to the provided protocol using modifications for working with FFPE 

sourced material.  

200ng of DNA was end-repaired to remove 3’ and 5’ overhangs, and fragment length was optimised 

using sample purification beads. A single 'A' nucleotide was added to the 3' ends of the blunt 

fragments to prevent them from ligating to another during the subsequent adapter ligation reaction, 

and a corresponding single 'T' nucleotide on the 3' end of the adapter provided a complementary 

overhang for ligating the adapter to the fragment. Multiple indexing adapters were then ligated to the 

ends of the ds cDNA to prepare them for hybridisation onto a flow cell, before 12 cycles of PCR were 

used to selectively enrich those DNA fragments that had adapter molecules on both ends and amplify 

the amount of DNA in the library suitable for sequencing. Libraries were quantified using the Qubit 

2.0 Fluorometer and the Qubit DNA HS assay (#Q32854 - ThermoFisher) and the size distribution of 

fragments was assessed using the Agilent Bioanalyser with the DNA HS Kit (#5067-4626 - Agilent).  

DNA libraries containing unique indexes were combined in pools of 6, and then target regions of the 

DNA were bound with capture probes. Streptavidin Magnetic Beads were then used to capture probes 

hybridised to the targeted regions of interest and a series of washes removed nonspecific binding from 

the beads. This process was repeated to ensure high specificity of the captured regions. Captured 

enriched library was then purified before 8 cycles of PCR amplification and a final purification step to 

remove unwanted products.  

Exome-captured sequencing library pools were quantified using the Qubit 2.0 Fluorometer and the 

Qubit DNA HS assay (#Q32854 - ThermoFisher) and the size distribution of fragments was assessed 

using the Agilent Bioanalyser with the DNA HS Kit (#5067-4626 - Agilent). Fragment size and quantity 

measurements were used to calculate molarity for each library pool. 

Sequencing was performed using the NextSeq 500/550 High-Output v2 (150 cycle) Kit (# FC-404-2002) 

on the NextSeq 550 platform (Illumina Inc, #SY-415-1002). 

2C. Mapping of sequenced reads 

 Base calling and quality scoring was conducted using the tool FASTQC. Data was then processed with 

a python toolkit providing pipelines for fully automated high throughput sequencing analysis (bcbio-

nextgen - see https://github.com/bcbio/bcbio-nextgen for full documentation and informatic 
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pipelines). Raw sequence data was mapped to the hg38 genome build (FASTQ files) using the Burrows–

Wheeler alignment algorithm 0.7.17 [1].  

2C. Variant calling  

Somatic variant calling was carried out on mapped BAM files using a majority vote from three variant 

caller algorithms; VarDict [2] (REF), mutect2 [3] (REF), freebayes [4] (REF) .Filtering for C>T (FFPE 

artifacts) and G>T (oxidation artifacts) was applied using GATK (CollectSequencingArtifactMetrics and 

FilterByOrientationBias). Resulting VCF files were then analysed in R using the maftools package 

(https://bioconductor.org/packages/release/bioc/html/maftools.html. Datasets were also filtered to 

remove common population variants by comparing to the 1000 Genomes reference datasets (1000 

genomes phase 1 snp and indel dataset; http://www.internationalgenome.org/) and the Exome 

Aggregation consortium (EXAC)  reference datasets (ExAC.0.3.GRCh38 : 

http://exac.broadinstitute.org/ )).  

Variants which are not predicted to result in causal mutations were filtered using the Polymorphism 

Phenotyping (PolyPhen) [5] and Sorting Intolerant from Tolerant (SIFT) [6] prediction tools as well as 

being cross referenced to the NCBI ClinVar database [7] which aggregates pathogenicity reports  

associated with genomic variants.  

Filtering was applied to define high impact mutations where the variant allele frequency of a given 

mutation was > 10% across regions with a minimum read coverage of 20X. 

Microsatellite instability scores were assigned based on the number of INDELS detected in a given 

sample, with data taken from the VCF files. Transitions and transversions were calculated using the 

titv function in maftools. This function classifies SNPs into Transitions and transversions and returns a 

list of summarized tables in various ways. Summarized data was visualised as a boxplot showing overall 

distribution of six different conversions and as a stacked barplot showing fraction of conversions in 

each sample. For more information on the R package maftools see the notes at 

https://bioconductor.org/packages/release/bioc/vignettes/maftools/inst/doc/maftools.html 

SECTION 2: ONCOGENIC PATHWAY ANALYSIS 

In order to determine the major oncogenic pathways alerted across the tumour samples we used the 

OncogenicPathways function in the R package maftools. This highlighted PIK-AKT, WNT, RAS and 

NOTCH pathways as major altered networks. We then visualised mutations across individual members 

of these pathways using the PlotIncogenicPathways function in maftools which draws an oncoplot for 

each sample in a given pathway (supplemental figure S7). To generate figure 4A we collapsed all 

samples containing at least 1 mutation in a pathway instead of showing all genes.   
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SECTION 4: TUMOUR COMPLEXITY SCORING 

Variant allele frequencies (VAF) densities across all genes were plotted for each sample to assess 

genomic complexity (supplementary materials section 3); low complexity specimens, with a single 

driver event and associated outgrowth, were anticipated to display a single VAF peak. Conversely, 

highly complex tumours with multiple driver events, branched evolution and cell population 

expansion, would demonstrate multiple VAF peaks. Analysis was carried out using the 

inferHeterogeneity function in the R package maftools [8, 9] (supplementary materials section 3). 

Resulting MATH scores represent the width of the VAF distribution. In previous studies higher MATH 

scores are found to be associated with poor outcome [10].  See 

https://bioconductor.org/packages/release/bioc/vignettes/maftools/inst/doc/maftools.html for 

more information on the R package maftools. 

 

SECTION 5: COPY NUMBER ANALYSIS  

See https://github.com/wwcrc/geneCN for full documentation and informatic pipelines 
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SUPPLEMENTAL FIGURES 

 

Figure S1. Plot of the 100 most frequently mutated genes from SNV analysis. Left: Bar plot of the 
number of tumours containing each gene mutation. Right: stacked bar plot showing the distribution 
of mutation classes for each gene. Data ranked by tumour mutation count.   
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Figure S2. Oncoplot for the 100 most frequently mutated genes from SNV analysis. Total number of 
mutations per tumour are plotted above. Colour code defines mutation type. Grey denotes no 
mutation. Percentages on the left indicate % of samples with a given mutation.  
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Figure S3. Lollipop plot of location of variants within the SOX8 (A) and POLE (B) genes, with known 
protein coding domains highlighted. 
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Figure S4. Scatter plot of the number of genes altered in oncogenic pathways vs total pathway size. 
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Figure S5. Whole exome variant call summary statistics. S5A-C share the colour key for variant type 
(box, top right) A. Plot of the total number of variant types across all of the 112 samples. B. Box plot 
of the number of variants per sample for each of the classifications. C. stacked plot of total variant 
count per sample containing variant type information. D. Plot of number of single nucleotide 
polymorphisms (SNP), insertions (INS) and deletions (DEL) present in all of the 112 tumours. E. 
Summary of the single nucleotide variant (SNV) base changes across the 112 tumours.   
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Figure S6. A. Summary of total SNV counts across all 112 tumours, ranked by number B. Plot of 
mutational load in the endometroid carcinoma samples in this study against 33 TCGA landmark cohort 



 

11 
 

datasets. Individual dots represent each sample in a given study (grey = TCGA, black = our study). Red 
bar denotes median mutation count. SKCM: Skin Cutaneous Melanoma, LUSC: Lung squamous cell 
carcinoma, LUAD: Lung adenocarcinoma, BLCA: Bladder Urothelial Carcinoma, ESCA: Esophageal 
carcinoma, HNSC: Head and Neck squamous cell carcinoma, STAD: Stomach adenocarcinoma, DLBC: 
Lymphoid Neoplasm Diffuse Large B-cell Lymphoma, UCEC: Uterine Corpus Endometrial Carcinoma, 
COAD: Colon adenocarcinoma, OV: Ovarian serous cystadenocarcinoma, LIHC: Liver hepatocellular 
carcinoma, CESC: Cervical squamous cell carcinoma and endocervical adenocarcinoma, READ: Rectum 
adenocarcinoma, KIRP: Kidney renal papillary cell carcinoma, KIRC: Kidney renal clear cell carcinoma, 
UCS: Uterine Carcinosarcoma, BRCA: Breast invasive carcinoma, GBM: Glioblastoma multiforme, 
SARC: Sarcoma, CHOL: Cholangiocarcinoma, MESO: Mesothelioma, PAAD: Pancreatic 
adenocarcinoma, ACC: Adrenocortical carcinoma, LGG: Brain Lower Grade Glioma, PRAD: Prostate 
adenocarcinoma, KICH: Kidney Chromophobe, TGCT: Testicular Germ Cell Tumors, THYM: Thymoma, 
LAML : Acute Myeloid Leukemia, UVM : Uveal Melanoma, THCA: Thyroid carcinoma, PCPG: 
Pheochromocytoma and Paraganglioma . 
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Figure S7. Box plot of MSI score (number of InDels in a given tumour) split by MMR mutation. Grey: 
MMR gene wt, orange: MMR gene missense, blue: MMR gene nonsense/frameshift 

  



 

13 
 

 

 

Figure S8 Boxplots of Ti/Tv fractions between POLEwt and POLEm tumours. 
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Figure S9. Boxplot displaying genomic complexity in TP53m and TP53wt tumours. 
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Figure S10. Analysis of single copy number alterations (CNVs) reveals distinct landscape of alterations 

in TP53 mutant tumours. A. Plot of copy number changes across genes containing at least one CNV, 

displaying gain (red) or loss (blue). Samples ranked by total copy number count (histogram at the top). 
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B. Boxplot of number of CNV events in each of the SNV defined genomic classes. C. Plot of the top 30 

most frequently altered genes as defined through copy number change for gain (red) or loss (blue). D. 

Plot of copy number changes over the 15 genes highlighted from SNV mutational analysis in Figure 

3A, displaying gain (red) or loss (blue). Samples ordered by SNV defined genomic class and genes by 

frequency of CNV event. Percentages on the left indicate % of total samples with a given copy number 

change.  
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Figure S11. Progression-free survival of molecularly-defined EnOC subtypes. (A) By TP53m, (B) by 

CTNNB1m, (C) by TP53m and CTNNB1m; (D) using the PRTISTINE algorithm.  
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SUPPLEMENTAL TABLES 

Table S1. TP53 mutation status vs discrete variant allele frequency peak counts 
 

TP53m TP53wt 
VAF peaks n % n % 
1 4 13.8 45 54.2 
2 17 58.6 34 41.0 
3 8 27.6 4 4.8 
total 29 

 
83 

 

Chisq P<0.001; 1 peaks vs >1 peak 
M, mutant; wt, wild-type; VAF, variant allele frequency 
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Table S2. Univariable analysis of survival  
 

HR Lower 
95% CI 

Upper 
95% CI P P adj. 

TP53 DSS mutant 4.43 2.27 8.64 <0.001 <0.001 
wild-type - - - - - 

PFS mutant 4.46 2.37 8.42 <0.001 <0.001 
wild-type - - - - - 

CTNNB1 DSS mutant 0.23 0.10 0.56 0.001 0.010 
wild-type - - - - - 

PFS mutant 0.24 0.11 0.55 <0.001 0.005 
wild-type - - - - - 

PIK3CA DSS mutant 0.76 0.38 1.51 0.439 1.00 
wild-type - - - - - 

PFS mutant 0.67 0.34 1.3 0.230 1.00 
wild-type - - - - - 

ARID1A DSS mutant 0.48 0.22 1.06 0.069 0.552 
wild-type - - - - - 

PFS mutant 0.72 0.36 1.42 0.341 1.00 
wild-type - - - - - 

PTEN DSS mutant 0.48 0.2 1.15 0.098 0.7832 
wild-type - - - - - 

PFS mutant 0.59 0.27 1.28 0.178 1.00 
wild-type - - - - - 

KRAS DSS mutant 0.48 0.2 1.15 0.099 0.794 
wild-type - - - - - 

PFS mutant 0.44 0.18 1.04 0.062 0.495 
wild-type - - - - - 

MMR DSS mutant 0.43 0.13 1.42 0.167 1.00 
wild-type - - - - - 

PFS mutant 0.65 0.25 1.65 0.362 1.00 
wild-type - - - - - 

POLE DSS mutant 0.38 0.05 2.76 0.337 1.00 
wild-type - - - - - 

PFS mutant 0.73 0.18 3.03 0.663 1.00 
wild-type - - - - - 

DSS, disease-specific survival. PFS, progression-free survival; HR, hazard ratio; CI confidence interval 
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Table S3. Clinicopathological features of EnOC subtypes defined by the PRISTINE algorithm. 
 

TP53m TP53wt/CTNNB1m TP53wt/CTNNB1m 
low complex 

TP53wt/CTNNB1m 
high complex  

n % n % n % n % 
Cases 29  47  16  20  

Concurrent 
endometrial ca. 1 3.4 9 19.1 4 25.0 5 25.0 

Age median 61 32-79 57 28-88 57 37-75 57 37-75 
FIGO stage         

I 8 27.6 24 53.3 6 37.5 9 45.0 
II 7 24.1 17 37.8 6 37.5 9 45.0 

III 8 27.6 3 6.7 3 18.8 1 5.0 
IV 6 20.7 1 2.2 1 6.3 1 5.0 

NA 0  2  0  0  

RD following 
debulking 

        

Zero 
macroscopic RD 15 55.6 41 91.1 10 71.4 16 84.2 

Macroscopic RD 12 44.4 4 8.9 4 28.6 3 15.8 
NA 2  2  2  1  

RD, residual disease; m, mutant; wt, wild-type; NA, not available 

 

 

Table S4. Multivariable disease-specific survival analysis by TP53 mutation status  

DSS   mHR mHR low 
CI 

mHR high 
CI 

P 

TP53 
  

TP53m 2.62 1.09 6.25 0.031 
TP53wt - - - - 

FIGO 
stage at 
diagnosis 

I/II 0.2 0.08 0.5 <0.001 
III/IV - - - - 

RD 
following 
debulking  
  

Zero 
macroscopic RD 

0.21 0.08 0.54 0.001 

Macroscopic 
RD 

- - - - 

Diagnosis 
period 
  
  
  

1980s - - - - 
1990s 0.66 0.25 1.74 0.401 
2000s 0.37 0.13 1.1 0.074 
2010s 0.49 0.1 2.55 0.399 

Age years 1.02 0.98 1.05 0.369 
DSS, disease-specific survival; mHR, multivariable hazard ratio; m, mutant; wt, wild-type; RD, 
residual disease 
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Table S5. Multivariable progression-free survival analysis by TP53 mutation status  

PFS   mHR mHR low 
CI 

mHR high 
CI 

P 

TP53 
  

TP53m 2.84 1.27 6.31 0.011 
TP53wt - - - - 

FIGO 
stage at 
diagnosis 

I/II 0.18 0.07 0.47 <0.001 
III/IV - - - - 

RD 
following 
debulking  
  

Zero 
macroscopic 
RD 

0.3 0.12 0.75 0.01 

Macroscopic 
RD 

- - - - 

Diagnosis 
period 
  
  
  

1980s - - - - 
1990s 0.57 0.22 1.48 0.248 
2000s 0.32 0.11 0.88 0.028 
2010s 0.55 0.15 1.99 0.36 

Age years 1.02 0.98 1.05 0.327 
PFS, progression-free survival; mHR, multivariable hazard ratio; m, mutant; wt, wild-type; RD, 
residual disease 

 

Table S6. Multivariable DSS analysis of CTNNB1m status  

DSS   mHR mHR low 
CI 

mHR high 
CI 

P 

CTNNB1 
  

CTNNB1m 0.31 0.12 0.81 0.017 
CTNNB1wt - - - - 

FIGO 
stage at 
diagnosis 

I/II 0.12 0.05 0.33 <0.001 
III/IV - - - - 

RD 
following 
debulking  
  

Zero 
macroscopic 
RD 

0.32 0.12 0.86 0.023 

Macroscopic 
RD 

- - - - 

Diagnosis 
period 
  
  
  

1980s - - - - 
1990s 0.65 0.26 1.66 0.37 
2000s 0.29 0.1 0.89 0.03 
2010s 0.48 0.1 2.47 0.383 

Age years 1.02 0.99 1.06 0.154 
DSS, disease-specific survival; mHR, multivariable hazard ratio; m, mutant; wt, wild-type; RD, 
residual disease 
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Table S7. Multivariable PFS analysis of CTNNB1m status  

PFS   mHR mHR low 
CI 

mHR high 
CI 

P 

CTNNB1 
  

CTNNB1m 0.29 0.12 0.69 0.006 
CTNNB1wt - - - - 

FIGO 
stage at 
diagnosis 

I/II 0.11 0.04 0.29 <0.001 
III/IV - - - - 

RD 
following 
debulking  
  

Zero 
macroscopic 
RD 

0.43 0.17 1.11 0.08 

Macroscopic 
RD 

- - - - 

Diagnosis 
period 
  
  
  

1980s - - - - 
1990s 0.58 0.23 1.43 0.234 
2000s 0.25 0.09 0.72 0.01 
2010s 0.57 0.16 2.04 0.391 

Age years 1.02 0.99 1.06 0.153 
PFS, progression-free survival; mHR, multivariable hazard ratio; m, mutant; wt, wild-type; RD, 
residual disease 

 

Table S8. Impact of genomic complexity on survival outcome 
   

mHR mHR low 
CI 

mHR high 
CI 

mHR P 

VAF peaks DSS 1 peak  - - - -  
2+ peaks 2.45 1.15 5.21 0.02 

PFS 1 peak  - - - -  
2+ peaks 2.28 1.14 4.56 0.0202 

MATH 
score 

DSS score 1.03 1.02 1.05 <0.0001 
PFS score 1.03 1.02 1.05 <0.0001 

mHR, multivariable hazard ratio; VAF, variant allele frequency; MATH, mutant allele tumour 
heterogeneity 
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