Abstract
Omicron variant (B.1.1.529) infections are rapidly expanding worldwide, often in settings where the Delta variant (B.1.617.2) was dominant. We investigated whether neutralizing immunity elicited by Omicron infection would also neutralize the Delta variant and the role of prior vaccination. We enrolled 23 South African participants infected with Omicron a median of 5 days post-symptoms onset (study baseline) with a last follow-up sample taken a median of 23 days post-symptoms onset. Ten participants were breakthrough cases vaccinated with Pfizer BNT162b2 or Johnson and Johnson Ad26.CoV2.S. In vaccinated participants, neutralization of Omicron increased from a geometric mean titer (GMT) FRNT50 of 28 to 378 (13.7-fold). Unvaccinated participants had similar Omicron neutralization at baseline but increased from 26 to only 113 (4.4-fold) at follow-up. Delta virus neutralization increased from 129 to 790, (6.1-fold) in vaccinated but only 18 to 46 (2.5-fold, not statistically significant) in unvaccinated participants. Therefore, in Omicron infected vaccinated individuals, Delta neutralization was 2.1-fold higher at follow-up relative to Omicron. In a separate group previously infected with Delta, neutralization of Delta was 22.5-fold higher than Omicron. Based on relative neutralization levels, Omicron re-infection would be expected to be more likely than Delta in Delta infected individuals, and in Omicron infected individuals who are vaccinated. This may give Omicron an advantage over Delta which may lead to decreasing Delta infections in regions with high infection frequencies and high vaccine coverage.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study was supported by the Bill and Melinda Gates award INV-018944 (AS), National Institutes of Health award R01 AI138546 (AS), and South African Medical Research Council awards (AS, TdO, PLM) and the UK Foreign, Commonwealth and Development Office and Wellcome Trust (Grant no 221003/Z/20/Z, PLM). PLM is also supported by the South African Research Chairs Initiative of the Department of Science and Innovation and the NRF (Grant No 98341).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Blood samples were obtained after written informed consent from adults with PCR-confirmed SARS-CoV-2 infection who were enrolled in a prospective cohort study approved by the Biomedical Research Ethics Committee at the University of KwaZulu-Natal (reference BREC/00001275/2020). Use of residual swab sample was approved by the University of the Witwatersrand Human Research Ethics Committee (HREC) (ref. M210752).
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
Added more participants to the study.
Data Availability
All data produced in the present work are contained in the manuscript or available upon reasonable request to the authors