Abstract
Understanding the relationships between pre-existing conditions and complications of COVID-19 infection is critical to identifying which patients will develop severe disease. Here, we leverage 1.1 million clinical notes from 1,903 hospitalized COVID-19 patients and deep neural network models to characterize associations between 21 pre-existing conditions and the development of 20 complications (e.g. respiratory, cardiovascular, renal, and hematologic) of COVID-19 infection throughout the course of infection (i.e. 0-30 days, 31-60 days, and 61-90 days). Pleural effusion was the most frequent complication of early COVID-19 infection (23% of 383 complications) followed by cardiac arrhythmia (12% of 383 complications). Notably, hypertension was the most significant risk factor associated with 10 different complications including acute respiratory distress syndrome, cardiac arrhythmia and anemia. Furthermore, novel associations between cancer (risk ratio: 3, p=0.02) or immunosuppression (risk ratio: 4.3, p=0.04) with early-onset heart failure have also been identified. Onset of new complications after 30 days is rare and most commonly involves pleural effusion (31-60 days: 24% of 45 patients, 61-90 days: 25% of 36 patients). Overall, the associations between pre-COVID conditions and COVID-associated complications presented here may form the basis for the development of risk assessment scores to guide clinical care pathways.
Competing Interest Statement
The authors from nference have financial interests in the company. ADB is a consultant for Abbvie, is on scientific advisory boards for Nference and Zentalis, and is founder and President of Splissen therapeutics. One or more of the investigators associated with this project and Mayo Clinic have a Financial Conflict of Interest in technology used in the research and that the investigator(s) and Mayo Clinic may stand to gain financially from the successful outcome of the research. This research has been reviewed by the Mayo Clinic Conflict of Interest Review Board and is being conducted in compliance with Mayo Clinic Conflict of Interest policies.
Funding Statement
ADB is supported by Grants AI 110173 and AI120698 from NIAID, 109593-62-RGRL from Amfar, and the HH Sheikh Khalifa Bin Zayed Al-Nahyan named professorship from Mayo Clinic.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This retrospective research was conducted under IRB 20003278, Study of COVID-19 patient characteristics with augmented curation of Electronic Health Records (EHR) to inform strategic and operational decisions. For further information regarding the Mayo Clinic Institutional Review Board (IRB) policy, and its institutional commitment, membership requirements, review of research, informed consent, recruitment, vulnerable population protection, biologics, and confidentiality policy, please refer to the Mayo Clinic IRB website.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
Deidentified data will be made available upon reasonable request to corresponding author after peer-reviewed publication of this manuscript