ABSTRACT
Background During infectious disease epidemics, a key question is whether cases travelling to new locations will trigger local outbreaks. The risk of this occurring depends on a range of factors, such as the transmissibility of the pathogen, the susceptibility of the host population and, crucially, the effectiveness of local surveillance in detecting cases and preventing onward spread. For many pathogens, presymptomatic and/or asymptomatic (together referred to here as nonsymptomatic) transmission can occur, making effective surveillance challenging. In this study, using COVID-19 as a case-study, we show how the risk of local outbreaks can be assessed when nonsymptomatic transmission can occur.
Methods We construct a branching process model that includes nonsymptomatic transmission, and explore the effects of interventions targeting nonsymptomatic or symptomatic hosts when surveillance resources are limited. Specifically, we consider whether the greatest reductions in local outbreak risks are achieved by increasing surveillance and control targeting nonsymptomatic or symptomatic cases, or a combination of both.
Findings Seeking to increase surveillance of symptomatic hosts alone is typically not the optimal strategy for reducing outbreak risks. Adopting a strategy that combines an enhancement of surveillance of symptomatic cases with efforts to find and isolate nonsymptomatic hosts leads to the largest reduction in the probability that imported cases will initiate a local outbreak.
Interpretation During epidemics of COVID-19 and other infectious diseases, effective surveillance for nonsymptomatic hosts can be crucial to prevent local outbreaks.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
FALR acknowledges funding from the Biotechnology and Biological Sciences Research Council (UKRI-BBSRC), grant number BB/M011224/1. SF and RNT acknowledge funding from the Wellcome Trust, grant number 210758/Z/18/Z. RNT also acknowledges funding from Christ Church (University of Oxford) via a Junior Research Fellowship. CAD acknowledges funding from the MRC Centre for Global Infectious Disease Analysis (reference MR/R015600/1), jointly funded by the UK Medical Research Council (MRC) and the UK Foreign, Commonwealth & Development Office (FCDO) under the MRC/FCDO Concordat agreement, and is also part of the EDCTP2 programme supported by the European Union.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
N/A
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
This study did not include the collection of any data. All data referenced in the manuscript are accessible through the relevant citations.