SUMMARY
Background The global pandemic of COVID-19 (coronavirus disease 2019) is caused by the novel coronavirus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), with different prevalence rates across countries and regions. Dynamic testing strategies are mandatory to establish efficient mitigation strategies against the disease; to be cost effective, they should adapt to regional prevalences. Seroprevalence surveys that detect individuals who have mounted an immune response against COVID-19 will help to determine the total number of infections within a community and improve the epidemiological calculations of attack and case fatality rates of the virus. They will also inform about the percentage of a population that might be immune against re-infections.
Methods We developed a sensitive and specific cell-based assay to detect conformational SARS-CoV-2 spike (SARS-2-S) S1 antibodies in human serum, and have cross-evaluated this assay against two FDA-approved SARS-CoV-2 antibody assays. We performed pseudovirus neutralization assays to determine whether sera that were rated antibody-positive in our assay were able to specifically neutralize SARS-2-S. We pooled up to 24 sera and assessed the group testing performance of our cell-based assay. Group testing was further optimized by Monte Carlo like simulations and prospectively evaluated.
Findings Highly significant correlations could be established between our cell-based assay and commercial antibody tests for SARS-CoV-2. SARS-2-S S1 antibody-positive sera neutralized SARS-2-S but not SARS-S, and were sensitively and specifically detected in pools of 24 samples. Monte Carlo like simulations demonstrated that a simple two-step pooling scheme with fixed pool sizes performed at least equally as well as Dorfman’s optimal testing across a wide range of antibody prevalences.
Interpretation We demonstrate that a cell-based assay for SARS-2-S S1 antibodies qualifies for group testing of neutralizing anti-SARS-2-S antibodies. The assay can be combined with an easily implemented algorithm which greatly expands the screening capacity to detect anti-SARS-2-S antibodies across a wide range of antibody prevalences. It will thus improve population serological testing in many countries.
Funding This work was supported by the Bundesministerium für Bildung und Forschung within the network project RAPID (risk assessment in pre-pandemic respiratory infectious diseases [grant number 01KI1723D, S.P.]).
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was supported by the Bundesministerium fuer Bildung und Forschung within the network project RAPID (risk assessment in pre-pandemic respiratory infectious diseases [grant number 01KI1723D, S.P.]).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Written consent was obtained from all individuals and the study was approved by the local ethics committee (14/8/20).)
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
The raw data used in this study are available from the corresponding author upon reasonable request