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Key Points 

Question: Is it feasible to develop an Artificial Intelligence/Machine Learning (AI/ML) learning model 

that accurately identifies patient risk for sepsis and sepsis-related critical illness? 

Findings: The FDA approved AI/ML Sepsis ImmunoScore algorithm was created using a 

combination of 22 different demographic, clinical, and laboratory variables to predict risk of sepsis 

within 24 hours. The model was accurate, with an AUROC of 0.81 (0.77–0.86) in external 

validation. The algorithm was also predictive of secondary outcomes of sepsis-related critical 

illness. 

Meaning: This Sepsis ImmunoScore algorithm identifies patients suspected of infection who are at 

high risk of having or developing sepsis and sepsis-related critical illness. 

 

Abstract 

Importance: Prompt and accurate diagnosis and risk assessment is a challenge with 

implications for clinical care of sepsis patients. 

Objective:  To describe the development of the Sepsis ImmunoScore Artificial 

Intelligence/Machine Learning (AI/ML) algorithm and assess its ability to identify patients with 

sepsis within 24 hours, and secondary endpoints of critical illness and mortality. 

Design: Prospective study of adult (age 18 or older) patients from 5 US hospitals enrolled 

between April 2017 and July 2022.  

Setting: Multi-center study from 5 hospitals 

Participants: Inclusion criteria: suspected infection (indicated a blood culture order), 

emergency department or hospitalized patients, with a corresponding lithium-heparin plasma 
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sample available; exclusion criteria: none. Participants were enrolled into an algorithm 

development derivation cohort (n=2,366), an internal validation (n=393) cohort, or an external 

validation cohort (n=698). 

Main Outcomes and Measures: The primary endpoint was the presence of sepsis (Sepsis-3) 

within 24 hours of test initiation. Secondary endpoints were clinically relevant metrics of critical 

illness: length of stay in the hospital, Intensive Care Unit (ICU) admission within 24 hours, use of 

mechanical ventilation within 24 hours, use of vasopressors within 24 hours, and in-hospital 

mortality. 

Results: The overall diagnostic accuracy of the Sepsis ImmunoScore for predicting sepsis was 

high with an AUC of 0.85 (0.83–0.87) in the derivation cohort, 0.80 (0.74–0.86) in internal 

validation, and 0.81 (0.77–0.86) in external validation. The Sepsis ImmunoScore was divided 

into four risk categories with increasing likelihood ratios for sepsis: low 0.1 (0.1–0.2), medium 

0.5 (0.3–0.8), high 2.1 (1.8–2.5), very high 8.3 (4.1–17.1). Risk categories also predicted in-

hospital mortality rates: low: 0.0% (0.0%, 1.6%), medium: 1.9% (0.4%–5.5%), high: 8.7% 

(5.7%–12.7%), and very high: 18.2% (7.0%–35.5%) in the external validation cohort. Similar 

findings were observed for length of stay, ICU utilization, mechanical ventilation and 

vasopressor use.  

Conclusions and Relevance The sepsis ImmunoScore, an AI/ML diagnostic tool, 

demonstrated high accuracy for predicting sepsis and critical illness that could enable prompt 

identification of patients at high risk of sepsis and adverse outcomes, which holds promise to 

inform medical decision making to improve care and outcomes in sepsis. 
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Introduction 

Sepsis is a serious medical condition caused by a dysregulated immune response to infection, 

which can lead to organ dysfunction and significant morbidity and mortality.1 Early treatment, 

particularly with antibiotics, can improve patient outcomes.2–7 However, heterogeneity in the 

presentation of sepsis makes early recognition difficult, leading to increased mortality.8 As a 

result, there is an opportunity for risk assessment tools to assist clinicians in the quick and 

accurate identification of patients at high risk of sepsis. Many previously proposed risk 

assessment tools exist, including clinical approaches, laboratory tests, and sepsis-specific 

biomarkers; however, none are universally accepted as routine in clinical practice.  

To address the need for an informative risk assessment tool in the hospital setting, we 

developed the Sepsis Immunoscore. The Sepsis ImmunoScore is a risk stratification tool that 

uses machine learning to aid in identifying patients likely to have or progress to sepsis within 24 

hours of patient assessment. It was granted marketing authorization (De Novo pathway) by the 

United States Food and Drug Administration (FDA) in April 2024 as the first-ever AI diagnostic 

authorized for sepsis. The Sepsis ImmunoScore inputs up to 22 parameters derived from 

patient demographics, vital signs, routinely accepted general clinical laboratory tests, and sepsis 

specific biomarkers to generate a composite risk score. The risk score categorizes patients into 

one of four discrete risk groups based on the risk of sepsis. The Sepsis ImmunoScore embeds 

into a hospital EMR and functions as a diagnostic test, allowing healthcare providers to order 

and view the test results for a particular patient in the Electronic Health Record (EHR) system, 

similar to a laboratory test.   

In this investigation, we describe the derivation and assess the performance of the Sepsis 

ImmunoScore functioning as a sepsis risk assessment tool. Accordingly, the objective of this 

investigation was to evaluate the performance of the Sepsis ImmunoScore and its ability to risk 

stratify patients for the presence or development of sepsis (defined by Sepsis-3) within 24 hours, 
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and for secondary endpoints of in-hospital mortality, hospital length of stay, ICU admission, 

mechanical ventilator use, and vasopressor medication use.9  

Methods 

Study Design 

We conducted a prospective, observational, multi-center study to create a sepsis artificial 

intelligence/machine learning (AI/ML) algorithm and assess its ability to identify the presence of 

sepsis within 24 hours, and other secondary outcomes of critical illness morbidity and mortality 

(eFigure 1). Participants were enrolled at one of 5 participating hospitals. We obtained study 

approvals from the ethics boards of participating institutions under a waiver from informed 

consent, except OSF Saint Francis Medical Center, which required informed consent. 

Study Population 

Study inclusion criteria consisted of hospitalized adult patients (aged 18 or older) who had a 

suspected infection defined by the clinical decision to obtain a blood culture and who had a 

lithium-heparin (Li-Hep) plasma sample drawn within a 6-hour-window from the first blood 

culture order that was available for collection. There were no exclusion criteria. Subjects were 

enrolled between April 2017 and July 2022 from 5 hospital institution sites throughout the United 

States. The study participants were enrolled in three different cohorts: a derivation cohort 

(n=2,366) where the algorithm was derived, an internal validation cohort (n=393) that assessed 

algorithm performance on a second set of participants from the same hospitals used in the 

derivation, and a final external validation cohort (n=698) that used a new set of participants from 

hospitals not involved in the algorithm derivation (additional details in supplemental appendix).  
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Study Outcomes 

Endpoints 

The primary endpoint was the presence of sepsis at presentation or within 24 hours of study 

inclusion using the Sepsis-3 criteria: suspected infection and Sequential Organ Failure 

Assessment (SOFA) score of 2 or greater from baseline.9 The derivation cohort used a sepsis-3 

outcome derived from the medical record in an automated fashion,10,11 while the internal and 

external validation cohorts used expert clinical adjudication to apply the definitions and 

determine the sepsis-3 outcome. The secondary endpoints consisted of sepsis-related metrics 

of critical illness including: in-hospital mortality, hospital length of stay, ICU admission, use of 

mechanical ventilator, and use of vasopressors. 

 

Data Collection 

Data were gathered directly through an offline EMR extraction and a transfer of de-identified 

data that were linked to corresponding patient blood specimens. Data elements were abstracted 

from the EMR and included demographic information, coded ICD-10 diagnoses, medications, 

vital sign measurements, clinical laboratory test results (e.g., chemistry laboratory testing results, 

lactic acid), and sepsis-related laboratory measurements (C-reactive protein and procalcitonin – 

tested at external lab – see supplemental appendix for details), secondary outcomes metrics, 

and relevant data to conduct adjudication (e.g., microbiology results), and relevant orders (e.g., 

antibiotic administration). Comorbidities were based on the components of the Charlson 

Comorbidity Index (CCI) and were encoded based on ICD-10-CM encodings defined by the 

National Cancer Institute (NCI) Comorbidity Index/SEER. Immunocompromised patients were 
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identified based on ICD-10-CM encodings defined by Agency for Healthcare Research and 

Quality (AHRQ).12,13 

Sepsis ImmunoScore 

Algorithm Development 

The Sepsis ImmunoScore machine learning algorithm was created using a supervised, 

calibrated random forest that predicts the probability of a patient meeting Sepsis-3 criteria within 

24 hours of study entry. A random forest was trained on the 2,366 patient encounters in the 

derivation cohort using 22 patient-specific features comprising demographics, vital signs, and 

laboratory tests measured close to study entry. Model parameters were optimized using 3 

repeats of 5-fold-cross-validation, and missing data were imputed using bagged trees.  

Predictions were calibrated to the probability of sepsis-3 to compute a sepsis risk score by 

regressing the outcome on the out-of-bag predictions of the random forest in the derivation 

cohort.14  Sepsis risk scores were divided into four risk stratification categories by thresholds 

identified during the development process using out-of-bag predictions in the derivation cohort. 

(See online supplement) 

 

Risk Score and Risk Stratification Category Generation 

To assess performance, the Sepsis ImmunoScore was calculated 

 for patients in the internal and external validation cohorts. Calibrated out-of-bag scores were 

used for the derivation cohort to reduce bias from overfitting in performance estimation. No 

result was generated for patients lacking a measurement for PCT, CRP, white blood cell count, 

platelet count, creatinine, or blood urea nitrogen between 24 hours prior to study entry (blood 

culture order) and 3.5 hours after. Similarly, no result was generated for patients without a 

measurement for systolic blood pressure, diastolic blood pressure, inspired oxygen percentage, 
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heart rate, or respiratory rate between six hours prior to study entry and 3.5 hours after. Missing 

values for the remaining 12 input parameters were imputed by the Sepsis ImmunoScore to 

produce a sepsis risk score.  

Statistical Analysis 

Diagnostic accuracy was assessed by determining the ability of the sepsis ImmunoScore and its 

corresponding risk stratification category (low, medium, high, or very high), to identify patients 

with the primary outcome of sepsis (sepsis-3 within 24 hours of study entry) and secondary 

outcomes.  We estimated likelihood ratios and predictive values along with 95% confidence 

intervals for each of the risk categories and assessed for a monotonic increasing relationship 

between risk category severity and outcomes using a one-sided Cochran-Armitage hypothesis 

test.15,16 We also estimated the area under the receiver operating characteristic curve (AUROC) 

of the sepsis risk score. Confidence intervals for the AUROC were estimated using a binormal 

approximation estimator for the standard error.17 Analyses were conducted using R statistical 

software version 4.2.1.   

Sample Size Calculation 

This study was powered based on the confidence interval of the AUROC for the sepsis 

endpoint.18 The calculation assumed a sepsis prevalence of 32%, an estimated AUROC of 0.75, 

a maximum allowable difference between the true AUC and its estimate of 0.023, and a 

significance level of 0.05 resulting in an estimated sample size of 735 subjects. Additional 

participants were enrolled beyond these calculations to include participants of varying age, 

racial backgrounds, ethnicities, and geographic location. The initial study design used a single 

validation cohort partially enrolled from hospitals included in the derivation set; however, based 

on direction from the FDA, we split the cohort into the current internal and external validation 

format.  
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Results 

There were a total of 3,457 patient encounters included, with 2,366 encounters in the derivation 

set, 393 in the internal validation set, and 698 visits in the external validation set. The study 

enrolled participants with age, sex, race, and ethnicity, and co-morbidities typical of sepsis 

patients in the US (Table 1). The rate of sepsis was 32% in the derivation, 28% in internal 

validation, and 22% in the external validation cohorts (Table 1). Patients with sepsis had higher 

rates of severe illness and mortality compared to those without sepsis (Table 1). 

Sepsis ImmunoScore 

The Sepsis ImmunoScore algorithm uses up to 22 input parameters to generate the risk score 

and place patients in one of four discrete risk stratification categories. The 22 input parameters 

consist of demographic data (age), vital sign measurements, complete-metabolic-panel 

measurements, complete blood count panel measurements, lactate, and sepsis biomarkers 

PCT and CRP.  

Primary Endpoint 

The overall diagnostic accuracy for the Sepsis ImmunoScore was high for predicting sepsis with 

an AUC in the derivation set of 0.85 (95% confidence interval: 0.83–0.87) for the medical record 

derived sepsis outcome, and 0.80 (0.74–0.86) in the internal validation and 0.81 (0.77–0.86) in 

the external validation for the adjudicated sepsis outcome (eTable 1). The Sepsis ImmunoScore 

was divided into four risk categories with increasing risk of sepsis. (Figure 1, Table 2, eTable 2). 

Of note, in the external validation set, the likelihood ratios were: low 0.1 (0.1–0.2), medium 0.5 

(0.3–0.8), high 2.1 (1.8–2.5), very high 8.3 (4.1–17.1).  These are monotonically increasing and 

had no overlapping confidence intervals suggesting stepwise risk discrimination for sepsis.  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 7, 2024. ; https://doi.org/10.1101/2024.05.06.24306954doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.06.24306954
http://creativecommons.org/licenses/by-nd/4.0/


 

Secondary Endpoints  

We assessed the prognostic ability for the Sepsis ImmunoScore to predict the secondary 

outcomes of ICU admission within 24 hours, in-hospital mortality, use of mechanical ventilation 

within 24 hours, and use of vasopressors within 24 hours. The Sepsis ImmunoScore was highly 

predictive of these outcomes.  The Sepsis ImmunoScore categories ranging from low, medium, 

high, and very high demonstrated good predictive ability based on both rate of outcome as well 

as the corresponding stratum specific likelihood ratios (Figure 2, Table 3, eTable 3). In the 

external validation cohort, the observed in-hospital mortality rates in the low, medium, high, and 

very high risk groups were 0.0% (0.0%, 1.6%), 1.9% (0.40%–5.5%), 8.7% (5.7%–12.7%), and 

18.2% (7.0%–35.5%) respectively. Additionally, the observed median number of days for the 

composite length of stay endpoint in the low, medium, high, and very high-risk groups were: 4.0 

(3.5–4.9), 5.7 (4.9–7.0), 7.7 (6.5–8.5), and 13.5 (7.1–19.1) respectively. The proportion of 

patients transferred to the ICU within 24 hours was 4.7% (2.4%–8.3%), 12.7% (8.0%–19.0%), 

25.7% (20.7%–31.3%), and 54.6% (36.4%–71.9%) respectively. Similar trends were observed 

for mechanical ventilation and vasopressor usage. Cochran-Armitage hypothesis tests indicated 

statistically significant monotonic increasing relationships between outcome predictive value and 

risk stratification category severity for each secondary endpoint (p-value < 0.01, Table 3, 

eTable 3). Risk stratification category severity was also associated with time to event for each 

secondary endpoint (eFigure 2).  

Discussion 

The Sepsis ImmunoScore is a comprehensive, multidimensional AI/ML tool that combines 

demographics, vital signs, clinical laboratory tests, and sepsis focused laboratory tests to 

assess risk of sepsis and risk of adverse outcomes. In this study, we developed the Sepsis 
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ImmunoScore and aanalyzed its ability to serve as a risk-stratification tool for patients with 

suspected infection, and its ability to predict the diagnosis of sepsis and prognosticate adverse 

clinical outcomes. We found the Sepsis ImmunoScore highly predictive of sepsis and secondary 

outcomes of in-hospital mortality, hospital length of stay, ICU admission, mechanical ventilation, 

and vasopressor administration within 24 hours. 

There are a number of FDA-approved diagnostic tools available for patients with an 

infection; however, they are typically in the form of a single blood biomarker or sometimes 

multiple blood biomarkers. Procalcitonin is a biomarker that evaluates the risk of progression to 

severe sepsis and septic shock in critically ill patients upon their first day in the ICU.19–23 The 

IntelliSep Test is a blood test that measures leukocyte biophysical properties to create a score 

that identifies sepsis with organ dysfunction manifesting within the first three days after testing 

for adult patients with signs and symptoms of infection who present to the emergency 

department.24–26 Another test by Beckman, the Coulter Cellular Analysis System's Early Sepsis 

Indicator measures Monocyte Distribution Width to identify sepsis risk.27–29 Other tests 

distinguish bacterial from non-bacterial infection in the ED or urgent care settings such as the 

FebriDx test which measures myxovirus resistance protein A and CRP from finger-stick 

blood.30–33 The MeMed BVTM measures blood concentrations of TRAIL, IP-10, and CRP to also 

distinguish patients with bacterial infections from those without.34–37 The Sepsis Immunoscore 

has comparable or superior diagnostic accuracy to these other FDA approved tests. Moreover, 

the ImmunoScore uses multidimensional inputs across different domains (demographics, vital 

signs, laboratory tests etc.) plus sepsis biomarkers to create a comprehensive risk score for a 

given individual. The intent of the ImmunoScore is to embed in an EMR so that it can pull the 

different requisite inputs and display the score when it is ordered as a diagnostic test. 

While no other AI/ML tools are FDA authorized for sepsis, many have been developed 

and clinically deployed, especially early detection tools that passively monitor patient data and 

alert clinicians when sepsis is suspected. The reported performance of these tools varies widely, 
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and recent validation studies have raised concerns about their use.38–41 A large, external 

validation study of the widely deployed Epic Sepsis Model in 2021 reported an AUC of only 

0.63,38 and recent reviews of validation studies of the Targeted Real-time Early Warning System 

(TREWS) score have raised concerns regarding the control group and false positives.39 

Concerns of alert fatigue have also been raised for these systems, which may undermine their 

clinical utility.42–44  

The application of AI/ML to medicine has great potential, much of which is 

underdeveloped in medicine.  The Sepsis ImmunoScore used clinically available data reflective 

of patient biologic state and machine learning to incorporate and identify objective patient 

assessments that are causally related to sepsis and associated adverse outcomes. Input 

features were carefully curated to select for measures of patient biology and pathophysiology 

that underlie critical illness and are routinely collected or available in the setting of infection.45 

We did not include as eligible covariates subjective determinations or interventions that could be 

heavily influenced by site-specific protocols, clinician-specific perspectives, or other peculiarities 

of care. In addition to accurately diagnosing sepsis in an external validation set, we attribute the 

simultaneous association of the Sepsis ImmunoScore with other adverse outcomes in part to an 

explicit focus on patient host response biology. The result of this careful synthesis is a 

diagnostic tool that capitalizes on the synergy of thoughtfully applied AI/ML to expertly curated 

biologic data to better equip—not replace—clinicians in their challenging fight against sepsis.   

Sepsis represents an ongoing diagnostic challenge to clinicians due to its often subtle 

and heterogeneous presentation. Determining the presence or likelihood of progression to 

sepsis, and the severity with associated clinical needs represents a continuing challenge to 

clinicians.  The Sepsis ImmunoScore is unique in its approach due to its machine-learning 

based incorporation of 22 parameters to comprehensively assess a patient’s risk of being 

diagnosed with sepsis, plus its association with adverse outcomes. The ImmunoScore should 

serve as an adjunctive test to assist clinical decision making in the acute setting. Given its 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 7, 2024. ; https://doi.org/10.1101/2024.05.06.24306954doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.06.24306954
http://creativecommons.org/licenses/by-nd/4.0/


strong predictive ability, the Sepsis ImmunoScore may help to improve patient outcomes by 

adequately informing physician decisions for patients potentially requiring sepsis-related care, 

such as the rapid administration of broad-spectrum antimicrobials, escalation of care, and 

administration of fluid or vasopressor medications. It may also help to reduce over-triage by 

more accurately identifying patients at low risk for deterioration due to infection, for example 

allowing emergency department physicians to potentially treat these low -isk patients in the 

outpatient setting and promote antimicrobial stewardship. 

 

Limitations 

There are a number of limitations to our study. First, we used 5 hospitals in the study, it is 

possible that our findings may not generalize to specific populations that may differ from our 

hospitals. Second, we relied upon an EMR extraction, so it is possible that missingness or the 

use of ICD10 codes may have led to misclassification of certain elements such as comorbidities. 

Third, this was an observational study so we cannot assess the impact of the ImmunoScore on 

clinical decision-making and changes in therapeutic approaches. Fourth, the primary outcome of 

Sepsis-3 within 24 hours relied upon an automated calculation in the derivation set and 

adjudication for presence of infection in the internal and external validation; thus, 

misclassification of outcome may have occurred. Fifth, our inclusion criteria used the ordering of 

a blood culture as a surrogate indicator for a clinical suspicion of infection and patients where 

there was a clinical suspicion may not have had a blood culture ordered or other patients may 

have had a blood culture performed who had a very low (or no) suspicion of infection. Finally, 

covariate missingness may have affected algorithm performance. 
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Conclusions 

The Sepsis ImmunoScore has demonstrated robust risk assessment performance in derivation, 

internal, and external validation. Future work is warranted to further establish its generalizability 

to other settings. Finally, additional studies are warranted to assess the impact of the Sepsis 

ImmunoScore on clinical decision-making, sepsis care, and associated resource utilization and 

costs. These investigations are ongoing. 
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Figure Legends 

Figure 1. Sepsis ImmunoScore Stratification for Sepsis-3 in all Cohorts.  Barplots are 
shown for the derivation, internal validation, and external validation datasets for the Sepsis-3 
within 24 hours PVs for each Sepsis ImmunoScore risk stratification category. Dashed lines 
indicate the 95% CIs.  
 
Figure 2. Sepsis ImmunoScore Risk Stratification for Morbidity and Mortality (External 
Validation).  Barplots are shown for the derivation, internal validation, and external validation 
datasets for the secondary endpoints PVs (ICU transfer within 24 hours, in-hospital mortality, 
mechanical ventilation within 24 Hours, vasopressor administration within 24 Hours, and length 
of stay from inclusion time) for each Sepsis ImmunoScore risk stratification category. Dashed 
lines indicate the 95% CIs. 
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Tables 

Table 1. Baseline Data and Adverse Outcomes for Derivation, Internal Validation and External Validation 

Characteristic 

Patients Encounters, No. (%)   

 

Derivation   Internal Validation External Validation  

(N = 2366) (N = 393) (N = 698)  

Clinical Site           

Beth Israel Deaconess Medical Center – Boston, MA 0 (0.0)  0 (0.0)  356 (51.0)   

OSF – Peoria, IL 712 (30.1)  87 (22.1)  0 (0.0)   

Jesse Brown VA - Chicago, IL 0 (0.0)  0 (0.0)  65 (9.3)   

Mercy Health - St. Louis, MO 1061 (44.8)  306 (77.9)  0 (0.0)   

Beaumont - Royal Oak, MI 0 (0.0)  0 (0.0)  277 (39.7)   

Carle Foundation Hospital – Urbana, IL 593 (25.1)  0 (0.0)  0 (0.0)   

Age (mean (SD)) 64.20 (16.59) 64.06 (17.66) 62.80 (17.01)  

Male (%) 1195 (50.5)  210 (53.4)  391 (56.0)   

Race           

American Indian or Alaska Native 1 (0.0)  0 (0.0)  2 (0.3)   

Asian 12 (0.5)  2 (0.5)  14 (2.0)   

Black or African American 315 (13.3)  57 (14.5)  154 (22.1)  

Native Hawaiian or Other Pacific Islander 0 (0.0)  0 (0.0)  1 (0.1)   

Unknown 85 (3.6)  12 (3.1)  119 (17.0)   

White 1953 (82.5)  322 (81.9)  408 (58.5)   

Ethnicity          

Hispanic or Latino 26 (1.1)  2 (0.5)  96 (13.8)   

Not Hispanic or Latino 1725 (72.9)  385 (98.0)  564 (80.8)   

Unknown 615 (26.0)  6 (1.5)  38 (5.4)   

High-Risk Comorbidities      

Acute Myocardial Infarction (%) 97 (4.1)  11 (2.8)  43 (6.2)   

History of Myocardial Infarction (%) 101 (4.3)  21 (5.3)  54 (7.7)   

Congestive Heart Failure (%) 583 (24.6)  103 (26.2)  170 (24.4)   

Peripheral Vascular Disease (%) 225 (9.5)  49 (12.5)  72 (10.3)   

Cerebrovascular Disease (%) 130 (5.5)  38 (9.7)  65 (9.3)   

Chronic Obstructive Pulmonary Disease (%) 606 (25.6)  107 (27.2)  171 (24.5)   

Dementia (%) 167 (7.1)  45 (11.5)  72 (10.3)   

Paralysis (%) 68 (2.9)  10 (2.5)  20 (2.9)   

Diabetes (%) 630 (26.6)  101 (25.7)  156 (22.3)   
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Diabetes with Complications (%) 423 (17.9)  93 (23.7)  155 (22.2)   

Renal Disease (%) 659 (27.9)  123 (31.3)  216 (30.9)   

Mild Liver Disease (%) 118 (5.0)  19 (4.8)  94 (13.5)   

Moderate and Severe Liver Disease (%) 45 (1.9)  6 (1.5)  55 (7.9)   

Peptic Ulcer Disease (%) 45 (1.9)  8 (2.0)  13 (1.9)   

Rheumatologic Disease (%) 105 (4.4)  17 (4.3)  33 (4.7)   

AIDS (%) 17 (0.7)  2 (0.5)  6 (0.9)   

Immunocompromised (%) 470 (19.9)  117 (29.8)  190 (27.2)   

COVID-19 (%) 189 (8.0)  28 (7.1)  73 (10.5)   

Adverse Outcomes      

Sepsis-3 within 24 hours (%) 763 (32.2)  108 (27.5) 151 (21.6)  

In-hospital Mortality (%) 147 (6.2)  33 (8.4)  33 (4.7)   

ICU Transfer (%) 491 (27.7)  144 (36.6)  151 (21.6)   

Placement of Mechanical Ventilation (%) 191 (8.1)  44 (11.2)  51 (7.3)   

Administration of Vasopressors (%) 223 (9.4)  53 (13.5)  77 (11.0)   

Length of Stay (median [IQR]) 4.7 [2.6, 8.5] 4.98 [2.8, 10.8] 5.94 [3.3, 10.4]  

 

 

Table 2. Sepsis ImmunoScore Risk Stratification for Sepsis-3 Within 24 Hours 

Cohort 
ImmunoScore 
Risk Category 

Total 
Patients 

Septic 
Patients 

Sepsis PV  
[95% CI] 

Sepsis Likelihood  
Ratio [95% CI] 

Cochran-
Armitage Test (p-

value) 

External Low 232 7 3.0% [1.2%, 6.1%] 0.1 [0.1, 0.2] < 0.001 

Validatio
n 

Medium 157 20 12.7% [7.96%, 
19.0%] 

0.5 [0.3, 0.8]  

(N = 698) High 276 101 
36.6% [30.1%, 

42.6%] 2.1 [1.8, 2.5]  

 Very High 33 23 
69.7% [51.3%, 

84.4%] 8.3 [4.1, 17.1]  

 

 

Table 3. External Validation ImmunoScore Risk Stratification for Morbidity and Mortality 

Secondary 
Outcome 

Sepsis Risk 
Category 

Total 
Patients 

Patients 
with Event 

Predictive Value Likelihood Ratio Days 
Cochran-
Armitage 

[95% CI] [95% CI] [95% CI] Test 

      

(p-value) 

ICU Transfer 
within 24 Hours 

Low 232 11 4.7% [2.4%, 8.3%] 0.2 [0.1, 0.4] - < 0.001 

Medium 157 20 12.7% [8.0%, 19.0%] 0.7 [0.4, 1.1] -   

High 276 71 25.7% [20.7%, 31.3%] 1.7 [1.3, 2.1] -   

Very High 33 18 54.6% [36.4%, 71.9%] 5.8 [3.0, 11.3] -   

In-Hospital 
Mortality 

Low 232 0 0.0% [0.0%, 1.6%] 0.0 [0.0, -] - < 0.001 

Medium 157 3 1.9% [0.4%, 5.5%] 0.4 [0.1, 1.2] -   

High 276 24 8.7% [5.7%, 12.7%] 1.9 [1.3, 2.9] -   

Very High 33 6 18.2% [7.0%, 35.5%] 4.5 [1.9, 10.7] -   

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 7, 2024. ; https://doi.org/10.1101/2024.05.06.24306954doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.06.24306954
http://creativecommons.org/licenses/by-nd/4.0/


Mechanical 
Ventilation 

within 24 Hours 

Low 232 6 2.6% [1.0%, 5.5%] 0.5 [0.2, 1.2] - 0.008 

Medium 157 6 3.8% [1.4%, 8.1%] 0.8 [0.4, 1.8] -   

High 276 18 6.5% [3.9%, 10.1%] 1.4 [0.9, 2.2] -   

Very High 33 3 9.1% [1.9%, 24.3%] 2.0 [0.6, 6.6] -   

Vasopressor 
within 24 Hours 

Low 232 2 0.9% [0.1%, 3.1%] 0.1 [0.0, 0.5] - < 0.001 

Medium 157 3 1.9% [0.4%, 5.5%] 0.3 [0.1, 0.8] -   

High 276 32 11.6% [8.1%, 16.0%] 1.7 [1.2, 2.4] -   

Very High 33 13 39.4% [22.9%, 57.9%] 8.4 [4.2, 16.7] -   

Length of Stay 

Low 232 232 - - 4.0 [3.5, 4.9]   

Medium 157 157 - - 5.7 [4.9, 7.0]   

High 276 276 - - 7.7 [6.5, 8.5]   

Very High 33 33 - - 13.5 [7.1, 19.1]   
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