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Abstract 25 

Genome sequencing from wastewater has emerged as an accurate and cost-effective 26 

tool for identifying SARS-CoV-2 variants. However, existing methods for analyzing 27 

wastewater sequencing data are not designed to detect novel variants that have not been 28 

characterized in humans. Here, we present an unsupervised learning approach that 29 

clusters co-varying and time-evolving mutation patterns leading to the identification of 30 

SARS-CoV-2 variants. To build our model, we sequenced 3,659 wastewater samples 31 

collected over a span of more than two years from urban and rural locations in Southern 32 

Nevada. We then developed a multivariate independent component analysis (ICA)-based 33 

pipeline to transform mutation frequencies into independent sources with co-varying and 34 

time-evolving patterns and compared variant predictions to >5,000 SARS-CoV-2 clinical 35 

genomes isolated from Nevadans. Using the source patterns as data-driven reference 36 

“barcodes”, we demonstrated the model’s accuracy by successfully detecting the Delta 37 

variant in late 2021, Omicron variants in 2022, and emerging recombinant XBB variants 38 

in 2023. Our approach revealed the spatial and temporal dynamics of variants in both 39 

urban and rural regions; achieved earlier detection of most variants compared to other 40 

computational tools; and uncovered unique co-varying mutation patterns not associated 41 

with any known variant. The multivariate nature of our pipeline boosts statistical power 42 

and can support accurate and early detection of SARS-CoV-2 variants. This feature offers 43 

a unique opportunity for novel variant and pathogen detection, even in the absence of 44 

clinical testing.  45 
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Introduction 47 

Public health testing and the sequencing of SARS-CoV-2 genomes have been pivotal in 48 

advancing the development of precise vaccine therapeutics and facilitating 49 

comprehensive surveillance of circulating variants1,2. However, clinical surveillance of 50 

COVID-19 transmission often imposes substantial demands on laboratory resources and 51 

relies on individuals actively seeking testing3,4. These challenges underscore the need for 52 

complementary, proactive, and cost-effective methods to monitor the emergence and 53 

spread of novel SARS-CoV-2 variants.   54 

 55 

In the United States, there has been substantial spatial and temporal variation 56 

reported for the dynamics of the COVID-19 pandemic in urban and rural counties5,6. 57 

Studies have described disease incidence being initially high in urban locations, followed 58 

by a rapid surge in infections from rural areas5,6. Notably, the overall disease incidence is 59 

reported to be lower in rural compared to urban regions5,7. Given that rural communities 60 

have fewer healthcare resources and an established reluctance to seek medical care, an 61 

overarching infection prevention and control effort could benefit significantly from new 62 

interventions designed to track disease incidence. 63 

 64 

Wastewater-based epidemiology (WBE) has emerged as a valuable alternative for 65 

tracking changes in SARS-CoV-2 viral levels and variants within a community8–12. The 66 

SARS-CoV-2 virus is a single-stranded RNA virus that can be shed in wastewater through 67 

human waste such as feces, saliva, and urine13,14. In comparison to clinical testing, 68 

wastewater analyses provide a less-biased approach to viral monitoring, particularly in 69 
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areas with limited healthcare resources and unclear testing hesitancy rates15–19. 70 

Throughout the COVID-19 pandemic, WBE served as a pivotal and cost-effective tool to 71 

monitor and characterize the emergence and spread of SARS-CoV-2 variants of concerns 72 

(VoCs), offering early detection for potential outbreaks8,18,20–23.   73 

 74 

The complexity of wastewater matrices presents significant challenges in obtaining 75 

high-quality nucleic acid sequences and detecting SARS-CoV-2 variants. To overcome 76 

this shortfall, targeted hybridization and amplicon-based sequencing methods have been 77 

implemented to characterize the viral composition within a sample24–31. Complementing 78 

these sequencing approaches, bioinformatic pipelines have then been developed with 79 

unique computational considerations that support the identification and quantification of 80 

SARS-CoV-2 variants18,21,32–36. For example, the COJAC pipeline33 utilizes a variant-81 

specific mutation pattern and counts aligned read pairs to detect the presence of a VoC 82 

in wastewater samples, even with a relatively low viral load. In addition, the Vpipe37, 83 

LoFreq38, or iVar39 pipeline can be used to define single nucleotide polymorphisms (SNPs) 84 

with alternative allele frequencies within the SARS-CoV-2 genome. To determine the 85 

presence and abundance of VoCs, these pooled SNP alternative allele frequencies are 86 

generally modeled as a linear combination of predefined VoCs using GISAID or UshER-87 

curated reference barcodes20,21,34–36. Among various linear regression models and 88 

optimization methods to estimate the abundance of variants, a pipeline called Freyja34 is 89 

frequently employed due to its simplicity in modeling and interpretation. However, despite 90 

the widespread use of these pipelines, a shared bias toward pre-defined reference 91 

barcodes exists, potentially leading to incorrect variant predictions with metadata errors. 92 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.18.24306052doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.18.24306052


5 
 

This bias can be exacerbated when either 1) the variants included in the reference 93 

barcodes do not match the current circulating VoCs in the communities, or 2) a new VoC 94 

may be circulating within the community, but has not been identified through clinical 95 

sequencing. Furthermore, since wastewater samples represent a composite of multiple 96 

clinical genomes, there may be limited statistical power to detect emerging VoCs with low 97 

abundance in a single sample.    98 

 99 

Here, we introduce a multivariate method designed to analyze SARS-CoV-2 100 

wastewater sequencing data and identify circulating variants. We hypothesize that our 101 

independent component analysis (ICA)-based pipeline called ICA-Var (Independent 102 

Component Analysis of Variants) can leverage multiple sequencing datasets to amplify 103 

statistical power and thereby enable early and precise detection of variants within the 104 

community. To validate our approach, we compare the results obtained using our pipeline 105 

with those generated by the state-of-the-art tool Freyja34. Our approach also identifies 106 

emerging co-varying mutation patterns, which may belong to more recent VoCs or have 107 

not been reported. Collectively, our findings demonstrate the effectiveness of this new 108 

pipeline, even in the absence of clinical data. These results underscore the potential for 109 

ICA-Var to identify mutation patterns within the SARS-CoV-2 genome that could give rise 110 

to novel circulating variants.  111 

  112 
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Results 113 

Large-scale genome sequencing and the development of a computational pipeline  114 

Analyzing wastewater SARS-CoV-2 genomes presents inherent complexities resulting 115 

from various factors. For example, the use of short sequencing reads introduces 116 

challenges in accurately phasing genomes and the degradation of viral genomes in 117 

environmental samples contributes to uneven genome coverage and sequencing read 118 

depth. To address these challenges, we sequenced 3,659 wastewater samples using an 119 

amplicon-targeted approach and employed stringent quality control measures. Using a 120 

minimum threshold of 80% genome coverage at more than 50X sequencing depth, we 121 

selected 1,385 of these samples, covering 59,422 locations/mutations on the genome, 122 

for further analysis (Supplementary Figure 1). Leveraging this extensive dataset, we 123 

developed a data-driven approach named ICA-Var. This method transforms mutation 124 

frequencies in wastewater samples into independent sources with co-varying mutation 125 

patterns and utilizes a dual-regression method to re-associate the independent sources 126 

back to the original samples (Figure 1A and Methods). We hypothesized that the ICA 127 

sources could effectively capture the evolving dominant SARS-CoV-2 variants over time, 128 

with each being characterized by distinct determinant mutation patterns. To evaluate the 129 

performance of our tool, we conducted a comparative analysis of variant detection against 130 

the state-of-the-art tool known as Freyja (Figure 1A-B). 131 

 132 

In late 2021, both Freyja and ICA-Var reliably identified B.1.617.2 (Delta) and BA.1 133 

(Omicron) VoCs in wastewater samples (Figure 1C, yellow in first two rows), reflecting 134 

the prevalence of both variants during this period. In 2022, ICA-Var demonstrated the 135 
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ability to detect BA.2, BA.4, BA.5, BF.7, BQ.1, XBB.1, and XBB.1.5 variants one or several 136 

weeks before Freyja (Figure 1C, green). Consistent detection of Omicron variants was 137 

obtained by Freyja and ICA-Var throughout 2022 (Figure 1C, yellow). In 2023, both Freyja 138 

and ICA-Var successfully identified XBB.1.16 in late March, a month prior to the first 139 

sequenced clinical sample in Southern Nevada (Figure 1C, yellow). For more emerging 140 

VoCs in 2023, such as EG.5, ICA-Var detected this variant in early June, coinciding with 141 

the week of the first reported clinical sequence in Southern Nevada (first red box in Figure 142 

1C). In contrast, Freyja reliably identified the EG.5 signal only once the VoC became more 143 

prevalent in early July. Similarly, for HV.1, and BA.2.86 VoCs, ICA-Var detected the 144 

presence of these variants in wastewater several weeks before Freyja (Figure 1C, red 145 

boxes).  146 

     147 

To explore the earlier detection of the emerging VoCs EG.5, HV.1, and BA.2.86 by 148 

ICA-Var compared to Freyja, we generated a heatmap illustrating alternative allele 149 

frequencies at the dominant mutation sites for these variants. This heatmap represents 150 

samples from the first week of detection by each method (Figure 2). Specifically, for EG.5, 151 

ICA-Var initially identified the variant during the week of 06/05/2023, and two wastewater 152 

samples in this week exhibited reliable mutation frequencies at three out of eight EG.5 153 

dominant mutation sites (Figure 2, top row in panel EG.5). Freyja reported abundances 154 

of 0.66% and 0.53% for EG.5 in these two samples, respectively. Furthermore, an 155 

additional wastewater sample from the same week showed reliable mutation frequencies 156 

at two EG.5 dominant mutation sites, but Freyja did not identify EG.5 in this particular 157 

sample. As a multivariate method, ICA-Var leveraged all these samples with reliable, yet 158 
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relatively low prevalence of EG.5 mutation sites, thereby enhancing statistical power and 159 

consequently enabling an earlier detection of EG.5 in this particular week. Conversely, 160 

Freyja reported a 23.08% abundance of one wastewater sample in the week of 161 

07/10/2023. As shown in Figure 2 (bottom row in panel EG.5), this sample demonstrated 162 

reliable alternative allele frequencies at five out of eight EG.5 determinant mutation sites 163 

(Figure 2, red box). The increased prevalence of EG.5 mutation sites in this sample 164 

contributed to the detection of EG.5 in Freyja. Similarly, for HV.1 (Figure 2, HV.1 panel) 165 

and BA.2.86 (Figure 2, BA.2.86 panel), ICA-Var capitalized on multiple wastewater 166 

samples with reliable yet relatively low prevalence of dominant mutation sites, thereby 167 

enhancing statistical power and achieving an earlier detection. In contrast, Freyja 168 

mandated at least one individual sample to exhibit the presence of dominant mutation 169 

sites for detection (red boxes in Figure 2).    170 

 171 

We further evaluated the earlier detection of VoCs in 2022 for ICA-Var and Freyja 172 

(Supplementary Figure 2). In addition to enhancing statistical power, the inclusion of 173 

deletions as additional sites in the proposed pipeline (indicated by orange boxes in 174 

Supplementary Figure 2) played a significant role in the earlier detections of BA.2, BA.4, 175 

and BA.5 variants compared to Freyja. This advantage arises from the fact that no 176 

deletions were utilized in the inference process within the default settings of Freyja, a 177 

result previously discussed in another computational pipeline designed to analyze 178 

wastewater sequencing data35 . 179 

 180 

Detection of VoCs in urban and rural samples 181 
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From the beginning of 2022, we sequenced and analyzed wastewater samples from rural 182 

areas in Southern Nevada (Supplementary Table 1). The number of urban (orange curve) 183 

and rural (yellow curve) samples for each week were plotted in Supplementary Figure 184 

1D. We conducted a comprehensive urban-rural epidemiological comparison in our 185 

wastewater analyses (Methods), with samples categorized as urban and rural analyzed 186 

separately for each week. We present a summary of the detection of 18 VoCs utilizing 187 

both the established Freyja pipeline (Figure 3A) and our proposed ICA-Var pipeline. 188 

(Figure 3B). 189 

 190 

ICA-Var and Freyja both identified 16 out of the 18 VoCs in urban wastewater samples 191 

prior to detecting these VoCs in wastewater samples from rural locations (Figure 3A-B). 192 

This data suggest that new SARS-CoV-2 variants typically enter urban areas first before 193 

spreading into rural areas. Interestingly, XBB.1 and FL.1.5.1 were first detected in rural 194 

wastewater samples by either Freyja or ICA-Var (black boxes in Figure 3A-B). More 195 

specifically, Freyja first identified the XBB.1 variant in a rural sample in the week of 196 

11/07/2022 (dashed red box in Supplementary Figure 2, panel XBB.1), but ICA-Var was 197 

able to detect XBB.1 one week prior to Freyja in urban samples (Figure 3C). Both ICA-198 

Var and Freyja first detected FL.1.5.1 in rural samples on 07/10/2023 (Figure 3C). 199 

Detailed inspections showed that one rural sample on 07/12/2023 showed an 200 

overwhelming presence of FL.1.5.1 dominant mutations (dashed red box in 201 

Supplementary Figure 2, panel FL.1.5.1), which contributed to this earlier detection in 202 

rural areas. In contrast, urban samples demonstrated a much lower alternative allele 203 

frequencies and prevalence at FL.1.5.1 mutations.    204 
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 205 

Identification of mutation sites with significant time-evolving contributions 206 

Out of 59,422 mutation sites included, and following the analyses pipeline in Figure 1A, 207 

a total of 730 mutation sites demonstrated significant contributions during the multivariate 208 

group ICA (Supplementary Figure 1B). Among them, a subset of 177 mutations showed 209 

a significant time-evolving contribution from August 2021 to November 2023 (Methods). 210 

As a proof of concept, we cross-referenced these 177 mutations with dominant mutation 211 

sites in B.1.617.2, BA. 1 and XBB.1 variants, and plotted their weekly contributions in 212 

Figure 4.  213 

 214 

Significant fluctuating contributions were observed in late 2021 for 16 out of 25 215 

dominant mutation sites in B.1.617.2 (Figure 4, panel B.1.617.2). These contributions 216 

gradually declined through 2022 and diminished further in 2023. For the BA.1 variant, 217 

there was a noticeable increase in contributions related to the associated mutations in 218 

late 2021, peaking in early 2022 (Figure 4, panel BA.1, orange box). For several BA.1 219 

mutation sites, time-evolving contributions continued to fluctuate in 2023, and their 220 

involvement in other Omicron sub-lineages (e.g., XBB.1) was reported at nextstrain.org. 221 

In addition, 22 out of 25 dominant mutations in XBB.1 displayed significant time-evolving 222 

contributions, with a substantial impact after September 2022. Similar fluctuation patterns 223 

were observed for several mutation sites (Figure 4, panel XBB.1, orange box), indicating 224 

that these mutation sites co-vary together and demonstrate a recombinant nature for 225 

XBB.1. Collectively, our data (Figure 4) demonstrate that time-evolving contributions for 226 

mutation sites identified by ICA-Var were consistent with the clinical emergence of Delta, 227 
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Omicron, and XBB.1 variants. These results further solidify the foundation for the 228 

proposed pipeline, indicating its potential to identify novel mutation patterns that may lead 229 

to the emergence of new variants. 230 

 231 

Discovery of potential novel variants 232 

Upon cross-referencing with dominant mutation sites in 15 VoCs (18 VoCs in Figure 1B, 233 

excluding emerging variants EG.5, HV.1, and BA.2.86), a set of 113 mutations sites 234 

emerged as potential novel mutations. Using a hierarchical clustering algorithm with ward 235 

distance, six clusters were obtained at a cut-off ward distance of 18 (Figure 5A, Methods). 236 

Among these clusters, cluster 2, 3, 4, and 5 showed overlapping mutation sites with 237 

emerging variants in late 2023 (bottom table in Figure 5A). Using cluster 3 as an example, 238 

we observed two sets of co-varying patterns after 06/2023 (dashed orange boxes in 239 

Figure 5B), both were overlapping with dominant mutations of EG.5 and HV.1. 240 

Furthermore, there were no overlapping mutations between cluster 1 or 6 with known 241 

mutation sites in emerging variants in late 2023 (bottom table in Figure 5A). Co-varying 242 

patterns after 2023/08 were evident for mutation sites in cluster 1 (Figure 5D). For these 243 

eight mutations, we verified the presence of these sites in clinical sequencing data from 244 

GISAID. Our analysis revealed that these mutations had been infrequently reported in 245 

any clinical samples (Supplementary Figure 3). Hence, these mutations could 246 

potentially lead to the emergence of novel SARS-CoV-2 variants and warrant close 247 

monitoring, pending clinical testing.  248 

 249 

Discussion 250 
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Wastewater-based epidemiology (WBE) offers a unique opportunity to monitor the 251 

emergence and spread of SARS-CoV-2 variants at the population level. Our proposed 252 

pipeline demonstrates early detection of the SARS-CoV-2 VoCs in wastewater preceding 253 

identification in clinical data. We further show the spatial and temporal dynamics of most 254 

emerging SARS-CoV-2 VoCs transitioning from urban to rural areas. Leveraging the data-255 

driven nature of our proposed pipeline, ICA-Var    identifies modules of mutations in the 256 

SARS-CoV-2 genome that are consistent with parallel time-changing patterns, and 257 

consequently gave rise to VoCs from August 2021 to November 2023. The proposed 258 

method offers an opportunity to identify mutation sites that are occurring simultaneously 259 

and could lead to potential novel variants, even in the absence of clinical data. Importantly, 260 

ICA-Var can also take advantage of the dual regression feature to associate an identified 261 

group source with a limited number of recently collected samples. 262 

 263 

Enhanced sensitivity and specificity in SARS-CoV-2 VoC detection. Wastewater samples 264 

are a composite of multiple clinical genomes spanning a local community at a given time 265 

point40. COVID-19 clinical testing and reports indicate that certain VoCs were dominant 266 

at specific time points from August 2021 to November 202341–43. Our method, ICA-Var    267 

enables the separation of multiple genomic signals into independent sources44. Utilizing 268 

a significant number of wastewater samples spanning this timeframe, retrospective ICA 269 

can uncover the original mutation profile, each representing an individual or a set of 270 

similar VoCs spanning communities at different time points. Notable, ICA-Var can handle 271 

non-Gaussian and non-linearly mixed signals, operates without the need for prior 272 

knowledge, and performs blind source separation44. These inherent properties make ICA 273 
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robust to our real-world application of de-mixing wastewater samples, enabling the 274 

identification of clinically-relevant VoCs.  275 

 276 

Following group ICA, we performed the dual-regression analysis to re-associate the 277 

original source with weekly samples to investigate and characterize the signals from ICA 278 

within each week. Previous studies have applied the dual-regression method in functional 279 

magnetic resonance imaging data analysis to associate group networks (i.e., sources) 280 

identified by ICA with individual brain maps45–48. Following the same concept, we adapted 281 

the dual-regression method for our approach to project group sources back onto weekly 282 

samples. This step allows us to enhance the specificity of the group signals and provides 283 

accurate localization of mutation patterns in weekly samples. It also leads to enhanced 284 

interpretability when comparing against dominant mutations from each VoC derived from 285 

clinical sequencing data.  286 

 287 

Collectively, as compared to the state-of-the-art Freyja tool that analyzes each 288 

individual wastewater sample with a univariate approach, the proposed pipeline boosts 289 

the statistical power and enables the earlier and more accurate detection of each VoC 290 

(Figure 1 and Figure 3). The intention to incorporate deletion information in our proposed 291 

analyses also contributes to the enhanced sensitivity and accuracy (Supplementary 292 

Figure 2). Earlier detection of VoCs from wastewater data then enables public health 293 

authorities to implement timely and targeted interventions to mitigate the spread of the 294 

virus40.  295 

 296 
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ICA-Var does not require clinical data to identify a novel variant.  297 

Wastewater monitoring and clinical sequencing data of SARS-CoV-2 can provide a 298 

comprehensive understanding of the emergence, spread and prevalence of a virus33,49,50. 299 

A time-dependent and accurate reference barcode for circulating VoCs are often required 300 

to identify emerging variants34,35. Therefore, these methods (such as Freyja and COJAC) 301 

are potentially restricted from identifying or forecasting potential novel variants in the 302 

absence of clinical sequencing data and require a “correct” barcode of circulating VoCs 303 

for accurate detection.    304 

 305 

As a data-driven approach, our proposed pipeline (Figure 1) recognizes mutation 306 

sites within the SARS-CoV-2 genome through the identification of co-varying and time-307 

evolving patterns in group sources. This crucial step allows us to identify contributing 308 

mutation sites for various VoCs in wastewater at different time points from August 2021 309 

to November 2023, without any prior knowledge of circulating VoCs (Figure 4). The 310 

proposed pipeline additionally identifies co-varying mutation patterns that are more recent 311 

and contribute to emerging group sources that have not been reported in clinical 312 

sequencing data (Figure 5). Therefore, these mutation sites could potentially give rise to 313 

novel SARS-CoV-2 variants. 314 

 315 

VoCs spread from urban to rural areas.  316 

Besides methodological developments, our study shows that each SARS-CoV-2 VoC is 317 

in general first detected in wastewater samples from urban areas and later in wastewater 318 

samples from rural areas (Figure 3). This observation is in concordance with a previous 319 
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report on COVID-19 epidemic dynamics in the United States5. In addition to highlighting 320 

these dynamic patterns, our results underscore the feasibility of monitoring SARS-CoV-2 321 

VoCs through wastewater samples obtained from rural areas. Given reports that residents 322 

in rural locations are at a higher risk for disease and often lack healthcare resources7, 323 

WBE provides a practical and effective way to monitor the disease emergence and 324 

estimate the disease spread and prevalence.  325 

 326 

Limitations.  327 

As a data-driven method, ICA-Var requires a significant number of samples with high 328 

genome coverage and depth to produce stable results. Therefore, the proposed pipeline 329 

may not be suitable for scenarios with a limited number of wastewater samples or if 330 

sequencing metrics indicate genome coverage below 50% and low sequencing depth (i.e., 331 

less than 10 reads per sequenced base). Moreover, one assumption of ICA-Var is that 332 

sources are independent and linearly separable. In our application, the independence of 333 

underlying signals comes from different dominant mutation sites for various VoCs and 334 

different dominance of VoCs at different time points. Both conditions demand a relatively 335 

large number of wastewater samples to generate meaningful results. The multivariate 336 

nature of the proposed pipeline further restricts its application to detect the presence of 337 

VoCs in a single wastewater sample. Despite the re-association of group sources with 338 

individual samples during the dual-regression step, the regression nature constrains the 339 

algorithm's stability for single-sample analyses. As a result, the proposed method can 340 

only determine the existence of VoCs within a timeframe from multiple samples, in our 341 

case, multiple samples from various wastewater sampling locations in southern Nevada. 342 
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Finally, the proposed pipeline cannot estimate the abundance of each VoC from the 343 

wastewater sample. This limitation arises from ICA-Var's inability to distinguish between 344 

signal and noise in mixed data, and its treatment of each source with equal weight. While 345 

the former may not pose a significant concern in our application, given the bioinformatics 346 

processing pipeline's retention of relevant SARS-CoV-2 signals, the latter impedes our 347 

ability to discern the abundance or significance of each identified source. 348 

 349 

Methods  350 

Wastewater sample collection, processing, and sequencing. A total of 3,659 wastewater 351 

samples were collected from urban and rural locations in Southern Nevada (detailed in 352 

Supplementary Table 1) from August 2021 to November 2023. After collection, 353 

samples were placed on ice in the field and stored under refrigeration until processing 354 

(hold time < 36 h). Nucleic acids from wastewater samples were isolated using the 355 

Promega Wizard Enviro Total Nucleic Acid Kit (Cat #A2991) following the 356 

manufacturer’s protocol. In addition, we modified the Promega protocol by lysing 357 

wastewater with the protease solution and binding free nucleic acids using NucleoMag 358 

Beads from Macherey-Nagel (Cat #744970). Total RNA (>10ng) was processed for first-359 

strand cDNA synthesis using the LunaScript RT SuperMix Kit (New England BioLabs). 360 

Amplicon-based sequencing libraries were constructed using the CleanPlex SARS-CoV-361 

2 FLEX Panel from Paragon Genomics. Libraries were sequenced on an Illumina 362 

NextSeq 500 or NextSeq 1000 platform with 300 cycle flow cells. 363 

 364 

Wastewater sequence data processing. Processing of sequencing data followed a 365 
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modification of our previously published pipeline18. Briefly, upon sequencing, Illumina 366 

adapter sequences were trimmed from read pairs using cutadapt version 4.251. 367 

Sequencing reads were then mapped to the SARS-CoV-2 reference genome 368 

(NC_045512.2) using bwa mem, version 0.7.17-r118852. Paragon Genomics CleanPlex 369 

SARS-CoV-2 FLEX tiled-amplicon primers were trimmed from the aligned reads using 370 

fgbio TrimPrimers version 2.1.0 in hard-clip mode. Variants were called by iVar variants 371 

v1.4.139 using mutation sites with alternative allele frequencies with respect to the 372 

reference Wuhan SARS-CoV-2 genome53, Genome coverage and read depth were 373 

calculated using samtools v1.16.154. Strict quality control (QC) was enforced as only 374 

wastewater samples with 50x depth covering more than 80% of SARS-CoV-2 genome 375 

were retained in the following analyses. Collectively, a total of 1,385 samples, from August 376 

2021 to November 2023, covering 59,422 mutation sites of SARS-Cov-2 variants were 377 

used for the following analyses (Supplementary Figure 1C-D).  378 

 379 

Public health sample analyses. Public health samples were processed and sequenced 380 

at the Southern Nevada Public Health Laboratory (SNPHL) as part of the Southern 381 

Nevada Health District’s surveillance of the COVID-19 pandemic. Visual inspection of 382 

sequencing reads using the Integrative Genomics Viewer (IGV) was performed to 383 

assess whether mutations had sufficient sequencing support. A TheiaCoV_Illumina_PE 384 

workflow using Nextclade version 2.14.0 was used to assign lineages.  385 

 386 

Retrospective independent component analysis of Variants (ICA-Var). Mathematically, let 387 

𝒀 ∈ ℝ1,385×59,422 denote the 59,422 mutation frequencies (i.e., the proportion of reads at 388 
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a site that contains the mutation) from 1,385 wastewater samples. Since wastewater 389 

samples are aggregations of genomes from multiple infected individuals with various virus 390 

lineages, 𝑌 could be considered as a multivariate mixed signal of SARS-CoV-2 variants 391 

spanning the local community. The data-driven ICA approach separates this multivariate 392 

signal into additive subcomponents44: 𝒀 = 𝑨𝑺, where 𝑨 ∈ ℝ1,385×𝑛ica denotes the mixing 393 

matrix and 𝑺 ∈ ℝ𝑛ica×59,422 represents the source matrix (Figure 1A, shaded grey box). In 394 

ICA-Var, the number of ICA components ( 𝑛𝑖𝑐𝑎 ) was determined from the minimum 395 

description length criterion, and fastICA algorithm was utilized to perform ICA. In our 396 

analysis, ICA was repeated 50 times with different initial values and components from 397 

each run were clustered and visualized55. Only reliable estimates corresponding to tight 398 

clusters were retained as final sources (𝑺, Supplementary Figure 1A). 399 

 400 

The original ICA method assumes that all sources (i.e., subcomponents S) are non-401 

Gaussian and that the sources are statistically independent from one another44. In 402 

analyzing our wastewater samples using ICA-Var, the independence comes mostly from 403 

different mutation patterns and various circulating windows of time for each VoCs41–43. 404 

The sparsity in 𝒀 contributes to the non-Gaussianness. In this case, the source matrix 405 

could represent a co-varying mutation pattern in different time windows, and could 406 

therefore serve as data-driven reference barcodes for mutation frequencies co-existing in 407 

wastewater samples. From this perspective, the ICA-Var pipeline can be considered as 408 

running a multivariate regression and determining the design matrix (S, i.e., reference 409 

barcodes) from the data under the constraint of independence of the sources. In our study, 410 

we conducted a retrospective analysis using ICA-Var on 1,385 wastewater samples 411 
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spanning from August 2021 to November 2023. We predicted that the ICA sources could 412 

capture the evolving dominant SARS-CoV-2 VoCs over time, each characterized by 413 

unique determinant mutation patterns. 414 

 415 

Next, we identified a set of contributing mutations (i.e., significant mutations) for each 416 

source in 𝑺. We selected mutation sites with values exceeding the mean  2 standard 417 

deviations (i.e., 4.55% of all mutation sites) in each row of S as contributing mutations48. 418 

A binary matrix �̂�  was then computed to retain only these contributing mutations 419 

(Supplementary Figure 1B). The pipeline developed in this manuscript and the data 420 

used to generate the results are available at https://github.com/zhuangx15/ICAvar.  421 

 422 

Dual-regression to back-project source matrix onto weekly wastewater samples. To 423 

further determine the dominant mutations and VoCs for each week, we performed a dual-424 

regression analysis45 to project the ICA source matrix (S) back onto weekly wastewater 425 

samples (Figure 1A, shaded grey boxes). The term "dual-regression" stems from the 426 

utilization of two regression procedures employed to estimate source and de-mixing 427 

dynamics for each week against the original data. More specifically, let 𝒚𝑖 ∈428 

ℝ𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑖×59,422 denote mutation frequencies for 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑖 samples in the 𝑖𝑡ℎ week, we 429 

then, 1) used the all-sample source matrix (S) as a set of source regressors in a general 430 

linear model (GLM), to find week-specific de-mixing dynamics ( 𝒂𝑖 =  𝒚𝑖𝑺−1, 𝒂𝑖 ∈431 

ℝ𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑖×𝑛𝑖𝑐𝑎) associated with all-sample source matrix (S); and 2) used week-specific 432 

de-mixing dynamics (𝒂𝒊) as a set of regressors in a second GLM, to find the week-specific 433 

source matrix (𝒔𝑖 =  𝒂𝑖
−1𝒚𝑖 , 𝒔𝑖 ∈ ℝ𝑛𝑖𝑐𝑎×59,422) that were still associated with the all-sample 434 
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source matrix (S). This process yields pairs of estimates forming a dual space, jointly 435 

providing the best approximation for the original all-sample ICA source matrix in each 436 

weekly sample. In summary, we obtained dual-regressed week-specific source matrix 𝒔𝑖 437 

for 113 weeks from August 2021 to November 2023.  438 

 439 

ICA source matrix annotation to SARs-CoV-2 VoCs. To delineate the VoCs each week, 440 

we annotated our dual-regressed ICA source matrix 𝒔𝑖 by comparing them against the 441 

known mutations in VoCs from clinical SARS-CoV-2 sequencing data (Figure 1A, bottom 442 

row). Next, we focused on 18 VoCs that have either been or were circulating in Southern 443 

Nevada between 2021 and 2023. Due to the potential shared dominant mutations among 444 

VoCs during evolution, a hierarchical structure was formed from these 18 VoCs based on 445 

the phylogenetic tree from www.covspectrum.org (Figure 1B, top panel). Dominant 446 

mutation sites for each VoC were determined as follows: 1) mutations with more than 90% 447 

prevalence among clinical sequences reported at www.covspectrum.org were retained; 448 

2) for lineages in level 2, 3, and 4 of the hierarchical tree, mutations that existed in their 449 

higher level VoCs were excluded to maintain a unique determinant mutation set (Figure 450 

1A, button row); and 3) mutations with both substitutions and deletions were included in 451 

step 1) and 2). The number of dominant mutations of each VoC were listed in parentheses 452 

in Figure 1B, top panel.  453 

 454 

We next binarized each row of week-specific source matrix (𝒔𝑖) by keeping only mutations 455 

with values greater than mean  2 standard deviations, as these mutations were 456 

contributing significantly towards the source (𝒔�̂� ). We annotated the binarized week-457 
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specific source matrix (𝒔�̂�) using the dominant mutations from the VoCs by computing the 458 

following six matrices: 1) Spearman’s rank correlation coefficient (𝜌 ); 2) sensitivity; 3) 459 

specificity; 4) area under the receiver operating characteristic curve (AUC); 5) F1 score; 460 

and 6) Jaccard Index (JI). As shown in the dendrogram of these six matrices 461 

(Supplementary Figure 4C), JI and F1score, AUC and sensitivity were highly similar to 462 

each other, respectively. The measure of specificity is dependent on the count of non-463 

dominant mutations within each VoC. This count is arbitrarily determined and influences 464 

the number of dominant mutations observed in other VoCs. Therefore, we established 465 

our annotation criteria using the F1 score, sensitivity, and the Spearman’s correlation 466 

values (Supplementary Figure 4B), and further based on hierarchical levels and number 467 

of determinant mutations of each VoC (detailed in Figure 1B).   468 

 469 

We compared VoC annotations of the proposed pipeline against results from the 470 

state-of-the-art tool Freyja34 (version 1.4.5, Figure 1A, dashed boxes). For this 471 

comparison, Freyja was retrospectively and independently applied to each of the 1,385 472 

samples, utilizing a barcode comprising 18 VoCs, generated in October 2023. We 473 

organized samples into individual weeks, ranging from August 2021 to November 2023. 474 

In each week, if the results from Freyja indicated that any wastewater sample contained 475 

a VoC with an abundance exceeding 15%, we considered this VoC as detected by Freyja 476 

in that specific week (Supplement Figure 4A). 477 

 478 

Potential novel mutations. Given that the identification of dominant mutation sites did not 479 

necessitate prior knowledge of reference barcodes for VoCs, ICA-Var provides a 480 
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distinctive approach to discern emerging mutations. This capability extends to 481 

contributions that might give rise to novel lineages across local communities, even in the 482 

absence of clinical sequencing data. From this perspective, we focused on capturing the 483 

time-evolving contributions of significant mutations in each week-specific source matrix 484 

(Figure 1A, top row), using: |𝒔𝑖
(𝑗)

| = 𝑻𝜷 + 𝝐, where 𝑖 = 1, … ,113, 𝒔𝑖
(𝑗)

 denoted the source 485 

values for 𝑗𝑡ℎ contributing mutations in 𝑖𝑡ℎ week, T denoted a time vector for 113 weeks 486 

from August 2021 to November 2023, and 𝜷 represented the time-evolving effect of each 487 

contributing mutation. Since flipping signs of the de-mixing matrix in ICA would result in a 488 

flipping sign of the source matrix44, we focused on the amplitude (absolute value) of each 489 

week-specific source (𝑠𝑖).  490 

 491 

A significant 𝛽 indicated a critical time-changing contribution for this mutation from 492 

2021 to 2023. As a proof of concept, we cross-checked mutations with significant 𝛽 493 

against known mutations in Delta (B.1.617.2), Omicron (BA.1), and more recent XBB.1 494 

variants, and examined their time-evolving contributions. Following clinical reports, 495 

mutations in Delta variant (B.1.617.2) should demonstrate significant contributions in 496 

2021, mutations in Omicron variant (BA.1) should demonstrate significant contributions 497 

from late 2021 to 2022, and mutations in XBB.1 variants should demonstrate significant 498 

contributions after late 2022.   499 

 500 

Subsequently, we refined our pool of potential novel mutations by cross-referencing 501 

known SARS-CoV-2 variants with mutations exhibiting significant time-evolving 502 

contributions. Among the mutations retained, those demonstrating emerging contributions 503 
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in more recent weeks were identified as candidates with the potential to give rise to novel 504 

lineages. To delve deeper, our focus extended to their time-evolving contributions over 505 

recent three months, from August 2023 to October 2023. We further performed a 506 

hierarchical clustering on these mutations with contributions in the three months as 507 

features, to identify co-varying patterns among these mutations. To validate the identified 508 

co-varying patterns, we examined co-varying patterns of mutations within each cluster, 509 

and cross-referenced them with dominant mutations from the emerging VoCs EG.5, HV.1, 510 

and BA.2. 511 

 512 

Figure Legends 513 

Figure 1 ICA-Var pipeline and comparisons with Freyja. (A) Proposed independent 514 

component analyses (ICA) pipeline. Two matrices are reported: SARS-CoV-2 lineages 515 

detection each week (bottom row), and potential novel mutations (top row). (B) 516 

Hierarchical structure of 18 variants of concerns (VoCs). Lineage-defining mutations for 517 

each VoC were obtained from clinical data summarized at covspectrum.org, and the 518 

number of defining mutations were listed in brackets. Criteria for calling a detection in the 519 

proposed pipeline were listed in shaded boxes. Abbreviations: 𝜌:  the Spearman’s 520 

Correlation coefficient; FDR: false discovery rate. (C). Detection of the emerging VoCs in 521 

wastewater from Southern Nevada from August 2021 to November 2023 in the proposed 522 

method (first reporting matrix in (A)) and the state-of-art tool Freyja. An asterisk (*) 523 

indicates at least one clinical sample was reported within that week. Earlier detections of 524 

the proposed method were observed for emerging variants EG. 5, HV.1, and BA.2.86 (red 525 
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triangle boxes). The yellow triangle box indicates the week without wastewater sampling 526 

due to technical issues.  527 

 528 

Figure 2. Detection of three variants using ICA-Var and Freyja. (A) Earlier detection of 529 

EG.5, (B) HV.1, and (C) BA.2.86 made by the proposed method, as compared to Freyja. 530 

In each panel, top and bottom rows plot the alternative allele frequencies at the dominant 531 

mutation sites for samples at the first detection date made by the proposed method and 532 

Freyja, respectively. X-axis represents each determinant mutation for the variant, y-axis 533 

represents each individual sample at the first detection date, and the color represents the 534 

alternative allele frequencies. In the y-axis, for each sample, if the Freyja pipeline outputs 535 

an abundance, the abundance value will be listed after the sample name. An asterisk (*) 536 

before the sample name indicates that the variant could be detected by this sample 537 

following the proposed criteria. 538 

 539 

Figure 3. Variant detection in urban and rural samples. (A-B) Detection of the emerging 540 

variants of concerns (VoCs) in urban and rural samples using (A) Freyja and the (B) ICA-541 

Var pipeline. (C) Earliest date of variant detection in clinical cases from Southern Nevada; 542 

first detection date with all wastewater samples (lightest grey), urban wastewater samples 543 

(lighter grey) and rural wastewater samples (darker grey) using Freyja and the proposed 544 

pipeline. A red asterisk (*) indicates the earliest detection dates among clinical reports, 545 

Freyja, and the proposed method. If the variant was captured by the Freyja and ICA-Var 546 

on the same earliest date, no * would be indicated. Earlier detection dates in rural samples 547 

than urban samples are highlighted in bold.  548 
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 549 

Figure 4. Mutations with significant time-evolving contributions in the proposed method. 550 

(A) Following the proposed method, 16 out of 25 determinant mutations in B.1.617.2 were 551 

identified to maintain a significant time-evolving contributions to the group, with major 552 

contributions in 2021 and early 2022. (B) The 25 dominant mutations in BA.1 were 553 

identified to have significant time-evolving contributiong to the group, with major 554 

contributions in early 2022. (C) We identified 22 out of 25 determinant mutations in XBB.1 555 

to have significant time-evolving contributions to the group, with major contributions after 556 

2022/09. Similar contributing patterns were observed for several determinant mutations 557 

(orange boxes). 558 

 559 

Figure 5. Potential novel mutation patterns. (A) Hierarchical clustering leads to six 560 

clusters at 113 potential novel mutation sites. Clusters 2, 3, 4, and 5 have overlapping 561 

mutation sites with emerging variants EG.5, HV.1, and BA.2.86. Cluster 1 and 6 show no 562 

overlapping mutation sites with known variants, and therefore, are more likely to give rise 563 

to novel lineages. (B) Co-varying patterns of mutation sites in cluster 3 show major 564 

fluctuating contributions after June 2023, consistent with EG.5 and HV.1 variants. (C) Co-565 

varying patterns of mutation sites in cluster 1, with major fluctuating contributions after 566 

August 2023.  567 

 568 

Supplementary Figure 1. Summary statistics of samples. (A) Independent component 569 

analysis (ICA) source matrix (𝑺). (B) Most contributing mutations (top 5%) in each ICA 570 

source (�̂�). These mutation sites were focused on evaluating time-evolving contributions. 571 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.18.24306052doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.18.24306052


26 
 

(C). Wastewater sample coverage at 50x depth from August 2021 to November 2023. 572 

Each line represents a sequencing run and color indicates SARS-CoV-2 genome 573 

coverage. (D) Number of weekly wastewater samples passing quality control (50x depth 574 

covers >80% of SARs-CoV-2 genome) from August 2021 till November 2023. Urban and 575 

rural wastewater samples are plotted separately.  576 

 577 

Supplementary Figure 2. Early (or simultaneous) detection of VoCs (A) BA.2, BQ.1, (B) 578 

BA.4, (C) BA.5, (D) BF.7, (E) XBB.1, XBB.1.5, (F) XBB.1.9, XBB.2.3, and (G) FL.1.5.1 in 579 

the proposed independent component analysis pipeline (ICA). The x-axis represents each 580 

determinant mutation for the variant and the y-axis represents each individual sample at 581 

the first detection date. The colors represent the alternative allele frequencies. Looking at 582 

the y-axis (for each sample), if Freyja outputs an abundance, the abundance value will 583 

be listed after the sample name. An asterisk (*) before the sample name indicates that 584 

the variant could be detected in the sample following the proposed criteria. For each VoC, 585 

dominant mutation sites represented by deletions are highlighted in orange boxes.  586 

 587 

Supplementary Figure 3. Manual cross-refencing of mutation sites in cluster 1 for Figure 588 

5 with clinical sequencing reports in GISAID. According to clinical reports, all eight 589 

mutations are currently not dominant in any variant.  590 

 591 

Supplementary Figure 4. A comparison of detection matrices between Freyja and ICA-592 

Var. (A) Maximum Freyja abundance for samples in each week. Final detection criteria in 593 

Figure 1C were set as maximum Freyja abundance greater than 15% (0.15). (B) 594 
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Detection matrices by the proposed ICA method based on three different criteria: 595 

Spearman's correlation value (top panel), sensitivity (middle panel) and F1score (last 596 

panel). (C) Hierarchical clustering results for six detection criteria computed from the 597 

proposed methods. Jaccard index and F1 score are highly similar, sensitivity and area 598 

under the ROC curve are highly correlated, and Spearman's correlation is a unique 599 

criterion. Therefore, we utilized Spearman’s correlation, sensitivity, and F1score to 600 

establish our detection criteria in the ICA-Var pipeline (Figure 1B).  601 
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