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Abstract

Recent interest has surged in building large-scale foundation models for medical applica-
tions. In this paper, we propose a general framework for evaluating the efficacy of these
foundation models in medicine, suggesting that they should be assessed across three di-
mensions: general performance, bias/fairness, and the influence of confounders. Utilizing
Google’s recently released dermatology embedding model and lesion diagnostics as ex-
amples, we demonstrate that: 1) dermatology foundation models surpass state-of-the-art
classification accuracy; 2) general-purpose CLIP models encode features informative for
medical applications and should be more broadly considered as a baseline; 3) skin tone
is a key differentiator for performance, and the potential bias associated with it needs to
be quantified, monitored, and communicated; and 4) image quality significantly impacts
model performance, necessitating that evaluation results across different datasets control
for this variable. Our findings provide a nuanced view of the utility and limitations of
large-scale foundation models for medical AI.

1. Introduction

There is a global need for accessible medical care. A shortage of experts, especially in
under-resourced countries, presents an opportunity to develop automated medical tools to
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assist this process through the use of artificial intelligence (AI). Deep learning approaches
have demonstrated the ability to perform accurate generalization on highly variable medical
classification tasks within fields such as dermatology (Esteva et al., 2017; Han et al., 2020b;
Tschandl et al., 2018). However, current methods such as the Convolutional Neural Network
(CNN) are computationally expensive to train and rely on large amounts of domain-specific
data. Medical image and data scarcity due to factors ranging from quality control, and
patient privacy, to the expensive cost of expert annotations, present a prohibitively large
barrier to creating the large datasets necessary to train field-specific models. This makes
the creation of domain-specific tools difficult.

One proposed solution to this is the use of foundation models - large-scale models trained
on large corpora of data that can then be fine-tuned on downstream tasks (Gui et al.,
2024). While the initial training of foundation models is data-hungry and computationally
expensive, by learning general features from a wide range of data sources, they offer the
potential to reduce the data, computing, and technical expertise necessary for building
models from scratch for every task.

However, the use of these foundation models in other domains such as language modeling
has revealed that foundation models can hold intrinsic biases against certain demographic
groups, in regard to aspects such as race, which limits their applicability. The lack of
transparency about input data sources for the training of such models also raises concerns
surrounding data diversity and representation. Because of this, their performance in novel
tasks can be unpredictable and variable.

This paper pilots a framework for evaluating the efficacy of foundation models in
medicine. We suggest that these models should be evaluated through three dimensions: gen-
eral performance, bias/fairness, and influence of confounders. Through the use of Google’s
recently released dermatology embedding model (Steiner, 2024), we demonstrate this new
framework by specifically looking at general performance (Sections 3.2.1 and 3.2.2), per-
formance across skin tones (Section 3.2.3), and the impact of photo quality as a potential
confounder (Section 3.2.4). First, we evaluate the effect of skin tone on internal representa-
tion, by generating over 10,000 embeddings for the International Skin Imaging Collaboration
(ISIC) and Diverse Dermatology Images (DDI) datasets and comparing how similar their
representations are across Fitzpatrick categories and skin conditions. Second, we evalu-
ate performance by building linear classification models with the generated embeddings
to assess the utility of these embeddings in downstream diagnostic tasks, comparing the
performance to different zero-shot models. Third, we assess the impact of differing image
quality on the foundation model as a potential confounder.

Generalizable Insights about Machine Learning in the Context of Healthcare

Our study proposes a new framework for evaluating the applicability of emerging foundation
models to clinical tasks to help medical users. Our findings highlight the importance of
evaluating robustness across three areas, specifically downstream performance, potential
for bias, and possible confounding effects.

Our work presents the following generalizable insights for machine learning and health-
care: 1) Skin color is a crucial internal differentiator for machine learning models, em-
phasizing the need to evaluate and address this potential bias; 2) General-purpose CLIP
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models encode substantial understanding of images relevant to medical tasks such as lesion
diagnostics in dermatology. This suggests that these models serve as a strong baseline and
building block for specialized medical AI efforts.

2. Related Work

2.1. Deep Learning in Healthcare

In the past decade, there has been an increase in applications of deep learning techniques, in-
cluding computer vision, natural language processing, and reinforcement learning, to health-
care. In particular, the field has seen tremendous progress in applying computer vision mod-
els to segmentation, detection, and classification of images in the medical setting (Esteva
et al., 2019). One of the most popular and successful algorithms in computer vision is the
convolutional neural networks (CNN), which has been found to achieve physician-level accu-
racy at a broad variety of diagnostic tasks, including identifying diabetic retinopathy from
images of the eye (Gulshan et al., 2016), detecting breast lesions in mammograms (Kooi
et al., 2017), and analyzing spinal MRI images (Jamaludin et al., 2017).

In dermatology, multiple deep learning approaches have been developed, including Mod-
elDerm (Han et al., 2020b), DeepDerm (Esteva et al., 2017), and HAM10000 (Tschandl
et al., 2020). These models have all previously demonstrated state-of-the-art (SOTA) per-
formance in diagnosing lesions from images of the skin, and have similarly been found
comparable to dermatologists’ performance (Haenssle et al., 2020; Esteva et al., 2017). Yet,
despite the impressive performance by these SOTA algorithms, several of these algorithms
have been shown to be poorly generalizable, resulting in variable performances when tested
outside of the original experimental conditions (Du-Harpur et al., 2020).

2.2. Foundation Models in Healthcare

To help mitigate some of the limitations of traditional deep learning models, foundation
models have become more popular (Bommasani et al., 2022). These large-scale, computa-
tionally expensive and data-hungry models serve as the foundation for additional models
to be built upon it. Using transfer learning, the base foundation model can be adjusted for
specific tasks if needed. Unlike deep learning where large amounts of task-specific data must
be available for the model to learn from, foundation models create broader general-purpose
features that can be used in multiple scenarios.

Google has recently released Derm Foundation, an foundational embedding model that is
derived from deep learning applications to dermatology images (Steiner, 2024). Derm Foun-
dation is based on a BiT ResNet-101x3 that was trained in 2 stages. The first pretraining
stage used contrastive learning to train on a large number of image-text pairs; the second
stage fine-tuned this base model for diagnostic classification using clinical datasets. The
team found that models built on top of the Derm Foundation embeddings for dermatology-
related tasks achieved significantly higher quality than previous models, demonstrating that
Derm Foundation can serve as a useful starting point to accelerate dermatology-related
modeling tasks.
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2.3. Biases in AI Models in Dermatology

Many AI models in dermatology suffer from lack of skin tone representation in training and
testing datasets, resulting in biased performance on different Fitzpatrick skin tones. Some
studies only validate models on a single race from a specific region (Han et al., 2020a).
Previous work showed SOTA models performed significantly worse on images from patients
with Fitzpatrick V/VI (Daneshjou et al., 2022, 2021). One case study showed that only
17% of FST VI images were correctly diagnosed through models that were predominately
trained on light skin types (Kamulegeya et al., 2023).

3. Methods

3.1. Datasets

We evaluate the embeddings of dermatology foundation models on two different datasets:
the Diverse Dermatology Imgaes Dataset (DDI), and the International Skin Imaging Col-
laboration (ISIC) 2018 dataset. DDI is a benchmark dataset with 656 images of skin disease
across skin tones with labels confirmed via biopsy and histopathology (Daneshjou et al.,
2022). Each image includes the biopsy-proven diagnosis in addition to a broad categoriza-
tion of lesions into malignant and benign. Each image also contains information about the
Fitzpatrick skin type (FST), a scale that is frequently used in dermatology to quantify skin
tones (Fitzpatrick, 1988). The dataset was designed to allow matching patient character-
istics for direct comparison between patients classified as FST V–VI (dark skin tones) and
patients with FST I–II (light skin tones). The FST I–II, III-IV, and V-VI subgroups in
DDI consist of 208 images (159 benign and 49 malignant), 241 images (167 benign and 74
malignant), and 207 images (159 benign and 48 malignant), respectively. DDI also included
an image quality score, which was the mean from independent assessments by three board-
certified dermatologists. The initial image quality scores range from 0 (highest quality) to
4 (lowest quality), but images with a score of 4 were removed from the final dataset.

The ISIC 2018 dataset (Tschandl et al., 2018; Codella et al., 2019) consists of 10,015 der-
matoscopic images of pigmented lesions collected from Austria and Australia. The dataset
includes seven diagnostic categories: 1) 327 cases of actinic keratoses and intraepithelial
carcinoma (akiec), 2) 514 cases of basal cell carcinoma (bcc), 3) 1,099 cases of benign ker-
atosis (bkl), 4) 115 cases of dermatofibroma (df), 5) 6,705 cases of melanocytic nevi (nv),
6) 1,113 cases of melanoma (mel), and 7) 142 cases of vascular lesions (vasc). More than
50% of these lesions were confirmed by pathology, and the ground truth for the remaining
cases was determined via follow-up, expert consensus, or confirmation by in vivo confo-
cal microscopy (Tschandl et al., 2018). In addition to one-versus-others classification for
the seven categories of diagnosis, we also grouped the diagnostic categories into malignant
(akiec, bcc, mel) and benign (bkl, df, nv, and vasc) lesions.

Based on personal correspondence on 3/27/2024 with Yuan Liu, an author of the Google
Derm Foundation embedding model, Derm Foundation was not trained on either DDI or
ISIC 2018 datasets.
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3.2. Evaluating Foundation Model Embeddings

3.2.1. General predictive performance of foundation models

We primarily evaluated the performance of Derm Foundation, a fine-tuned BiT-M model
with an embedding size of 6,144. To analyze the diagnostic performance of the foundation
models, we first generated corresponding image embeddings for both DDI and ISIC and
evaluated the performance of predicting the malignant versus benign lesion outcome using
a simple logistic regression classifier on top of the embeddings (with default penalty pa-
rameter as implemented in scikit-learn (Pedregosa et al., 2011). We report the five-fold
cross-validated AUC, accuracy, precision, recall, specificity, and F1-score using the imple-
mentation in scikit-learn. For the classification task on DDI, we conducted additional
analysis on disjoint training and testing sets (i.e., no overlapping patients) to reduce data
leakage.

3.2.2. Comparing Representation Across Different Models

We compared the performance of Derm Foundation embeddings with embeddings derived
from one additional dermatology model MONET (Kim et al., 2024), a fine-tuned CLIP
model with an embedding size of 768, as well as 78 other non-domain-specific vision models,
following the work of Huh et al. (2024). These models include ViT (Dosovitskiy et al.,
2020), ResNet-50 (He et al., 2016), and ResNeT-18 (He et al., 2016) (the full list of models
considered can be found in Appendix A). We computed the five-fold cross-validated metrics
for the same set of predictive tasks (malignant or benign) for all embeddings considered.

To measure the similarities between the model embeddings, we used a nearest-neighbor
metric in Huh et al. (2024) that computes the average overlap between k-nearest-neighbors
for each embedding, which has been shown to capture model similarities. To account for
the drastically different dataset sizes, we set k to 6 for DDI and 98 for ISIC.

3.2.3. Examining the potential bias for different skin tone subgroups

Given the demonstrated disparity in many existing models’ performance on downstream
diagnostic tasks across subgroups with different Fitzpatrick Skin Tones, we explored how the
predictive performance and embedding geometries vary across three different FST subgroups
(I–II, III–IV, and V–VI; from lightest to darkest skin tones). The DDI dataset was designed
to allow a demographic parity fairness assessment by allowing direct comparisons between
FST I–II and V–VI, which were matched.

For geometrical investigations, we computed cosine similarities between benign and ma-
lignant samples, a proxy for diagnostic values, across different subgroups. In addition, we
also examined the performance of the ℓ1-regularized logistic regression classifier trained on
different FST subgroups to understand the generalizability of the learned embeddings.

3.2.4. Exploring confounding factors, including image quality

We also assessed the effects of image quality on the predictive performance of the embed-
dings. Using DDI’s image quality score, we defined high-quality and low-quality images to
be those with quality scores < 1 and > 1.5, respectively. We used ℓ2-regularized logistic
regressions to assess the test set performance by training on high or low-quality images only.
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Dataset Class Specificity Precision Recall F1-score AUROC Accuracy

DDI Malignancy 0.94 0.82 0.58 0.68 0.76 0.83
ISIC 2018 Malignancy 0.94 0.71 0.61 0.66 0.78 0.88
ISIC 2018 akiec 0.99 0.65 0.53 0.58 0.76 0.53
ISIC 2018 bcc 0.99 0.75 0.67 0.70 0.83 0.67
ISIC 2018 bkl 0.96 0.70 0.67 0.69 0.82 0.67
ISIC 2018 df 1.00 0.94 0.65 0.77 0.83 0.65
ISIC 2018 mel 0.96 0.66 0.54 0.59 0.75 0.54
ISIC 2018 nv 0.80 0.90 0.96 0.93 0.88 0.96
ISIC 2018 vasc 1.00 0.84 0.91 0.87 0.96 0.91

Table 1: Predictive performance of using an ℓ2 logistic regression on Derm Foundation
embeddings to predict malignant versus benign lesions on DDI (first row) and
ISIC (second row), as well as performance on predicting specific diagnoses (one-
versus-rest) on ISIC (third to last rows).

4. Results

4.1. Classification accuracy using foundation model embeddings

For DDI, we found that using Derm Foundation embeddings with a simple logistic classifier
produced competitive results, with an AUROC of 0.76, a precision of 0.72, and a recall
of 0.58 (see Table 1). For context, Daneshjou et al. (2022) reported AUROCs ranging
from 0.56 to 0.67 for dermatology models on the same task. For ISIC 2018, using Derm
Foundation embeddings yields an AUROC of 0.78, a recall of 0.61, and a specificity of
0.94; these numbers are competitive with previously reported performance. For example,
Tschandl et al. (2020) reported a recall of 0.59 and a specificity of 0.93. Our results confirm
that Derm Foundation embeddings contain informative features for diagnostic tasks.

4.2. Performance of Different Vision Foundation Models

In Figure 1, we display the average AUC across five-fold cross-validation for all vision models
considered in Section 3.2.2 in a two-dimensional UMAP plot for both DDI (left panel of
Figure 1) and ISIC (right panel of Figure 1). We note that in both cases, dermatology
foundation models (both Derm Foundation and MONET) attain the highest AUC compared
to models trained on natural images and texts only. However, the gap between these
dermatology foundation models (depicted as stars in Figure 1) and general-purpose CLIP
foundation models (depicted as crosses in Figure 1) is quite small (< 2% AUC). Moreover,
we note that models trained with only natural images or synthetic images perform much
worse on the downstream prediction task. Our observations indicate that image-text paired
training, even using only general-purpose images, might provide generalization for domain-
specific downstream tasks in dermatology.

Finally, we observe that better-performing models are generally more clustered together
in the 2D visualization than other models, akin to the previously documented “Anna Karen-
ina Principle”, in which less generalizable models (i.e., “unhappy families”) vary more
in the corresponding representation than more generalizable models (i.e., “happy fami-

6



Evaluating Foundation Embedding Models in Healthcare

7 8 9 10 11 12 13

5

6

7

8

9

10

11

UMAP of models representations on DDI

Random initialized
(avg AUC = 60.3%)
Trained on synthetic image
(avg AUC = 66.0%)
Trained on natural image
(avg AUC = 70.3%)
Trained on natural image + text
(avg AUC = 78.7%)
Dermatology foundation models
(avg AUC = 79.9%)

60.0%

65.0%

70.0%

75.0%

80.0%
81.5%

DDI Overall AUC

4 2 0 2

2

3

4

5

6

7

8

9

UMAP of models representations on ISIC

Random initialized
(avg AUC = 81.9%)
Trained on synthetic image
(avg AUC = 86.3%)
Trained on natural image
(avg AUC = 88.3%)
Trained on natural image + text
(avg AUC = 91.8%)
Dermatology foundation models
(avg AUC = 92.5%)

80.0%

85.0%

90.0%

93.5%

ISIC Overall AUC

Figure 1: UMAP visualization of vision model embeddings on DDI (left) and ISIC (right).
Each point corresponds to a different model (details listed in Appendix A) and
is displayed in different shapes according to classes of models and colored by the
mean AUC across five-fold cross-validation.
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lies”) (Ainsworth et al., 2022; Bansal et al., 2021). This aligns with the conclusions in Huh
et al. (2024), which tested with natural images rather than domain-specific medical ones.

4.3. Differential Predictive Performance of Embedding Models in Different
Skin Tone Groups

In Table 2, we evaluated the predictive performance of foundation model embeddings on
subgroups of different skin tones, as well as the generalizability and potential bias of these
embeddings by testing whether a model learned on one subgroup could be used to achieve
high predictive performance for another group.

First of all, when comparing the predictive performance within subgroups on a train/test
split only, the predictive performances are comparable, with higher accuracy and perfor-
mance observed in both the III/IV and V/VI subgroups.

The trend of training and testing on different FST subgroups is more nuanced. We note
that when testing on patients with the lightest skin tone (the I/II subgroup), we see overall
comparable performance but an increase in recall and a drop in precision (from 0.56 to 0.41)
when the training sample consists of a similar but different subgroup (III/IV). However,
there is a significant change in recall (from 0.49 to 0.27) when training samples are from
the more distinctly different dark skin groups. Interestingly, a similar observation holds
when the test samples are from III/IV only as well: we see a noticeable drop in recall when
training only on V/VI. On the other hand, if V/VI (the darkest subgroup) is of interest,
training on I/II and III/IV led to noticeable drops in both precision and recall.

To further understand the generalization experiment results, we display average cosine
similarities between Derm Foundation embeddings across different diagnostic classes and
Fitzpatrick Skin Tones in Table 3. We note several overall trends: 1) the Fitzpatrick Skin
Tone (FST) dominates the cosine similarity calculation, i.e., even for samples with the same
diagnostic classes, different skin tones reduce the average cosine similarity to below 0.4; 2)
overall, given samples from the same FST class, benign samples are most similar to each
other, followed by malignant samples, and then the overall samples.

4.4. Evaluating Image Quality as a Potential Confounder for Performance

In Table 4, we reported the performance of an ℓ2-regularized logistic regression model
using Derm Foundation embeddings on different combinations of train and test subsets
consisting of high- and low-quality images, as image quality could act as a coufounder when
evaluating downstream prediction accuracy. We note that overall, if the test set consists
only of high-quality images, then training on either high or low-quality images would lead to
similar predictive performance (in fact, marginally higher if trained on low-quality images).
On the other hand, the predictive performance is much more sensitive to the training set
composition if we want to draw inferences on the low-quality images. In particular, training
on high-quality images improves the test performance on low-quality images by a large
margin (around 0.2 improvement across precision, recall, F1, and AUROC) compared to
training and testing on low-quality images. That said, overall, the results on the DDI
dataset are quite robust to the quality of the training images, likely due to the removal of
the lowest quality tier during dataset construction.
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Train Test Specificity Precision Recall F1 AUC Accuracy

I/IIa I/II 0.88 ± 0.05 0.56 ± 0.12 0.49 ± 0.17 0.69 ± 0.08 0.78 ± 0.07 0.79 ± 0.06
III/IV I/II 0.72 0.41 0.63 0.64 0.76 0.70
V/VI I/II 0.93 0.54 0.27 0.61 0.68 0.77

III/IVa III/IV 0.89 ± 0.04 0.73 ± 0.06 0.62 ± 0.11 0.76 ± 0.03 0.83 ± 0.05 0.81 ± 0.02
I/II III/IV 0.84 0.65 0.66 0.75 0.82 0.79
V/VI III/IV 0.94 0.67 0.27 0.61 0.69 0.73

V/VIa V/VI 0.93 ± 0.02 0.72 ± 0.06 0.56 ± 0.09 0.76 ± 0.04 0.82 ± 0.04 0.85 ± 0.02
I/II V/VI 0.73 0.36 0.50 0.60 0.68 0.68

III/IV V/VI 0.82 0.37 0.35 0.59 0.68 0.71

Table 2: Predictive performance of using an ℓ2 logistic regression on Derm Foundation
embeddings to predict malignant versus benign lesions, stratified by training subset
and testing subset (I/II, III/IV, V/VI denote the subsets of DDI images from
patients with Fitzpatrick scale I-II, III-IV, and V-VI, respectively). a: For the
entries where train and test are the same subsets, metric averages over five-fold
cross-validation are reported as a reference.

FST Categories Classes Average Cos Sim

I/II & I/II benign & benign 0.55
I/II & I/II benign & malignant 0.50
I/II & I/II malignant & malignant 0.53

I/II & V/VI benign & benign 0.37
I/II & V/VI malignant & malignant 0.32

V/VI & V/VI benign & benign 0.48
V/VI & V/VI benign & malignant 0.41
V/VI & V/VI malignant & malignant 0.43

Table 3: Average cosine similarities between Derm Foundation embeddings across different
diagnostic classes and Fitzpatrick Skin Tones.

5. Discussion

5.1. Improvement over SOTA

Compared to previous SOTA algorithms, dermatology foundation models such as Derm
Foundation and MONET achieve higher classification accuracy. In particular, the improved
performance on diverse datasets such as DDI, which often poses difficulty for previous
models, suggests that foundation models may hold promise in medical applications.

5.2. Domain-specific versus General Foundation Models

We also find that the improvement over the previous state-of-the-art (SOTA) persists for
general-purpose CLIP models (see Figure 1). This indicates that image-text paired training
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Train Test Specificity Precision Recall F1-score AUROC Accuracy

High High 0.90 0.50 0.33 0.40 0.62 0.78
High Low 0.91 0.58 0.50 0.54 0.71 0.83
Low High 0.86 0.63 0.54 0.58 0.70 0.76
Low Low 0.85 0.40 0.25 0.31 0.55 0.68

Table 4: Predictive performance of using an ℓ2 logistic regression on Derm Foundation
embeddings to predict malignant versus benign lesions, stratified by training and
testing subsets (High and Low denote the subsets of DDI images of high and low
quality, as assessed by dermatologists, respectively).

is likely the key ingredient for success. Consequently, general-purpose CLIP models should
be more broadly considered as a baseline for medical tasks, such as lesion diagnostics in
dermatology. Domain-specific models should be compared to and developed based on these
performant general-purpose models, which are often open-source and come with extensive
resources on deployment.

5.3. Skin-tone is a key diffrentiator

Interestingly, we found that for the embeddings of Derm Foundation, there were higher
cosine similarities between benign and malignant skin conditions of the same FST category,
than between FST categories with the same classification label. Although this did not seem
to adversely affect accuracy, this suggests that machine learning models cannot perform
race-agnostic diagnoses and implicitly factor skin tone into internal evaluations.

5.4. Confounding Effects of Image Quality

Unsurprisingly, image quality significantly impacts model performance — models trained
on high-quality images generally outperform those trained on low-quality images. It is
important to note that when we trained models on high-quality images and tested them on
low-quality images, and vice versa, there was an increase in performance. This improvement
may be partly due to the larger volume of data available in the training set. We did not
need to split the data into training and testing subsets.

Limitations Although we reached out to Google and confirmed that the DDI and ISIC
datasets were not used in their training process, the ambiguity surrounding the input data
for proprietary, closed-source models still raises concerns about potential data leakage, which
could upward bias the predictive performance of Derm Foundation. Moreover, while we
have established that skin tone is a key factor in predictive performance, we are constrained
by the limited availability of high-quality images with annotated Fitzpatrick Skin Type
labels. Consequently, our results are only presented using the DDI dataset. Finally, while
our framework is applicable to general medical diagnostic tasks, our initial results have
specifically focused on two common modalities in dermatology: dermoscopy images and
teledermatology photos. The generalizability of our findings needs to be validated in other
medical domains and applications.
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Future Works Several promising pathways lie ahead for future research. First, we could
develop a comprehensive suite of datasets and models that serve as a “leaderboard” for eval-
uating medical AI models, initially focusing on dermatological applications. Additionally,
armed with the insight that image quality, skin tone, and image-text paired pre-training are
likely key differentiators for downstream prediction performance, we plan to enhance foun-
dation models by incorporating multimodal medical data beyond images, such as patient
metadata and history, especially for historically underrepresented groups like patients with
dark skin tones. Finally, we aim to extend and assess this framework in other medical fields
such as cardiology, radiology, and pathology, where there is an abundance of multimodal
data and foundation models are beginning to show promise (Huang et al., 2023; Zhang
et al., 2023; Chen et al., 2024).
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Ryan, Christopher Ré, Dorsa Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih,
Krishnan Srinivasan, Alex Tamkin, Rohan Taori, Armin W. Thomas, Florian Tramèr,
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Appendix A. Details on other vision embedding models

We consider 80 vision models in total:

• 2 domain-specific Dermatology models that are pretrained natural image-text data
and then finetuned on medical data: MONET (Kim et al., 2023) and Google Derm
Foundation (Steiner, 2024).

• 78 general-purpose vision models:

– 17 ViT models ranging from ViT-tiny to ViT-giant, trained on supervised and
unsupervised tasks including ImageNet-21k (Dosovitskiy et al., 2020) classifica-
tion, Masked Autoencoders (He et al., 2021), DINO (Caron et al., 2021), and
CLIP (Radford et al., 2021), including some finetuned on ImageNet-1k.

– 1 randomly initialized ResNet-50.

– 11 ResNet-50 models (He et al., 2016) trained with contrastive learning (Chen
et al., 2020) on ImageNet-1k, Places-365 (Zhou et al., 2017; López-Cifuentes
et al., 2020), and 9 synthetic image datasets used in Baradad et al. (2022).

– 49 ResNet-18 models trained with Alignment and Uniformity contrastive loss
(Wang and Isola, 2020) on ImageNet-100, Places-365, and 47 realistic and syn-
thetic image datasets from Baradad et al. (2021).
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