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Abstract.  9 

• Purpose: Bloodstream infections (BSIs) present significant public health challenges. With the advent of machine learning (ML), 10 

promising predictive models have been developed. This study evaluates their performance through a systematic review and meta-11 

analysis. 12 

• Methods: We performed a comprehensive systematic review across multiple databases, including PubMed, IEEE Xplore, 13 

ScienceDirect, ACM Digital Library, SpringerLink, Web of Science, Scopus, and Google Scholar. Eligible studies focused on 14 

BSIs within any hospital setting, employing ML models as the diagnostic test. We evaluated the risk of bias with the Quality 15 

Assessment of Diagnostic Accuracy Studies (QUADAS-2) checklist and assessed the quality of evidence using the Grading of 16 

Recommendations, Assessment, Development, and Evaluation (GRADE) approach. Models reporting the area under the receiver 17 

operating characteristic curve (AUROC) were included in the meta-analysis to identify key performance drivers. 18 

• Results: After screening, a total of 30 studies were eligible for synthesis, from which 41 models and 8 data types were extracted. 19 

Most of the studies were carried out in the inpatient settings (n=17; 56%), followed by the emergency department (ED) settings 20 

(n=7; 23%), and followed by the ICU settings (n=6; 20%). The reported AUROCs in the hospital inpatients settings, ranged from 21 

0.51-0.866, in the ICU settings AUROCs ranged from 0.668-0.970, and in the emergency department (ED) settings the AUROCs 22 

of the models ranged from 0.728-0.844. One study reported prospective cohort study, while two prospectively validated their 23 

models. In the meta-analysis, laboratory tests, Complete Blood Count/Differential Count (CBC/DC), and ML model type 24 

contributed the most to model performance. 25 

• Conclusion: This systematic review and meta-analysis show that on retrospective data, individual ML models can accurately 26 

predict BSIs at different stages of patient trajectory. Although they enable early prediction of BSI, a comprehensive approach to 27 
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integrate data types and models is necessary. Systematic reporting, externally validated, and clinical implementation studies are 28 

needed to establish clinical confidence.  29 

Keywords. Bloodstream infection, Machine Learning, Bacteremia, Artificial intelligence, Predictive modelling, 30 

Sepsis 31 

1. INTRODUCTION 32 

Bloodstream infections (BSIs) pose a severe public health threat, often escalating to critical conditions such 33 

as sepsis and septic shock, particularly if not promptly recognized and treated. The rapid progression of these 34 

infections contributes to high morbidity, mortality, and significant healthcare costs, making BSIs a pivotal 35 

challenge in clinical care [1, 2]. Currently available clinical decision tools for BSIs and sepsis are primarily 36 

based on changes in vital signs and abnormal blood test results, which lack sufficient accuracy [3, 4]. Enhancing 37 

prediction capabilities could lead to more efficient resource allocation and cost reduction. Accurate initial 38 

stratification helps direct resources to high-risk BSI patients and minimizes unnecessary tests and treatments for 39 

those at low risk. Moreover, ambiguous results from blood cultures with contaminants can prolong hospital 40 

stays and lead to unnecessary antibiotic administration [5, 6]. Therefore, improving the predictive value of these 41 

tests and reducing their unnecessary use are critical for optimizing healthcare resource allocation and 42 

minimizing costs. 43 

 44 

Despite the extensive application of machine learning (ML) across various healthcare diagnostics, its 45 

potential in BSI prediction has not been fully exploited, particularly when compared to its use in predicting 46 

sepsis, where it has been more thoroughly researched [7-14]. This gap underscores a critical oversight; early 47 

detection of BSIs can significantly limit their progression to sepsis, thus reducing patient suffering and 48 

healthcare expenses [16]. This systematic literature review (SLR) and meta-analysis (MA) seek to bridge this 49 

gap by highlighting recent advancements in ML models for BSI prediction. Our analysis spans a range of 50 

algorithms and examines the influence of different data types used within these models, providing a 51 

comprehensive overview of the current landscape and suggesting directions for future research. 52 
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1.1.     Related works 53 

Recent systematic reviews on ML for BSI prediction have illuminated the capabilities of validated models 54 

in clinical environments. For example, Eliakim-Raz et al. (2015) emphasize the variability in study populations, 55 

model parameters, and validation processes, which highlights the complexity in creating universally effective 56 

ML models for BSI prediction [16]. In contrast, the review by Coburn et al. (2012) focuses on the critical 57 

clinical and laboratory markers needed to determine the necessity for blood cultures in suspected bacteremia 58 

cases, further supporting the role of ML in enhancing diagnostic accuracy and reducing false positives [2]. 59 

These studies demonstrate the untapped potential of ML to streamline diagnostic processes and improve patient 60 

care in BSI contexts, advocating for its increased integration into BSI prediction strategies. 61 

2. METHODS 62 

The guidelines provided by the Preferred Reporting Items for Systematic Reviews and Meta-Analysis of 63 

Diagnostic Test Accuracy studies (PRISMA-DTA) statement [15] was followed for the conduct of this literature 64 

review and meta-analysis.  65 

2.1.     Search Strategy 66 

The literature search spanned nine databases to cover a wide array of relevant literature. The databases 67 

included: PubMed, IEEE Xplore Digital Library, ScienceDirect, ACM Digital Library, SpringerLink, Web of 68 

Science, Scopus, and Google Scholar. These databases were selected to encompass a vast range of medical and 69 

computer science literature, including journal articles and conference proceedings. To ensure a comprehensive 70 

and relevant literature retrieval, we first identified key terms and their possible alternatives. This approach 71 

ensures coverage of a broad spectrum of pertinent studies. The core search terms, along with their alternatives, 72 

were: Bloodstream Infection (BSI) – Blood culture, Bacteremia, Blood culture test; Prediction – Diagnosis, 73 

Identification, Detection; Machine Learning – Artificial Intelligence, Deep Learning, Supervised Learning, 74 

Computational Intelligence; Clinical Data – Electronic Health Records (EHR), Electronic Patient Records (EPR), 75 

Electronic Medical Records (EMR). Adjustments were made to the query to accommodate the syntax of 76 

different database search engines. The search query was constructed by combining these terms using Boolean 77 

operators: 78 

 79 
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− (Bloodstream Infection OR Blood culture OR Bacteremia) AND (Prediction OR Diagnosis OR 80 

Identification OR Detection) AND (Machine Learning OR Artificial Intelligence OR Deep Learning 81 

OR Supervised Learning OR Computational Intelligence) AND (Clinical Data OR Electronic Health 82 

Records OR Electronic Patient Records OR Electronic Medical Records) 83 

 84 

The selection of relevant studies involved a multi-step process. First, The execution of the search query in each 85 

database. Then, Initial screening based on titles and abstracts to exclude non-relevant records. In the third step, 86 

detailed screening involving full-text reviews was carried out. The reasons for exclusion were documented. 87 

Following this, references in selected articles were examined to identify additional relevant studies, 88 

implementing snowballing technique for accessing new literature. This structured approach ensured 89 

comprehensive coverage of the topic, allowing the retrieval of documents that met the inclusion criteria for data 90 

extraction and analysis to address the research questions of this SLR. 91 

2.2.    Study Selection 92 

2.2.1. Inclusion Criteria 93 

- Study Focus: This review specifically targeted studies that utilized machine learning models for the 94 

prediction of bacteremia, BSI, or positive blood culture results. The primary objective was the 95 

development or validation of these predictive models. 96 

- Types of Publications: The review was confined to peer-reviewed journal articles and conference 97 

papers. 98 

- Target Population: The studies included focused on adult populations.  99 

- Model Specification: Included studies clearly described the ML model(s) used, including the type of 100 

algorithm, data inputs, and validation methods. 101 

- Outcome Measures: Studies reported specific outcomes related to the accuracy, sensitivity, specificity, 102 

or predictive value of the ML models for BSI prediction. 103 

2.2.2. Exclusion Criteria 104 

- Focus on Sepsis and Severe Sepsis: Studies aimed primarily at predicting the onset of sepsis or severe 105 

sepsis, rather than BSI, were excluded. This was to concentrate on predictive research for BSI, an 106 

antecedent condition, rather than sepsis, a consequent condition. 107 
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- Pediatric Studies: Research focusing on neonatal, pediatric, or infant populations was excluded, as the 108 

review was limited to adult populations. 109 

- Post-Diagnosis Prediction: Studies focusing on predicting outcomes or complications for patients 110 

already diagnosed with BSI were excluded. The emphasis was on the initial prediction of BSI. 111 

- Non-Machine Learning Models: Research employing statistical or other predictive methodologies 112 

without using ML algorithms was not included. 113 

- Non-Peer Reviewed Literature: Studies that had not undergone a peer review process, including grey 114 

literature, technical reports, and unpublished manuscripts, were excluded. 115 

- Opinion Pieces and Theoretical Works: Commentaries, opinion pieces, and purely theoretical works 116 

lacking empirical data or validation were omitted. 117 

2.2.3. Timeframe and Language Restrictions 118 

 119 

- Language Restrictions: The review included only studies published in English. This criterion was 120 

applied to ensure the feasibility of thorough analysis and comprehension of the research findings. 121 

- Timeframe of Publication: The review focused on studies published within the last five years, 122 

capturing the most recent advancements in machine learning applications for bloodstream infection 123 

prediction. 124 

 125 

2.3. Data Extraction 126 

A structured approach was used to extract relevant data from identified studies. The data extraction process 127 

involved the following key elements: 128 

− Study Identification: Details including authors, year of publication, and title of the study. 129 

− Population Characteristics: Information on the patient demographics, clinical settings, and specific 130 

population subgroups studied. 131 

− Dataset Description: Description of the dataset used in the study, including size, source, prevalence 132 

rates, and period of data collection. 133 

− Algorithms Employed: Identification of the specific ML algorithms used in the study. 134 

− Reported Metrics: Reporting on the performance metrics used in the study. 135 
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− Key Findings and Predictors: Summary of the main findings, including key predictors identified for 136 

BSI prediction. 137 

2.4. Quality Assessment 138 

To evaluate risk of bias, we used the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) 139 

criteria [17]. Domains included patient selection, index test, reference standard, and flow and timing. In line 140 

with the recommendations from the QUADAS-2 guidelines, questions per domain were tailored for this paper 141 

and can be found in (Supplementary Information). If one of the questions was scored at risk of bias, the domain 142 

was scored as high risk of bias. At least one domain at high risk of bias resulted in an overall score of high risk 143 

of bias, only one domain scored as unclear risk of bias resulted in an overall score of unclear risk of bias for that 144 

paper. We used the Grading of Recommendations Assessment, Development and Evaluation (GRADE) 145 

methodology to assess the quality of evidence per hospital setting for all studies reporting the area under the 146 

curve of the receiver operating characteristic (AUROC) as their performance metric [18]. In line with the 147 

GRADE guidelines for diagnostic test accuracy, we included the study design, domains risk of bias (limitations), 148 

and inconsistency of the results. One level of evidence was deducted for each domain with serious concerns or 149 

high risk of bias, no factors increased the level of evidence (Supplementary Information). Overall level of 150 

evidence is expressed in four categories (high, moderate, low, very low). 151 

2.5. Meta-analysis 152 

For meta-analysis we conducted univariate and multivariate random effects model analysis fitted using 153 

restricted maximum likelihood estimation (REML) for the contribution of covariates towards model 154 

performance [19]. We grouped medical data types utilized to train the models such as (demographics as features, 155 

vital signs as features, laboratory tests as features, use of textual data, use of time series data, etc.) and included 156 

them as covariates. We performed pooled regression analysis to study the most significant covariates per study 157 

settings. 158 
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3. RESULTS  159 

3.1 Study selection 160 

A comprehensive literature search was carried out from November 2023 to March 2024, yielding 348 articles 161 

post-duplication removal. Following an in-depth assessment for eligibility, 30 studies conformed to our 162 

inclusion criteria, references [20-49]. The selection process, including reasons for exclusion at each stage, is 163 

outlined in the PRISMA flow diagram (Figure 1). Notably, the majority (29 out of 30) of the included articles 164 

employed retrospective study designs, with only two conducting prospective validations of their models [40, 41]. 165 

A single study presented a prospective cohort design [29]. 166 

 167 

Fig. 1 PRISMA flow diagram illustrating the systematic review methodology, depicting the screening, eligibility assessment, and inclusion 168 

of studies, alongside exclusion justifications at each phase 169 

3.2 Study characteristics 170 

The studies predominantly took place in inpatient settings (56%, n=17), with the emergency department 171 

(ED) (23%, n=7) and intensive care units (ICU) (20%, n=6) also represented. Within inpatient settings, nine 172 

studies examined general populations [20-28], and others focused on specific patient cohorts including those 173 

with central venous catheters (CVC) [30, 31], systemic inflammatory response syndrome (SIRS) [29], and 174 

various other conditions. In ED settings, seven studies were identified [37-43], two of which addressed specific 175 
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patient groups. ICU-focused research numbered six studies [44-49], again with two concentrating on specific 176 

patient subsets. Bacteremia was the primary condition investigated in 24 studies, alongside candidemia and 177 

central line-associated bloodstream infection (CLABSI) in others. Contaminants were generally considered 178 

negative results, except in two studies [23, 45]. Table 1 presents a synthesis of the study characteristics, 179 

including target conditions, patient/sample sizes, data sources, and prevalence, categorized by setting. 180 

 181 

Table 1. Key characteristics and data sources of selected studies  182 

 183 

Setting First author, year Target 

condition 

No. 

Patients  

Data source Prevalence 

Inpatients Bhavani et al. 

(2020) 

Bacteremia 

and 

Fungemia 

76688 EHRs, University of Chicago Hospital (2008-

2018) and Loyola University Medical Center, 

USA (2007-2017) 

Bacteremia 7.7%, 

Fungemia 0.7% 

 

Lee et al. (2019) Bacteremia 13402 EHRs, Gangnam Severance Hospital, Seoul, 

Republic of Korea, (2008-2012) 

7.9% 

Lee et al. (2022) Bacteremia 622771* EHRs, Sinchon and Gangnam Severance 

Hospitals, Republic of Korea, (2007-2018) 

6.2% 

Cheng et al. 

(2020)  

Bacteremia 28043 EHRs, Zhengzhou University Hospital, China, 

(2017-2018) 

10% 

McFadden et al. 

(2023) 

Bacteremia 10965 * CBC/DC, CPD, Sir Charles Gairdner Hospital, 

Western Australia (2018-2020) 

7.58% 

Lien et al. (2022) Bacteremia 366586 * EHRs, CBC/DC, Linkou Chang Gung Memorial 

Hospital (CGMH) in Taiwan, (2014-2019) 

8.2% 

Mahmoud et al. 

(2021) 

Bacteremia 7157 EHRs, King Abdulaziz Medical City, Riyadh, 

Saudi Arabia (2017-2019) 

11.4% 

Garnica et al. 

(2021) 

Bacteremia 4357 EHRs, Microbiological data, Hospital 

Universitario de Fuenlabrada, Madrid, Spain, 

(2005-2015) 

51.3% 

 Murri et al. (2024) HA-BSI 5660 * Generator Center at the Fondazione Policlinico 

Universitario A. Gemelli IRCCS (FPG), Rome, 

Italy (2016-2019) 

33.6% 

Inpatients Ratzinger et al. Bacteremia 466 EHRs Vienna General Hospital, Austria, (2011- 28.8% 
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with SIRS (2018) 2012) 

Inpatients 

with CVC 

Rahmani et al. 

(2022) 

CLABSIs 27619 EHRs, a proprietary national longitudinal EHR 

repository, Houston, Texas, USA (2015-2020) 

1% 

Beeler et al. 

(2018) 

CLABSIs 70218 * EHRs, Indiana University Health Academic 

Health Center, USA, (2013-2016) 

0.6% 

HD patients Zhou et al. (2023) Bacteremia 391 EHRs, Department of Nephrology, Affiliated 

Hospital of North 

Sichuan Medical College, Sichuan Province, 

China, (2018-2022) 

18.9% 

Cancer 

patients 

Yoo et al. (2021) Candidemia 34574 EHRs, academic single hospital in Seoul, 

Republic of Korea, (2010-2018) 

0.6% 

Maternity 

patients 

Mooney et al. 

(2020) 

Bacteremia 129 CBC parameters, Rotunda Hospital, Ireland 

(2019) 

3% 

Patients with 

PCT ≤2.0 

ng/ml 

Su et al. (2021) Bacteremia 931 EHRs, Mindong Hospital Affiliated to Fujian 

Medical University, China, (2014-2020) 

47% 

HIV patients  Wu et al. (2023) Bacteremia 498 EHRs, Wenzhou Central Hospital, China, (2014-

2021) 

34.3% 

ED  Choi et al. (2022) Bacteremia 24768 EHRs, An urban tertiary referral hospital, 

Republic of Korea, (2016-2018) 

12% 

Choi et al. (2023) Bacteremia 15362 EHRs, Seoul National University Hospital, Seoul 

National University Bundang Hospital, Republic 

of Korea, (2016-2018) 

10.9% 

Boerman et al. 

(2022) 

Bacteremia 4885 EHRs, Amsterdam UMC, location VU University 

Medical Center, NL, (2018-2020) 

12.2% 

Chang et al. 

(2023) 

Bacteremia 20636 EHRs, CPD, CBC/DC, China Medical University 

Hospital, Taiwan, (2021-2022) 

10.4% 

Schinkel et al. 

(2022) 

Bacteremia 6421 EHRs, Amsterdam UMC, (VUMC, AMC, ZMC, 

and BIDMC), NL, (2016-2021) 

5.4% - 12.3% 

ED patients 

with SIRS 

Goh et al. (2022) Bacteremia 40395 EHRs, National Cheng Kung University Hospital, 

Taiwan, (2015-2019) 

10% 

ED patients 

with fever 

Tsai et al. (2023) Bacteremia 3669 EHRs, Chi Mei Medical Center, Taiwan, (2017-

2020) 

13.8% 

ICU patients Roimi et al. 

(2020) 

Bacteremia 3372 EHRs, BIDMC, Boston, Massachusetts, USA, 

(2008-2012), ICU of Rambam Healthcare 

Campus (RHCC), Israel, (2013-2017) 

ICU acquired: 

6.4% (BIDMC), 

15.9% (RHCC) 
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Van Steenkiste et 

al. (2019) 

Bacteremia 2177 EHRs, ICU, Ghent University Hospital, Belgium, 

(2013-2015) 

10.5% 

Boner et al. 

(2022) 

Bacteremia 6557 EHRs, ICU, University of Virginia, USA, (2011-

2015) 

13.3% 

Pai et al. (2021) Bacteremia 4275 EHRs, Taichung Veterans General Hospital ICU, 

Taiwan, (2015-2019) 

13.8% 

ICU patients 

with CVC 

Parreco et al. 

(2018) 

CLABSIs 57786 * MIMIC-III database, USA, (2001-2012) 1.5% 

ICU patients 

with new-

onset SIRS 

Yuan et al. (2021) Candidemia 7932 EHRs, Peking Union Medical College Hospital, 

The Affiliated Hospital of Qingdao University, 

The First Affiliated Hospital of Fujian Medical 

University, China, (2013-2017) 

1% 

 184 

Summarizes the salient features and data sources of the selected studies, grouped by the hospital settings 185 

Note:  *    The given number represents the total number of BSI episodes included in the analysis as these studies did not explicitly mention 186 

the number of patients. 187 

Most of the reviewed studies were conducted within a single institution; however, three studies utilized 188 

datasets encompassing two hospital systems [20, 22, 44], and two studies expanded their analysis to incorporate 189 

multi-center data [41, 49]. External validation, which is critical for the generalizability of findings, was 190 

performed in four studies [38, 40, 41, 44]. Compliance with the Transparent Reporting of a multivariable 191 

prediction model for individual prognosis or diagnosis (TRIPOD) guidelines, which enhance the reliability of 192 

predictive modeling, was confirmed in five studies [20, 28, 37, 39, 41, 50]. Data diversity is key in model 193 

training and validation. Within this context, three studies utilized the publicly available Medical Information 194 

Mart for Intensive Care (MIMIC) database [41, 44, 48], while four studies included Complete Blood 195 

Count/Differential Count (CBC/DC) data [24, 25, 34, 40]. Furthermore, two of these studies also incorporated 196 

Cell Population Data (CPD) [24, 40], highlighting the integration of detailed hematologic parameters. 197 

Unstructured data utilization was observed in one study that utilized textual data [23]. In terms of data 198 

accessibility, most studies employed proprietary hospital data. Data sharing policies varied: one study explicitly 199 

stated that their data would not be shared [47], one study offered openly available data [34], and ten studies 200 

indicated that deidentified data could be provided upon reasonable request [24, 25, 27, 28, 29, 38, 39, 41, 42, 201 

49], thus contributing to transparency and reproducibility. Notably, six articles did not specify the number of 202 

patients included in their analysis [22, 24, 25, 28, 31, 48]. 203 
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3.3. Models and data types 204 

The reported AUROCs in the hospital inpatients settings ranged from 0.51-0.866, while models on select 205 

group of participants like HD patients [32], patients with low Procalcitonin (PCT) [35], and HIV patients [36] 206 

achieved high AUROCs of 0.91, 0.92, and 0.91 respectively. For the emergency department (ED) settings the 207 

AUROCs of the models ranged from 0.728-0.844. For the ICU settings AUROCs ranged from 0.668-0.970. All 208 

articles reported high prediction performance (AUROC > 0.7) except for one article [26]. All except two articles 209 

[23, 34] reported AUROC as their performance metric. Figure 2 presents a horizontal bar chart that delineates 210 

the distribution of AUROC values across the various studies reporting AUROC, with the bar length indicating 211 

the range of AUROC values reported across various ML models utilized in the study. The gradient color scheme 212 

distinguishes the studies based on the clinical settings, ED (red), inpatient (blue), and ICU (yellow). On the right 213 

axis the number of patients, or the number of BC episodes/samples analyzed in the study. Figure 3 depicts the 214 

utilization frequency of different ML algorithms categorized into tree-based models, traditional ML algorithms, 215 

and neural networks. Notably, tree-based models such as RF and XGB displayed a higher incidence of 216 

application. LR was predominantly favored among traditional ML algorithms and within neural networks, ANN 217 

and MLP were the commonly employed architectures. Figure 4 presents a horizontal bar graph enumerating the 218 

occurrence of various performance metrics in the selected studies. The AUROC was the most reported metric. 219 

Figure 5 illustrates the types and diversity of data inputs used with the ML models across the selected studies via 220 

a stacked bar chart. The derived risk factors represent the derived clinical features included in the models. The 221 

ML algorithms and top predictors for each study grouped by settings are given in Table 2. 222 

 223 
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 224 

 225 

Fig. 2 Horizontal bar chart depicting the spread of AUROC values reported in various studies. The studies are listed on the vertical axis, and 226 

each bar's horizontal extension represents the range of minimum and maximum AUROC value achieved among the various models 227 

employed in the study. The color gradient red, indicates studies in ED, blue, indicating hospital inpatient settings, and the yellow area covers 228 

the studies in ICU settings.  229 

 230 

 231 

 232 
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 233 

Fig. 3 Stacked bar chart displaying the occurrence of MLalgorithms in BSI prediction studies across three categories: Tree-based models, 234 

Traditional ML Algorithms, and Neural Networks. For Tree-based models: Random Forest (RF), Extreme Gradient Boosting (XGB), 235 

Gradient Boosting Machine (GBM), Light Gradient Boosting Machine (LGBM), Extra Trees (ET), Gradient Boosted Trees (GBT), 236 

Classification and Regression Trees (CART), and Categorical Boosting (CatBoost). Traditional ML Algorithms include Logistic Regression 237 

(LR), Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Decision Tree (DT), Naive Bayes (NB), Generalized Linear Model 238 

(GLM), Linear Discriminant Analysis (LDA), Multiple Discriminant Analysis (MDA), and Elastic Net Regression (ENR). Neural Networks 239 

are represented by Artificial Neural Network (ANN), Multilayer Perceptron (MLP), Bayesian Neural Network (BNN), Deep Learning (DL), 240 

Recurrent Neural Network (RNN), Gated Recurrent Unit (GRU), Convolutional Neural Network (CNN), Bidirectional Long Short-Term 241 

Memory (BiLSTM), Attention-based Bidirectional Long Short-Term Memory (ABiLSTM), and Denoising Autoencoder (DAE) 242 

 243 

 244 
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Fig. 4 Horizontal bar graph summarizing the frequency of performance metrics reported in ML studies for BSI prediction. The metrics are 245 

displayed in descending order of occurrence, starting with Area Under the Receiver Operating Characteristic curve (AUC), followed by 246 

Sensitivity, Specificity, Positive Predictive Value (PPV), Negative Predictive Value (NPV), Accuracy, F1-scores, Area Under the Precision-247 

Recall Curve (AUPRC), Precision, Brier scores, Likelihood Ratio (LR), Recall, Akaike Information Criterion (AIC), False Positive Rate 248 

(FPR), J-Statistic, Cohen’s Kappa, F-measure, and Diagnostic Odds Ratio (DOR) 249 

 250 

 251 

 252 

Fig. 5 Stacked bar chart representing the types of data used in machine learning models for predicting bloodstream infections, across various 253 

studies listed on the vertical axis. Data types include demographics, vital signs, laboratory tests, textual data, derived risk factors, time-series 254 

data, Complete Blood Count/Differential Count (CBC/DC), and Cell Population Data (CPD). Each bar's length indicates the number of data 255 

types used in each study, providing a comparison of data diversity across the research 256 

 257 

Table 2. ML algorithms and key predictors in the selected studies 258 

 259 

Setting First author, year ML models Key predictors 

Inpatients Bhavani et al. LR, GBM Time from admission to BC, Temperature, Age, HR, Prior Bacteremia/Fungemia, 
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(2020) [20] WBC, BUN, Glucose, DBP, SBP, PPI, RR 

Lee et al. (2019) 

[21] 

MLP, SVM, RF ALP, PLT, Temperature, SBP, WBC, ICU stay, CRP, CVC, Age, PT, Hospital days to 

BC, HR, Gender, Antibiotics, RR, Creatinine 

Lee et al. (2022) 

[22] 

MLP, RF, XGB PLT, Monocyte, Neutrophil, Bilirubin, Albumin, and Hospital stay, BUN, ALP, RR, 

PR, DBP, TP, WBC, PT, Hb, CRP, Creatinine, ALT, AST, Sodium, Chloride, ESR 

Cheng et al. 

(2020) [23] 

LR, NB, SVM, 

ADT, CNN, 

BiLSTM, 

ABiLSTM+ DAE 

Textual chief complaints, Admission records, and Laboratory biochemical indicators. 

McFadden et al. 

(2023) [24] 

RF, XGB CBC, DIFF, and CPD 

Lien et al. (2022) 

[25] 

RF, LR CBC/DC, CRP, and PCT 

Mahmoud et al. 

(2021) [26] 

NN, RF, LR, DT, 

NB, SVM 

Age, Antibiotics use, Surgery within 14 days, CVC, length of hospitalization before 

BC, RR, SBP, Temperature, DBP, HR, WBC, Sodium, PLT, Albumin, Creatinine, 

Lactic acid level. 

Garnica et al. 

(2021) [27] 

SVM, RF, KNN The number of days in ICU before BC extraction, presence of Catheters, Chronic 

Respiratory disease, Fever, Age, CRP, PLT. 

 Murri et al. (2024) 

[28] 

LR Time BSI > 12 days, Procalcitonin > 1 ng/mL, Presence of a CVC, PLT, Hypotension, 

BUN, Presence of urinary catheter, Fever, Tachycardia, Altered mental status, Age, 

Bilirubin, Creatinine 

Inpatients 

with SIRS 

Ratzinger et al. 

(2018) [29] 

RF, ANN, ENR PCT, LBP, Albumin, Bilirubin 

Inpatients 

with CVC 

Rahmani et al. 

(2022) [30] 

XGB, DT, LR Temperature, HGB, comorbidities, Age, WBC, Race, Neutrophil. 

Beeler et al. 

(2018) [31] 

RF, LR Age, Gender, history of CLABSI, CHG (Chlorhexidine Gluconate) Bathing Non-

compliant Days, Line days. 

HD patients Zhou et al. (2023) 

[32] 

LR, SVM, DT, RF, 

XGB 

PCT, Temperature, Non-arteriovenous fistula dialysis access, NLR, Leukocyte, dialysis 

duration, LMR, Albumin, Neutrophil, PLT, Age, DBP, CRP, PLR, ALP, SBP, HR, 

history of BSI,  

Cancer 

patients 

Yoo et al. (2021) 

[33] 

LR, ANN, RF, 

GBM, AML 

Variables reflecting the dynamic status of patients with cancer, including blood urea 

nitrogen level, 7-day variance of RR, Total bilirubin level, 7-day variance of SBP, 

Body weight. 

Maternity 

patients 

Mooney et al. 

(2020) [34] 

CART, LDA, KNN, 

SVM, RF 

NLR, CBC parameters. 

Patients with 

PCT ≤2.0 

ng/ml 

Su et al. (2021) 

[35] 

ANN, KNN, LR, 

RF, SVM, and NB. 

Interleukin-6, PCT, D-dimer, Lactic acid, Leukocytes, Neutrophil, and PLT. 
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HIV patients  Wu et al. (2023) 

[36] 

SVM, ANN, GBM, 

GLM, MDA, PLR, 

NB, RF 

Low Hb, CD4+T cell, PLT, LDH, BUN, splenomegaly, absence of ART treatment, 

Strip shadow, Nodular shadow, and Shock. 

ED  Choi et al. (2022) 

[37] 

XGB, RF, LR Chief complaint, Age, Temperature, HR, and DBP at triage stage. Neutrophils, PLT, 

CRP, Chief complaints, and Creatinine at disposition stage. 

Choi et al. (2023) 

[38] 

BNN Age, HR, Temperature, DBP, History of chills, Ambulance use 

Boerman et al. 

(2022) [39] 

GBT, LR Bilirubin, Urea, lymphocyte, Pulse rate, CRP, Neutrophil, age, Temperature, DBP, 

Potassium, Glucose, Thrombocytes, Creatinine, ALP, SBP, Organ damage 

Chang et al. 

(2023) [40] 

CatBoost, LGBM, 

XGB, RF, LR 

Demographics, CPD, CBC/DC 

Schinkel et al. 

(2022) [41] 

XGB, LR Temperature, Creatinine, CRP, Lymphocytes, DBP, Bilirubin, Thrombocytes, 

Neutrophils, ALP, HR, SBP, Leukocytes, Glucose, Age, Potassium, BUN, Sodium, 

monocytes 

ED patients 

with SIRS 

Goh et al. (2022) 

[42] 

LR, SVM, RF Age, Gender, COPD, Uncomplicated DM, Hemato-oncology, WBC, Band cell, 

Platelet, Temperature, HR, mild liver disease, Mean arterial pressure, RR, GSC 

ED patients 

with fever 

Tsai et al. (2023) 

[43] 

RF, LR, MLP, XGB, 

LGBM 

Hypertension, Gender, Temperature, DM, Age, CRP, PLT, WBC, Malignancy, 

Eosinophil, HR, BMI, Hb, RR, SBP, DBP, Band, CKD, Liver Cirrhosis, COPD, GCS 

ICU patients Roimi et al. 

(2020) [44] 

RF, XGB Time duration (days) between sampling time and last defecation, Time duration (hours) 

between sampling time and the maximum BUN (mg/dL) value measured during the 5 

days prior to sampling, Length of stay (days) between sampling time and ICU 

admission, The minimal weight (kg) during the 5 days prior to sampling, The time 

duration between sampling time and the maximum MCHC (g/dL) during the 5 days 

prior to sampling 

Van Steenkiste et 

al. (2019) [45] 

BiLSTM, ANN, 

SVM, KNN, LR 

Temperature, Thrombocytes, Leukocytes, CRP, sepsis-related organ failure assessment, 

HR, RR, PT, and mean systemic arterial pressure. 

Boner et al. 

(2022) [46] 

FNN, GRU, CNN, 

LR 

Temperature, BUN, BP, HR, Albumin, PLT, Chloride, Creatinine, Chloride, and 

Phosphorus. 

Pai et al. (2021) 

[47] 

LR, SVM, MLP, RF, 

XGB 

ALP, CVC period, prothrombin time, PLT, Albumin, Apache II score, Age, foley 

ICU patients 

with CVC 

Parreco et al. 

(2018) [48] 

LR, GBT, DL Severity of illness scores (like SAPS II, APS III, and OASIS) and comorbidities. 

ICU patients 

with new-

onset SIRS 

Yuan et al. (2021) 

[49] 

XGB, SVM, RF, ET, 

LR 

Colonization, Diabetes, AKI, total number of parenteral nutrition days, history of 

fungal infection, CRRT days, Abdominal surgery, BDG, days of mechanical 

ventilation, Length of hospital and ICU stay, days of CVC 

 260 

This table summarizes the ML algorithms and key predictors from the selected studies 261 
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3.4. Data challenges and strategies 262 

BSIs may be relatively rare compared to the number of non-infection cases in a dataset. This imbalance can 263 

lead models to become biased towards predicting the majority class, reducing their effectiveness in identifying 264 

true infection cases. Most studies reported imbalanced dataset with prevalence rates of BSI as given in the Table 265 

1. To overcome challenges with data imbalance, Synthetic Minority Over-sampling Technique (SMOTE) was 266 

widely used for augmenting the minority class in the dataset by generating synthetic samples [21,  30, 49,  51]. 267 

Goh et al. (2022) employed oversampling, undersampling, and random oversampling (ROSE) methods for 268 

model development [42]. Lien et al. (2022) and Van Steenkiste et al. (2019) employed Precision-Recall Area 269 

Under Curve (PRAUC) metric for a more accurate assessment of model performance in imbalanced datasets [25, 270 

45].. The study by Garnica et al. (2021) encountered significant issues with missing data across the patient 271 

records used [27]. The types of missing data were classified into three categories: Missing Completely At 272 

Random (MCAR), Missing At Random (MAR), and Missing Not At Random (MNAR) [52]. They employed 273 

separate class method to represent the missing data, ensuring the ML models could handle these cases without 274 

dropping significant amounts of data.  Using patient data for training ML models can raise concerns about 275 

privacy and data security. Ensuring patient anonymity and complying with regulations can limit the accessibility 276 

and use of certain data. Boerman et al. (2022) faced difficulty with the limitation of not being able to use free-277 

text data such as physician and nurse reports due to privacy concerns [39]. To ensure patient privacy and 278 

compliance with data protection regulations researchers can implement effective deidentification of patient 279 

records, involving elimination or alteration of direct identifiers, such as names, age, gender, or location, which 280 

could be combined to identify an individual. 281 

3.5. Quality of evidence and risk of bias 282 

The risk of bias for the retrospective diagnostic test accuracy studies was assessed following the QUADAS-283 

2 guidelines, and the results are shown in Table 3. For patient selection, six articles (20.6%) presented high risk 284 

of bias and four articles (13.7%) presented unclear risk of bias for failing to describe the study population and 285 

patient selection. For index test 12 articles scored a high risk of bias (41.3%) and five article (17.2%) scored 286 

unclear risk of bias, due to non-reporting of data splits and cross-validation strategies. Three articles (10.3%) 287 

scored high risk of bias and one score unclear risk of bias for not specifying the reference standards. One article 288 

presented unclear risk of bias in the flow and timing.  289 
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 290 

Table 3. Risk of Bias Assessment Results According to QUADAS-2 Criteria 291 

Setting Study Risk of bias 

Patient 

selection 

Index test Reference 

standards 

Flow and 

Timing 

Inpatients Bhavani et al. (2020) [20] Low Low  Low Low 

Lee et al. (2019) [21] Unclear High Low  Low 

Lee et al. (2022) [22] Low  High Low Low 

Cheng et al. (2020) [23] High High  High  Low 

McFadden et al. (2023) 

[24] 

Low  Low  Low Low  

Lien et al. (2022) [25] Low  Unclear  Low  Low  

Mahmoud et al. (2021) 

[26] 

Unclear High Low Low 

Garnica et al. (2021) [27] Unclear  Low  Low  Low  

 Murri et al. (2024) [28] Low Low Low Low 

Inpatients 

with CVC 

Rahmani et al. (2022) [30] Low High Low  Low 

Beeler et al. (2018) [31] Low High Low  Low  

Hemodialysis 

patients 

Zhou et al. (2023) [32] Unclear High Low Low 

Cancer 

patients 

Yoo et al. (2021) [33] Low Low Low Low 

Maternity 

patients 

Mooney et al. (2020) [34] Low Unclear Low Low 

Patients with 

procalcitonin 

≤2.0 ng/mL 

Su et al. (2021) [35] High High Unclear Low 

HIV patients  Wu et al. (2023) [36] Low High Low Low 

ED patients Choi et al. (2022) [37]  Low  Low  Low  Low  

Choi et al. (2023) [38] Low  Low  Low  Low  

Boerman et al. (2022) [39] Low Low Low Low 

Chang et al. (2023) [40] Low Unclear Low Low 

Schinkel et al. (2022) [41] Low Low Low Low 

ED patients Goh et al. (2022) [42] Low Unclear Low Low 
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with SIRS 

ED patients 

with Fever 

Tsai et al. (2023) [43] Low High Low Low 

ICU patients Roimi et al. (2020) [44] Low Low Low Low 

Van Steenkiste et al. 

(2019) [45] 

High High High Unclear 

Boner et al. (2022) [46] High Low High Low 

Pai et al. (2021) [47] Low Unclear Low Low 

Parreco et al. (2018) [48] High High Low Low 

ICU patients 

with new-

onset SIRS 

Yuan et al. (2021) [49] High High Low Low 

Assessment of the risk of bias for included studies based on QUADAS-2 criteria, presented by healthcare setting (Inpatients, ED, ICU). 292 

Columns display the evaluation for patient selection, index test, reference standards, and flow and timing. 293 

 294 

The GRADE evidence profile was estimated by pooling studies based on settings. In this analysis we only 295 

considered studies focusing on general adult patient population and did not consider studies reporting specific 296 

study population. The GRADE evidence profile is given as Table 4. The studies in ICU and Inpatients settings 297 

aggregates were considered at high risk of bias and studies in ED settings aggregates were considered unclear 298 

risk of bias. One level of evidence was deducted for observational study design and Inconsistencies due to 299 

heterogeneity. Consequently, the quality of evidence for each of the settings was scored as low. Additionally, 300 

the outcome column distinguishes AUROC values for high and unclear risk of bias studies. High risk of bias 301 

studies reported lowest AUROC values in the inpatient settings and reported highest AUROC values in the ED 302 

and ICU settings.  303 

Table 4. GRADE Evidence Profile and Quality Assessment of Studies by Setting 304 

 

Settings 

Studies Characteristics Quality Assessment Outcome 

Number of studies Design Limitations (Unclear 

risk of bias studies/total) 

Inconsistency AUROC high risk of 

bias/unclear risk of bias 

Quality of 

evidence 

Inpatients 9 studies [20-28] 

(1,195,629)a 

 

Observational 

cohort studies 

High risk of bias (5/8) High 

heterogeneity 

0.51-0.762/ 0.74-0.86 Low 
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ED 5 studies (72,072) 

[37-41] 

Observational 

cohort studies 

Unclear risk of bias 

(1/5) 

Moderate 

heterogeneity 

0.834-0.844/ 0.728-

0.782 

Low 

ICU 4 studies (16,381) 

[44-47] 

Observational 

cohort studies 

High risk of bias (2/4) Considerable 

heterogeneity 

0.835-0.97/ 0.668-0.851 Low 

This table shows the GRADE evidence profile and overall quality of studies segregated by hospital setting (Inpatient, ED, ICU).  305 

Note: a  4 studies in this pool did not report number of patients and so the reported number of BSI episodes were included to calculate the 306 

sum. 307 

3.6. Meta-analysis 308 

In the meta-analysis, only models presented in articles with target condition bacteremia and general patients 309 

population across the three settings were considered. Models for specific disease population, models not 310 

reporting AUROC metric, and models predicting CLABSIs were not considered in the meta-analysis.  A total of 311 

41 models and 9 covariates were included in the meta-analysis. The univariate and multivariate random effect 312 

model significant (p-value>0.05) results are shown in Table 5. The random effect model analysis shows that 313 

laboratory tests, use of time-series data, use of CBC/DC data, BiLSTM model, XGB model, and RF model 314 

positively contributed to the AUROC. We performed a pooled analysis by setting, to identify the best covariates 315 

for each. The results of the regression analysis are given as Table 6. For Inpatient setting, demographics 316 

(includes age), laboratory tests, and use of CBC/DC data positively contributed to the model performance and 317 

use of vital signs negatively impacted the model performance. In contrast in the ICU setting, vital signs, 318 

laboratory tests, derived risk factors, use of time-series data, and BiLSTM model employed for sequential data 319 

positively impacted the performance metrics.  320 

Table 5. Univariate and Multivariate Analysis of Predictive Performance Covariates 321 

Variables Univariate analysis Multivariate analysis 

Coeff SE p-value Coeff SE p-value 

Vital signs as features -0.044  0.020    0.034 -0.068 0.012  0.001 

Laboratory tests as features 0.211 0.035   0.000    

Time-series data       0.059  0.022    0.012 0.057  0.019   0.001 

CBC/DC data  0.195 0.033    0.028    

BiLSTM as model 0.187  0.054    0.001 0.154 0.065    0.000 
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XGB as model 0.062  0.025    0.024     

RF as model 0.052 0.025    0.050     

This table presents the results of the univariate and multivariate regression analyses identifying the impact of various  covariates on the 322 

predictive performance of ML models 323 

 324 

Table 6. Pooled Regression Analysis Results by Study Setting 325 

Variables Regression analysis 

Coeff SE p-value 

Inpatients settings: 

Demographics  0.184 0.010 0.000 

Vitals as features -0.138   0.010    0.001 

Laboratory features 0.184 0.010 0.000 

CBC/DC data  0.282  0.006    0.000 

ED settings: 

None with significant p-value 

ICU settings: 

Vitals as features 0.131 0.009 0.005 

Laboratory features 0.131 0.009 0.005 

Derived risk factors as features 0.184 0.026 0.020 

Time-series data 0.100 0.024 0.050 

BiLSTM as model 0.250 0.033 0.017 

This table presents the coefficients, standard errors, and p-values from the regression analysis of significant covariates affecting model 326 

performance in different hospital settings (Inpatient, ED, ICU). 327 

4. DISCUSSIONS 328 

This is the first systematic review and meta-analysis that has integrated findings from diverse clinical 329 

settings to assess the performance of ML models in predicting BSIs. This work corroborates the growing 330 

evidence that ML models are viable tools for enhancing diagnostic accuracy and potentially reducing reliance on 331 
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traditional blood cultures, a point underscored by contemporary studies [3, 6]. Significantly, our meta-analysis 332 

revealed that models performed variably across different clinical environments, with AUROC scores ranging 333 

widely. In the inpatient settings, AUROCs ranged from 0.51 to 0.866, demonstrating moderate to high 334 

diagnostic accuracy. This performance variance was even more pronounced in the ICU settings, where 335 

AUROCs spanned from 0.668 to 0.970, suggesting that certain models are highly effective while others may 336 

require further refinement. The variability in model performance aligns with the findings from previous studies 337 

which have highlighted the complexity involved in creating universally effective ML models for BSI prediction 338 

[16]. This analysis not only validates the potential of ML in clinical diagnostics but also highlights the critical 339 

need for tailored approaches depending on specific hospital settings and patient populations. Such 340 

differentiation in model efficacy emphasizes the importance of context-specific model development and 341 

deployment, which should be informed by the distinct dynamics and needs of each clinical environment. 342 

Furthermore, the integration of various data types, such as demographic features, laboratory tests, and derived 343 

clinical features, has been shown to significantly impact model performance, echoing the findings of recent 344 

meta-analyses which advocate for a multi-faceted approach to data integration within ML models to enhance 345 

diagnostic precision and reliability [53]. 346 

4.1. Clinical relevance and model performance 347 

The findings from our study underscore the potential of ML models to enhance the diagnostic accuracy of 348 

bloodstream infections BSIs significantly. This enhancement is crucial, considering the current reliance on 349 

traditional blood cultures, which, while standard, are not without their limitations such as delays in results and 350 

the potential for contamination [54]. ML models, by leveraging a variety of clinical data, including patient 351 

demographics, prior medical history, and laboratory results, can predict BSIs with notable accuracy. This 352 

predictive capability is especially valuable in clinical settings where rapid decision-making is critical [55]. By 353 

predicting BSIs accurately, ML models can facilitate earlier intervention strategies, potentially leading to 354 

improved patient outcomes and reduced mortality rates [56]. Furthermore, the integration of ML into hospital 355 

systems offers a pathway to more streamlined resource allocation [57-59]. By accurately identifying patients at 356 

high risk of BSIs, hospitals can optimize the use of tests and allocate personnel and medical resources more 357 

efficiently [60]. This not only helps in managing hospital resources but also in reducing unnecessary antibiotic 358 

use, which is often a knee-jerk response to suspected infections [61].  359 
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4.2. Future directions and academic contribution 360 

Our study have laid the groundwork for several promising directions that future investigations could take to 361 

advance this critical area of medical informatics. While retrospective studies form the bulk of current research 362 

on ML models for BSI prediction, there is a pronounced need for prospective studies. Such studies will allow 363 

for real-time data collection and model validation, offering insights that are often obscured in retrospective 364 

analyses [12]. This shift could also facilitate the adjustment of models in accordance with dynamic clinical 365 

environments, ensuring that they remain robust and reliable over time. The potential of ML models to be 366 

integrated into real-time clinical decision support systems represents a significant leap towards operationalizing 367 

AI in everyday clinical practice [62]. However, achieving this requires rigorous testing and validation of these 368 

models within clinical settings to ensure they perform reliably when interfaced with live data streams [63, 64]. 369 

There is substantial scope for exploring new predictive variables that could enhance the predictive accuracy of 370 

ML models. The incorporation of genomic data, patient mobility patterns, and real-time monitoring data could 371 

provide new insights into infection risk factors, potentially leading to more sophisticated and accurate prediction 372 

models [65, 66]. To build trust and validate the efficacy of ML models in clinical settings, systematic reporting 373 

and external validation are essential [67, 68]. Models need to be tested across diverse demographics and varied 374 

clinical environments to assess their universality and reliability [69-72]. The work of Fleuren et al. (2020) and 375 

Moor et al. (2021) highlights the importance of such validation in confirming the utility and accuracy of 376 

predictive models for sepsis, which can be paralleled in BSI prediction [12, 13]. As ML applications in 377 

healthcare continue to expand, it is crucial to consider the regulatory and ethical implications of their use [73, 378 

74]. Ensuring patient privacy, securing data, and maintaining transparency in AI decision-making processes are 379 

paramount [75, 76]. Future research must also address these aspects to foster a safe and trustful adoption of AI 380 

technologies in healthcare. 381 

4.2. Strengths and Limitations 382 

Our systematic review and meta-analysis are grounded in a comprehensive, methodologically robust 383 

approach that integrates a variety of data sources and analytical techniques. The extensive database search 384 

across multiple platforms including PubMed, IEEE Xplore, and Scopus ensures a broad capture of relevant 385 

studies, reducing the risk of publication bias. This wide-ranging data acquisition is supplemented by our 386 

application of the QUADAS-2 framework and GRADE methodology, which enhances the credibility of our 387 
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findings by systematically assessing the risk of bias and the quality of evidence across studies. Furthermore, the 388 

synthesis of data into figures and comprehensive tables enables clear visual representation and understanding of 389 

the applications of ML models across varied clinical settings. Our findings are supported by rigorous statistical 390 

analysis, including univariate and multivariate models, which reveal key performance drivers and validate the 391 

predictive power of ML models for bloodstream infections. Despite these strengths, several limitations must be 392 

acknowledged. A significant proportion of the included studies utilized retrospective designs. While 393 

retrospective studies provide valuable historical insights, they are inherently limited by the data available, often 394 

lacking the prospective validation needed to confirm the efficacy of predictive models under current clinical 395 

conditions. This design limitation impacts the generalizability of our findings, as the models might perform 396 

differently when deployed in real-time environments. To enhance the generalizability and applicability of future 397 

research, several strategies can be adopted. Prospective study designs should be prioritized, as they allow for the 398 

real-time evaluation and adjustment of ML models, ensuring that the models are tested and validated under 399 

varied clinical conditions. This approach not only tests the robustness of the models but also helps in fine-tuning 400 

them for practical deployment. Furthermore, multi-center studies involving diverse populations and settings 401 

should be encouraged to test the efficacy of these predictive models across different demographics and 402 

operational conditions. Such studies can help identify and mitigate any population-specific biases, thereby 403 

enhancing the models’ applicability and reliability. Lastly, ongoing validation and systematic reporting should 404 

be integral to future research efforts. By continuously assessing and reporting the performance of ML models, 405 

researchers can ensure that these tools remain effective and relevant in the ever-evolving clinical landscape. By 406 

addressing these limitations and building on the strengths of our current approach, future research can 407 

significantly advance the field of ML in medical diagnostics, particularly in the prediction and management of 408 

bloodstream infections. 409 

5. CONCLUSIONS 410 

Our systematic review and meta-analysis have critically evaluated the efficacy of ML models in predicting 411 

BSIs, a crucial domain where timely and accurate diagnosis can significantly influence clinical outcomes. ML 412 

models, especially those incorporating diverse data types such as laboratory results and demographic 413 

information, demonstrated a capacity to predict BSIs with a high degree of accuracy. The integration of these 414 

models into clinical settings can potentially reduce the reliance on traditional blood cultures, which, while 415 
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foundational, are hampered by delays and susceptibility to contamination. This shift could streamline diagnostic 416 

workflows and enhance the speed and precision of infection response interventions, thus improving patient care 417 

and outcomes. To advance the use of ML in predicting BSIs, future research should focus on prospective studies 418 

and the development of real-time, adaptive ML systems that can be integrated seamlessly into clinical decision-419 

support frameworks. Furthermore, external validation of these models across diverse populations and settings is 420 

essential to bolster clinical confidence and foster wider adoption. In conclusion, while ML models hold 421 

significant promise for transforming BSI diagnosis, their successful implementation will depend on meticulous 422 

model development, validation, and customization tailored to the nuanced demands of different healthcare 423 

settings. This holistic approach will be crucial in overcoming the current challenges and fully realizing the 424 

potential of ML in clinical diagnostics. 425 
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Appendix: List of Medical Abbreviations 440 

• ALP: Alkaline Phosphatase 441 

• ALT: Alanine Aminotransferase 442 
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• APS III: Acute Physiology Score III 443 

• ART: Antiretroviral Therapy 444 

• AST: Aspartate Aminotransferase 445 

• AKI: Acute Kidney Injury 446 

• BC: Blood Cultures 447 

• BDG: Beta-D-Glucan 448 

• BUN: Blood Urea Nitrogen 449 

• CBC: Complete Blood Count 450 

• CHG: Chlorhexidine Gluconate 451 

• CKD: Chronic Kidney Disease 452 

• CLABSI: Central Line-Associated Bloodstream Infection 453 

• COPD: Chronic Obstructive Pulmonary Disease 454 

• CPD: Cephalopelvic Disproportion 455 

• CRP: C-reactive Protein 456 

• CRRT: Continuous Renal Replacement Therapy 457 

• CVC: Central Venous Catheter 458 

• DBP: Diastolic Blood Pressure 459 

• DIFF: Differential Count 460 

• DM: Diabetes Mellitus 461 

• ESR: Erythrocyte Sedimentation Rate 462 

• GCS: Glasgow Coma Scale 463 

• Hb: Hemoglobin 464 

• HR: Heart Rate 465 

• ICU: Intensive Care Unit 466 

• LMR: Lymphocyte to Monocyte Ratio 467 

• NLR: Neutrophil to Lymphocyte Ratio 468 

• OASIS: Oxford Acute Severity of Illness Score 469 

• PCT: Procalcitonin 470 

• PLR: Platelet to Lymphocyte Ratio 471 
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• PLT: Platelet Count 472 

• PPI: Proton Pump Inhibitor 473 

• PT: Prothrombin Time 474 

• RR: Respiratory Rate 475 

• SAPS II: Simplified Acute Physiology Score II 476 

• SBP: Systolic Blood Pressure 477 

• WBC: White Blood Cell Count 478 

 479 
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