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Abstract: 57 

Precision medicine offers a promising avenue for better therapeutic responses to 58 

pandemics such as COVID-19. This study leverages independent patient cohorts in 59 

Florence and Liège gathered under the umbrella of the DRAGON consortium for the 60 

stratification of molecular phenotypes associated with COVID-19 using topological 61 

analysis of global blood gene expression. Whole blood from 173 patients was collected 62 

and RNA was sequenced on the Novaseq platform. Molecular phenotypes were 63 

defined through topological analysis of gene expression relative to the biological 64 

network using the TopMD algorithm. The two cohorts from Florence and Liège allowed 65 

for independent validation of the findings in this study. Clustering of the topological 66 

maps of differential pathway activation revealed three distinct molecular phenotypes 67 

of COVID-19 in the Florence patient cohort, which were also observed in the Liège 68 

cohort. 69 

  70 

Cluster 1 was characterised by high activation of pathways associated with ESC 71 

pluripotency, NRF2, and TGF-β receptor signalling. Cluster 2 displayed high activation 72 

of pathways including focal adhesion-PI3K-Akt-mTOR signalling and type I interferon 73 

induction and signalling, while Cluster 3 exhibited low IRF7-related pathway activation. 74 

TopMD was also used with the Drug-Gene Interaction Database (DGIdb), revealing 75 

pharmaceutical interventions targeting mechanisms across multiple phenotypes and 76 

individuals.  77 

  78 

The data illustrates the utility of molecular phenotyping from topological analysis of 79 

blood gene expression, and holds promise for informing personalised therapeutic 80 

strategies not only for COVID-19 but also for Disease X. Its potential transferability 81 

across multiple diseases highlights the value in pandemic response efforts, offering 82 

insights before large-scale clinical studies are initiated. 83 

 84 

  85 
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Introduction: 86 

 87 

The ongoing challenges of COVID-19, triggered by the emergence of SARS-CoV-2, 88 

necessitate a detailed understanding of disease heterogeneity. Despite extensive 89 

research characterising the host response to SARS-CoV-2 through pre-clinical (1, 2), 90 

and clinical (3-6) functional genomic data, there have been limited approaches that 91 

have used data from and encompassed the range of symptom severity, disease 92 

heterogeneity and delivered personalised medicine.  93 

 94 

Examination of gene expression patterns in blood has been used in previous studies 95 

to identify molecular phenotypes associated with different disease profiles in several 96 

emerging viral infections including Ebola virus (EBOV) (7) and SARS-CoV-2 (1, 2, 4, 97 

5), as well as more endemic infections such as influenza virus  (8). Medical 98 

countermeasures focus on either reducing viral load through anti-virals. These target 99 

viral biology or modulate the host response to infection to reduce sequalae such as 100 

inflammation. For many viruses there is a clear correlation between viral load, disease 101 

severity and outcome (survival/death). This is best typified by the Ebola virus where 102 

low viral loads correlate with survival and high viral loads correlate with death (9). For 103 

SARS-CoV-2 this correlation is less obvious. In animal models of disease, such as the 104 

ferret, viral load was correlated with symptomology (10); in humans, there is less data 105 

to support an association between viral load and disease. However, studies have 106 

shown that severe COVID-19 is associated with dysregulated immune pathology in 107 

organs such as the lungs and the respiratory tract (3, 11). 108 

 109 

With any emerging viral pathogen, direct acting antivirals take time to develop and 110 

trial. Identifying therapeutics that can modulate the host response to reduce 111 

symptomology remain a priority. Being able to rapidly characterise aberrations in host 112 

pathways that lead to disease and marrying this with therapeutics on the FDA 113 

approved list will enhance pandemic preparedness and rapid response. Therefore, a 114 

deeper understanding of the host response can be used to guide the selection of host 115 

directed medication countermeasures. 116 

 117 

 118 

 119 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 16, 2024. ; https://doi.org/10.1101/2024.04.15.24305820doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.15.24305820
http://creativecommons.org/licenses/by-nc/4.0/


The field of digital health and precision medicine is rapidly evolving, with emerging 120 

technologies and initiatives aimed at integrating diverse datasets to inform clinical 121 

decision-making. In this study we offer a novel way to analyse complex data collected 122 

by the DRAGON international consortium which enables rapid identification of targets 123 

for treatment by novel and/or re-purposed drugs. Within DRAGON, efforts have been 124 

made to harmonise data in digital healthcare, proposing guidelines for the integration 125 

of clinical data from various modalities. (12). Additionally, an online platform has been 126 

developed to host validated COVID-19 predictive models, facilitating their utilisation 127 

by clinicians in real-time decision-making (13). However, challenges persist, as 128 

evidenced by the limited success of outcome prediction models for COVID-19 patients 129 

based on demographic and comorbidity data, which highlights the need for more 130 

sophisticated approaches (14).  131 

 132 

While omics data has been instrumental in advancing our understanding of SARS-133 

CoV-2 and COVID-19, its integration into digital health platforms for clinical decision-134 

making remains limited (15-17). Traditional molecular phenotyping approaches often 135 

provide only shallow insights. In previous work, using topological analysis, we 136 

demonstrated how gene expression data derived from whole blood at the time of 137 

admission could predict ICU admission (5). However, the current study analysed the 138 

blood transcriptomes of patients with COVID-19 as part of the DRAGON-EU 139 

consortium and used TopMD, an algorithm that considers all available data across a 140 

landscape of pathways, to characterize molecular phenotypes of COVID-19 patients 141 

admitted to hospital. Pathways were identified that correlated with clinical disease in 142 

the patient cohort. TopMD mapped pathways onto a database containing information 143 

on FDA approved drugs and their known gene and pathway interactions to generate 144 

a list of potential therapeutics for modulating severe COVID-19. The ability to rapidly 145 

identify and therapeutically modulate host pathways responsible for disease with pre-146 

existing medical countermeasures will be important in the emergence of novel 147 

diseases and future pandemics. 148 

 149 

This study describes an analysis of the blood transcriptomes of patients with COVID-150 

19 admitted to hospital in Liège and Florence between February and July 2021, as 151 

part of the DRAGON-EU consortium. Alongside collecting blood samples, 152 

demographic and clinical observations were recorded; additionally, CT scan data were 153 
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obtained for a subset of these patients. We applied an unsupervised approach, in 154 

which we characterised the molecular phenotypes of patients within this cohort. We 155 

have previously reported the development of a gene signature in patients with COVID-156 

19, predictive of admission to ICU (5). This predictive signature revealed the activation 157 

of pathways regulating epidermal growth factor receptor (EGFR) signalling, 158 

peroxisome proliferator-activated receptor alpha (PPAR-α) signalling and transforming 159 

growth factor beta (TGF-β) signalling. The observed molecular phenotype aligns with 160 

the mechanisms implicated in pulmonary fibrosis, which is also associated with 161 

increased severity of disease (18-20).  162 

163 
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Methods: 164 

 165 

Study population and sample collection and ethics 166 

Blood samples were obtained from 132 patients severe enough to require admission 167 

because of COVID-19 at Careggi University Hospital, Florence, Italy, and 41 from a 168 

pre-defined, separate patient cohort in Liège, between February and July 2021. All 169 

patients tested positive nasopharyngeal swab PCR for SARS-CoV-2 infection. Blood 170 

samples were collected on Day 0 of hospital admission.  The protocol was approved 171 

by the ethics committee of the University Hospital of Liège (reference number 2021/89) 172 

and the ethics committee of the UNIFI (#18085/OSS). Informed consent was obtained 173 

for every participant.  174 

 175 

Ethical Approval statement 176 

The work described has been carried out in accordance with The Code of Ethics of 177 

the World Medical Association (Declaration of Helsinki) for experiments involving 178 

humans. All procedures were performed in compliance with relevant laws and 179 

institutional guidelines and have been approved by the appropriate institutional 180 

committees. Informed consent was obtained for every participant. 181 

Clinical data were collected from the patients’ electronic medical records by the 182 

investigators, and included age, sex, BMI, comorbid conditions etc. The data were 183 

then assembled using the Study Data Tabulation Model (SDTM) data format 184 

developed by the Clinical Data Interchange Standards Consortium (CDISC). 185 

Chest CT analysis 186 

Out of the 173 patients with RNA sequencing data, chest CT data was obtained from 187 

109 patients using a 128-detector multislice Spiral Computed Tomography (MSCT) 188 

(Somatom Definition AS, Siemens Healthcare, Erlangen, Germany) applying the 189 

following parameters: current × exposure time 150 mAs, tube voltage 100 kV, rotation 190 

time 0.3 s, pitch 1.2 mm, pixel size 0.465 mm, beam collimation 128 × 0.6 mm, both 191 

slice thickness and reconstruction 1 mm, and reconstruction kernel Bf70 very sharp. 192 

Axial images were carried out from lung apexes to bases with patient at full inspiration 193 

mand breath hold. Post-processing, 1-mm-thick sections were reconstructed on 194 

coronal and sagittal planes oriented on the tracheal plane. Intravenous contrast 195 
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medium was not administered. Chest CT images were displayed on a 24-inch medical 196 

monitor with a 3-megapixel Barco display (Barco, Kortrijk, Belgium) and 2048 x 1536 197 

resolution. The software programs originally implemented to MSCT were used for 198 

image assessment. Images of each patient were evaluated for scan quality 199 

considering inspiratory level and motion artifacts. Data pulled out from CT 200 

examinations included CO-RADS, chest CT score, dominant pattern, and 201 

typical/atypical findings. Specifically:  202 

CO-RADS 203 

CO-RADS score based on COVID-19 lung involvement and variable from 1 to 204 

5, with higher values reflecting a greater level of suspicion of COVID-19 205 

infection with lung involvement. CO-RADS is a score used to diagnose COVID-206 

19 and does not inevitably reproduce the severity of lung alterations. Low 207 

scores corresponded to CT examinations with alterations less likely related to 208 

COVID-19 infection. The 5-score CO-RADS scale is as follows: 1: very low level 209 

of suspicion; 2: low level of suspicion; 3: equivocal findings; 4: high level of 210 

suspicion; 5: very high level of suspicion.  211 

Chest CT score for lobe involvement   212 

Ranging from 0 to 5, namely 0: 0%; 1: <5%; 2: 5-25%; 3: 26-50%; 4: 51-75%; 213 

5: >75%. 214 

Dominant chest CT pattern   215 

Evaluated in relation to the prevalent alterations among ground-glass opacities, 216 

consolidations, ground-glass opacities together with consolidations, crazy-217 

paving, and reverse halo, as defined by the Fleischner Society. 218 

Dominant chest CT distribution   219 

Lower lobes, upper lobes, peripheral, bronchocentric, dorsal, or diffuse. 220 

Additional COVID-19 related findings   221 

Represented by pleural thickening, vascular enlargement, subpleural sign, halo 222 

sign air, bubble sign, perilobular pattern, and subpleural sparing.  223 

Additional findings not typical for COVID-19   224 

Represented by pleural effusion, pericardial effusion, lymphadenopathy, 225 
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cavitation, tree-in-bud, discrete small nodules, isolated lobar/segmental 226 

consolidation, atelectasis, and smooth interlobular septal thickening. 227 

 RNA extraction 228 

Total RNA was extracted from PAXgene BRT using the PAXgene Blood RNA Kit 229 

(PreAnalytix), according to the manufacturer’s protocol. Extracted RNA was stored at 230 

-80°C until further use. Following the manufacturer’s protocols, total RNA was used 231 

as input material into the QIAseq FastSelect–rRNA/Globin Kit (Qiagen) protocol to 232 

remove cytoplasmic and mitochondrial rRNA and globin mRNA with a fragmentation 233 

time of 7 or 15 minutes. Subsequently the NEBNext® Ultra™ II Directional RNA Library 234 

Prep Kit for Illumina® (New England Biolabs) was used to generate the RNA libraries, 235 

followed by 11 or 13 cycles of amplification and purification using AMPure XP beads. 236 

Each library was quantified using Qubit and the size distribution assessed using the 237 

Agilent 2100 Bioanalyser and the final libraries were pooled in equimolar ratios. 238 

Libraries were sequenced using 150 bp paired-end reads on an Illumina® NovaSeq 239 

6000 (Illumina®, San Diego, USA).  240 

 241 

Bioinformatics 242 

Raw fastq files were trimmed using fastp (21). Trimmed paired end sequencing reads 243 

were inputted into salmon (v1.5.2) using the -l A –validateMappings –SeqBias –gcBias 244 

parameters (22). Quant files generated with salmon were imported into RStudio (4.1.1) 245 

using tximport to infer gene expression (23). The edgeR package (3.34.1) was used 246 

to normalise and scale sequencing libraries (24). Sequencing reads are available 247 

under BioProject ID: PRJNA1085259 on Short Read Archive (SRA). 248 

 249 

Molecular phenotypes mapped by topological analysis 250 

Molecular phenotypes were mapped by topological analysis, using TopMD to measure 251 

the shape of global gene expression relative to the biological network (TopMD Patent 252 

number GB202306368D0). TopMD works in the following way: The biological network 253 

used was an interaction network retrieved from the STRING database (25).The gene 254 

nodes of the biological network were assigned vertices according to the measured 255 

gene expression. The topological shape, or landscape, of this network is then 256 

measured by TopMD’s algorithm, clustering differential gene expression hotspots, 257 

corresponding to modulated gene pathways. These pathways have ‘volume’ 258 
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comprising the sum of squared differential gene expression of clustered genes, where 259 

the most differentially activated pathways have the highest pathway topological 260 

volumes. The molecular phenotype is defined as the global profile of volumes of 261 

differential pathway activation. 262 

 263 

 264 
 265 

Drug interactions mapped by topological analysis  266 

 267 

Due to the power of TopMD analysis we can group genes depending on their 268 

expression values, this means that for each average expression of any cluster of 269 

samples, and even on individual samples, we can extrapolate a tailored gene set of 270 

activated gene-groups for such expression. These gene-groups can be then compared 271 

to other gene sets, as in GSEA, as well against genes activated by specific drugs. To 272 

do so, we utilised the Drug-Gene Interaction Database (26) obtained using genes or 273 

gene products that are known or predicted to interact with drugs, and compared via a 274 

binomial distribution test, the probability that an overlap between such genes and a 275 

TopMD gene-group was random. This was measured using a p-value associated with 276 

binomial statistic, together with other measures, such as the (Bonferroni) adjusted p-277 

value, a TopMD volume (combining volume of the shape with the statistical 278 

significance of the drug-group combination) as well as an activation value, sum of the 279 

Log2 fold-change of those genes belonging to both the drug associated gene set and 280 

the TopMD group. 281 

 282 

Regression 283 
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Regression analysis was carried out using a Logistic regression model with the 284 

following optimisation problem: 285 

 286 

 287 
Where X is the pathway matrix and y is the vector of the classification, 0 when the i-288 

th sample is in the class considered and 1 otherwise. We considered a regularisation 289 

parameter C value of 1. For the penalisation term r(w) for the regression weights w, 290 

we considered an ElasticNet penalisation with the l1 ratio parameter value of 0.5 291 

 292 

 293 
The probability the i-th sample with pathways values equal to Xi is then: 294 

 295 
With w0 the intercept. The python module used was scikit-learn (version 1.4.1) and 296 

the algorithm used LogisticRegression function in the linear_model submodule. 297 

 298 

We performed a 70/30 balanced split in the data from both cohorts separately (?), with 299 

10 different splits. For each class we performed the regression based on a different 300 

number of pathways, from 1 to 20, ranked in each split separately by their pathway 301 

volume. For each regression model so obtained an average score of both training and 302 

test splits was carried and the best model was selected using a max-min approach, 303 

that is the best model was the one with highest value min(AUC on Train, AUC on Test), 304 

to avoid selecting models which were ill-performing on train splits, but instead for 305 

random effects very well on test splits. 306 

 307 

 308 

Patient Clustering 309 

Pathway volumes were plotted on a PCA using PCAtools (v2.14.0), revealing 3 distinct 310 

clusters, confirmed by K-means clustering, based on pathway activation against 311 

healthy controls. The top ten (10%) of the PCA loadings were then extracted to identify 312 
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which pathways were driving cluster separation. To analyse differentially activated 313 

pathways between patient clusters, we calculated the average volume, across each 314 

cluster, of each pathway relative to the average of all the COVID-19 patients.   315 

 316 

Logistic Regression Receiver Operating Characteristic (LRROC) analysis using 317 

patient clusters derived from the patient pathway volume matrix. 318 

 319 

The area under the ROC curve (AUC) is a measure of the model's ability to distinguish 320 

between classes. A higher AUC indicates better discrimination and, consequently, 321 

stronger patient clusters. LRROC for Florence Patients: LRROC analysis was 322 

performed exclusively for Florence patients. The patient pathway volume matrix for 323 

Florence patients was utilized to train the LRROC model. The output consisted of a 324 

Receiver Operating Characteristic (ROC) curve, which depicted the classification 325 

performance of patient clusters based on pathway volume. To evaluate the model's 326 

generalization capability, the dataset was split into training and testing sets, and 327 

separate ROC curves were generated for each. 328 

 329 

Validation of clusters for Liège Patients: The LRROC model trained on Florence 330 

patients was validated on Liège patients' data. Using the trained model, an additional 331 

ROC curve was generated solely for Liège patients to assess the model's performance 332 

in classifying Liège patient clusters based on pathway volume. 333 

 334 

 335 

Integration into digital health platform 336 

As a proof of concept, transcriptomics data and TopMD analysis were integrated with 337 

a healthcare platform ran by Comunicare (27). This was to highlight the possibilities of 338 

integrating omics data into healthcare and digital health platforms. Similar regression 339 

analysis of COVID-19 blood transcriptomes, predicting ICU admission, performed 340 

within the DRAGON scope (5) generated a linear model which is currently used to 341 

generate prediction scores between 0 and 1, using TopMD analysis of each sample 342 

submitted. In this way we can present TopMD analysis of individual samples compared 343 

to a healthy baseline, which includes pathway activation information, together with a 344 

similarity score to the ICU admitted average patient we extracted from previous data.  345 
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Results: 346 

 347 

To investigate whether blood transcriptomic analysis coupled with a machine learning 348 

approach underpinned by TopMD could be integrated with clinical data, RNA 349 

sequencing was performed on peripheral blood obtained from 173 patients from Liège 350 

(n=41) and Florence (n=132) gathered under the auspices of the DRAGON 351 

consortium. A summary of the patient characteristics is described in Supplementary 352 

Table 1. Within this cohort ten patients had fatal disease. As no outcome variables 353 

within this cohort had power, an unsupervised approach was undertaken. Out of the 354 

173 patients, 109 patients had matched CT data scored by clinicians. The data is 355 

summarised in Supplementary Table 2. The majority of patients had a CORADS score 356 

of high and very high, where 26% was equivocal, 4.6% low and 2.8% very low. The 357 

CORADS score stands for "COVID-19 Reporting and Data System," which is a 358 

classification system used in radiology to assess the likelihood of COVID-19 infection 359 

based on chest imaging findings, typically on computed tomography (CT) scans. The 360 

score categorizes imaging findings into different levels of suspicion for COVID-19, 361 

ranging from very low to very high. 362 

 363 

Table 1: Characteristics of 132 patients from Florence included in the study, 364 

including lab results at admission. 365 

Characteristic N N = 1321 

Died  132 
 

    N 
 

127 (96%) 

    Y 
 

5 (3.8%) 

Age  132 60 (50, 68) 

Sex  132 
 

    F 
 

40 (30%) 

    M 
 

92 (70%) 

Non-invasive ventilation 132 
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    N 
 

123 (93%) 

    Y 
 

9 (6.8%) 

Continuous positive airway pressure 132 
 

    N 
 

129 (98%) 

    Y 
 

3 (2.3%) 

Tracheostomy  132 
 

    N 
 

131 (99%) 

    Y 
 

1 (0.8%) 

High flow nasal cannula oxygen therapy 132 
 

    N 
 

105 (80%) 

    Y 
 

27 (20%) 

Hypertension  132 
 

    N 
 

77 (58%) 

    Y 
 

55 (42%) 

Malnutrition  132 
 

    N 
 

131 (99%) 

    Y 
 

1 (0.8%) 

Cardiovascular disease 132 
 

    N 
 

119 (90%) 

    Y 
 

13 (9.8%) 

Respiratory disease 132 
 

    N 
 

118 (89%) 

    Y 
 

14 (11%) 
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Cancer  132 
 

    N 
 

118 (89%) 

    Y 
 

14 (11%) 

Chronic kidney disease 132 
 

    N 
 

130 (98%) 

    Y 
 

2 (1.5%) 

Chronic hepatitis 132 
 

    N 
 

130 (98%) 

    Y 
 

2 (1.5%) 

Cerebrovascular disease 132 
 

    N 
 

125 (95%) 

    Y 
 

7 (5.3%) 

Chronic hematologic disease 132 
 

    N 
 

129 (98%) 

    Y 
 

3 (2.3%) 

Diastolic blood pressure (mmHg) 132 79 (70, 85) 

Heart rate (BPM) 130 80 (75, 89) 

Systolic blood pressure (mmHg) 132 125 (115, 140) 

Temperature (°C) 131 36.50 (36.00, 37.20) 

Weight (kg) 128 78 (70, 89) 

Height (cm) 126 170 (165, 175) 

Alanine aminotransferase (U/L) 128 27 (17, 39) 

Aspartate aminotransferase (U/L) 64 31 (24, 46) 
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Bilirubin (mg/dL) 128 0.50 (0.30, 0.60) 

Calcium (mg/dL) 96 4.50 (4.34, 4.63) 

Creatinine (mg/dL) 130 0.83 (0.73, 0.95) 

D-dimer (ng/mL) 91 728 (429, 1,091) 

Direct bilirubin (mg/dL) 44 0.25 (0.17, 0.29) 

Fibrinogen (mg/dL) 117 572 (446, 654) 

Fraction of inspired oxygen (%) 127 28 (21, 36) 

Hematocrit (%) 132 42.7 (39.7, 45.8) 

Lactate dehydrogenase (U/L) 118 297 (247, 359) 

Lactic acid (mg/dL) 102 9.0 (7.0, 11.9) 

Leukocytes (109/L) 132 6.2 (4.6, 7.7) 

Lymphocytes (109/L) 129 0.90 (0.68, 1.25) 

Neutrophils (109/L) 129 4.67 (3.08, 6.16) 

Oxygen saturation (%) 109 96.10 (94.20, 97.70) 

Partial pressure oxygen (mmHg) 131 74 (65, 87) 

Partial pressure carbon dioxide (mmHg) 127 36.2 (34.0, 39.0) 

Platelets (109/L) 132 196 (156, 255) 

Potassium (mmol/L) 128 3.85 (3.50, 4.10) 

Procalcitonin (ug/L) 126 0.09 (0.06, 0.15) 

Prothrombin time (seconds) 127 13.00 (12.30, 13.70) 

Sodium (mmol/L) 129 137 (135, 140) 

Urea nitrogen (g/L) 64 30 (30, 50) 
1 n (%); Median (IQR) 

 366 
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Patients form 3 clusters based on their pathway activation 367 
 368 

The RNA sequencing data was used to derive gene expression data (mRNA 369 

identification and abundance) which was calculated using Salmon inferred with 370 

Tximport in R, where values were converted into log2 counts per million (cpm). TopMD 371 

was then employed to calculate the activation of pathways. To identify differences in 372 

pathway activation across the cohort, activation data was plotted on a PCA which 373 

revealed three distinct clusters of patients (Figure 1). The relationship between clinical 374 

observations, demographics and CT scan data in each cluster was explored, and the 375 

significant differences are reported in Table 3. Lactic acid was slightly higher in cluster 376 

1 and 2 and lower in cluster 3. A higher proportion of respiratory disease was observed 377 

in cluster 2 and the fraction of inspired oxygen was also higher in this cluster. Direct 378 

bilirubin was also higher in cluster 2. The majority of those that died from COVID-19 379 

were in cluster 2. CORADS scoring was unable to distinguish between the clusters at 380 

a molecular level.   381 
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 382 
Figure 1:TopMD pathway volumes of each patient in the Florence cohort, calculated 383 

from a healthy plotted as a PCA plot. The data reveals three distinct clusters based on 384 

pathway activation determined by kmeans.  385 
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Table 2: Patient characteristics that differ between the three clusters in the Florence 386 

cohort (p = <0.05).  387 

Characteristic N 1, N = 461 2, N = 371 3, N = 491 p-value2 

Lactic acid (mg/dL) 102 10.0 (7.7, 
13.0) 

10.0 (7.2, 
12.0) 

8.0 (5.3, 
9.7) 0.008 

Fraction of inspired 
oxygen 

(%) 
127 28 (21, 

36) 
32 (27, 

40) 
28 (21, 

29) 0.019 

Died 132    0.032 

    N  46 
(100%) 33 (89%) 48 (98%)  

    Y  0 (0%) 4 (11%) 1 (2.0%)  

Respiratory disease 132    0.042 

    N  44 (96%) 29 (78%) 45 (92%)  

    Y  2 (4.3%) 8 (22%) 4 (8.2%)  

Direct bilirubin 

(mg/dL) 
44 

0.20 
(0.17, 
0.27) 

0.28 
(0.24, 
0.32) 

0.20 
(0.17, 
0.28) 

0.047 

1 n (%); Median (IQR) 
2 Fisher’s exact test; Kruskal-Wallis rank sum test; Pearson’s Chi-squared test 

 388 

Molecular phenotype, Cluster 1, was characterised by high activation of pathways 389 

associated with ESC pluripotency, NRF2, and TGF-β receptor signalling (Figure 2). 390 

Molecular phenotype, Cluster 2 displayed high activation of pathways including focal 391 

adhesion-PI3K-Akt-mTOR signalling and type I interferon induction and signalling, 392 

while Cluster 3 exhibited low IRF7-related pathway activation. 393 

 394 
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LRROC analysis was conducted on models trained using 70% of patients from the 395 

Florence cohort, with test results evaluated on the remaining 30% of the Florence 396 

cohort. The area under the ROC curve (AUCROC) values were found to be 0.84, 0.85, 397 

and 0.72 for clusters Cluster 1, Cluster 2, and Cluster 3, respectively. Subsequently, 398 

these clusters were validated in the Liège cohort (Supplementary Figure 1), yielding 399 

AUCROC values of 0.76, 0.93, and 0.69 for Cluster 1, Cluster 2, and Cluster 3, 400 

respectively (Supplementary Figure 2).  401 

 402 

 403 

Potential drug candidates are identified for each cluster 404 

To identify potential drug candidates that modulate pathways identified in these 405 

patient clusters, TopMD pathway activation was mapped onto the Drug-Gene 406 

Interaction Database (Figure 3). This mapping revealed distinct drug targets for each 407 

cluster, detailed in the supplementary table 4. This approach has a two-fold benefit: 408 

informing potential clinical trials and informing underlying biological mechanisms 409 

specific to each cluster. Interestingly, the pattern of pathway activation might also 410 

provide insight into the potential benefits or drawbacks of specific therapies, 411 

considering a drug's mechanism of action. 412 

While all clusters shared targetable pathways led by genes such as ITGB2, GNAS, 413 

and CXCR2, unique targets also emerged. Cluster 1 specifically identified IFNAR1, 414 

TGFBR2, and CSF2RB, while cluster 2 added SERPING1 and TLN1. Notably, cluster 415 

3 shared SERPING1 with cluster 2. These findings highlight both commonalities and 416 

variations in potential therapeutic targets across the identified patient clusters. 417 
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 418 
Figure 2: The average pathway volume for each cluster was considered in a TopMD enrichment analysis against the average pathway 419 

activation for the whole cohort to identify differentially activated pathways. The enrichment analysis was filtered by adjusted P value, 420 

then the top pathways were plotted. The pathways are annotated with the gene that leads the identified pathway. The dots are 421 

coloured by adjusted p-value and the size represents the proportion of genes identified within that pathway from TopMD analysis.  422 
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 423 
Figure 3: TopMD enrichment analysis was mapped against the Drug-Gene Interaction Database, using a healthy baseline, revealing 424 

approved drugs that are known to target genes and their corresponding pathways. The top drug candidates are plotted based on 425 

adjusted p-value and pathway volume.426 
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Identification of pathways in fatal cases where intervention might 427 

promote survival 428 

Due to limited sample size, we focused on the unsupervised analysis; however, to 429 

show utility of investigating pathway activity in individuals, pathway analysis in the 10 430 

deceased patients from the Florence and Liège cohort were observed. Unsurprisingly, 431 

these patients exhibited advanced age and high comorbidity rates (cardiovascular: 432 

70%, respiratory: 50%, malnutrition: 40%, hypertension: 90%, cerebrovascular: 30%, 433 

chronic hepatitis: 40%). Interestingly, all 10 patients displayed a strong signal for 434 

"nonalcoholic fatty liver disease" driven by the NDUFA9 and UQCRC2 genes (Figure 435 

4). 436 

Despite this shared pathway, individual analysis revealed heterogeneity among 437 

deceased patients, highlighting the complex interplay between COVID-19, 438 

comorbidities, and individual demographics on pathway activation. 439 

Enrichment analysis identified potential therapeutic targets based on individual 440 

pathway activation. All patients displayed potential targets including CXCR2 (Figure 441 

5). Additionally, specific druggable pathways were identified for some patients, 442 

including GNAS (multiple patients), ITGB2 (patients 2 & 6), CSF2RB (multiple 443 

patients), SERPING1 (5 patients), PIK3CD (patient 5), TGFBR2 (patient 9), and 444 

CUL4B (patient 10). 445 

 446 

 447 
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 448 
 449 

Figure 4: The top 6 pathways enriched in fatal cases within the Florence and Liège 450 

cohort using a healthy baseline.  451 

 452 
 453 

 454 

 455 

 456 

 457 

 458 

 459 

 460 

 461 
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 462 
Figure 5: The top significant drug candidates and peak genes that could potentially 463 

modulate the phenotype of the 10 fatal cases patients in the Florence and Liège 464 

cohort. 465 
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 466 
  467 
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Discussion: 468 

Traditionally, molecular phenotyping requires data reduction and feature selection, 469 

removing biological and technical ‘noise’, prior to pathway enrichment analysis, but 470 

this leads to results which do not accurately represent the molecular phenotypes. 471 

Topological analysis of global gene expression finds value in the low abundance 472 

transcripts usually discarded as noise, as they represent the ‘foothills’ of largely 473 

activated pathways in a comprehensive molecular landscape. By understanding the 474 

molecular phenotype, it is possible to achieve more successful selection of 475 

therapeutics, as medicines work at the molecular level as opposed to a clinical level 476 

(28).  477 

 478 

To redefine predictive models for patient outcomes and health trajectories, there is a 479 

growing recognition of the importance of integrating complex datasets. This ranges 480 

from biomarkers, clinical parameters to CT scans. For instance, a fully automated AI 481 

framework was developed to extract features from chest CT scans for diagnosing 482 

COVID-19. The model achieved 85.18% accuracy, enabling rapid and accurate 483 

differentiation of COVID-19 from routine clinical conditions, facilitating timely 484 

interventions and isolation procedures (29). Similarly, an AI-based analysis named 485 

CACOVID-CT was implemented to automatically assess disease severity on chest CT 486 

scans. Retrospective analysis of 476 patients revealed that quantitative 487 

measurements, such as the percentage of affected lung area (% AA) and CT severity 488 

score (CT-SS), correlated strongly with hospital length of stay, ICU admission, 489 

mechanical ventilation, and in-hospital mortality. This tool proved effective in 490 

identifying patients at higher risk of severe outcomes, facilitating patient management 491 

and relieving the workload of radiologists (30). 492 

 493 

Our study identified three distinct molecular phenotypes of COVID-19 molecular 494 

through topological analysis of global blood gene expression. LRROC analysis 495 

demonstrated strong discriminative power of the defined patient clusters tested in the 496 

Florence and validated in the Liège cohort.  This revealed insights into underlying 497 

disease mechanisms, potentially guiding personalised therapeutic approaches.  498 

 499 

The analysis using the TopMD algorithm assigned patients to three clusters. Some of 500 

the clinical observations aligned with the defined clusters, including lactic acid 501 
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elevation in cluster 1 and 2 compared to cluster 3. Elevated lactic acid is known to be 502 

associated with disease severity and mortality (31). Similarly, cluster 2 showed a 503 

higher proportion of respiratory disease and required a higher fraction of inspired 504 

oxygen. Additionally, this cluster exhibited elevated direct bilirubin, another potential 505 

indicator of disease severity (32). Notably, the majority of those that died from COVID-506 

19 were in cluster 2 (n=4), although the overall number of fatalities in this cohort was 507 

small (n=5).  508 

 509 

Interestingly, the CORADS scoring system used for chest X-ray/CT severity 510 

assessment, couldn't differentiate between the molecular clusters. This suggests 511 

different molecular mechanisms might underlie similar clinical presentations, which 512 

cannot be identified by CT scan. However, utilising higher resolution CT scan data, 513 

such as continuous scoring systems offered by tools like Thirona, might provide more 514 

granular insights compared to the categorical data used in this study (30). 515 

 516 

Molecular differences were examined between each cluster by considering statistically 517 

significant GSEA pathways with highest TopMD pathway volumes (Fig. 2). Cluster 1 518 

displayed a reduction in pathways related to the renin-angiotensin system (RAS) and 519 

bradykinin, implicated in COVID-19 pathogenesis (33). Additionally, an increase in 520 

focal adhesion pathways, possibly indicating cellular changes related to tissue repair 521 

and remodelling. Activation of the complement cascade, led by SERPING1, indicates 522 

involvement in the immune response to the virus. Furthermore, an increase in the 523 

TGF-β pathway, which regulates inflammation and tissue repair was also identified. 524 

Additionally, a high activation of pathways associated with ESC pluripotency, NRF2, 525 

and TGF-β receptor signalling. The ESC pluripotency pathway is implicated in tissue 526 

repair and regeneration, suggesting a potential compensatory response to tissue 527 

damage caused by the virus. NRF2 pathway activation may indicate an antioxidant 528 

response to counteract oxidative stress induced by viral infection (34). TGF-β receptor 529 

signalling, known for its role in regulating inflammation and fibrosis, may contribute to 530 

tissue remodelling and fibrosis observed in severe COVID-19 cases (35). Also, cluster 531 

1 exhibits low activation of pathways related to extracellular vesicle-mediated 532 

signalling and complement and coagulation cascades. The decrease in extracellular 533 

vesicle-mediated signalling may reflect impaired intercellular communication, while the 534 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 16, 2024. ; https://doi.org/10.1101/2024.04.15.24305820doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.15.24305820
http://creativecommons.org/licenses/by-nc/4.0/


low activation of complement and coagulation cascades suggests a possible 535 

dysregulated immune response and coagulopathy (36). 536 

 537 

In cluster 2, high activation of pathways such as focal adhesion-PI3K-Akt-mTOR 538 

signalling and type I interferon induction and signalling was observed, and has been 539 

proposed as a potential therapeutic target in SARS-CoV-2 (37, 38) and MERS-CoV 540 

(39). Focal adhesion pathway activation may indicate cellular responses to tissue 541 

injury or viral invasion, while type I interferon induction and signalling reflect a strong 542 

antiviral immune response (40). In contrast, cluster 3 shows opposite activity in IRF7-543 

related pathways compared to 2. Additionally, vitamin D receptor activity was 544 

observed, which has been implicated in modulating the immune response and may 545 

play a role in COVID-19 severity (41-43). Notably, this cluster exhibited low activation 546 

of pathways related to TGF-b receptor signalling, IL1R signalling, and LTF danger 547 

signal response. The reduced TGF-b receptor signalling suggests decreased fibrotic 548 

response and tissue remodelling, while low IL1R signalling may indicate attenuated 549 

inflammation (44). The activation of the LTF danger signal response pathway appears 550 

to be diminished. Lactoferrin demonstrates antiviral capabilities against various 551 

viruses, including coronaviruses (45). It can impede viral replication, disrupt viral 552 

attachment and entry, and adjust host immune responses. Lactoferrin's 553 

immunomodulatory attributes might aid in tempering excessive inflammation and 554 

alleviating cytokine storms observed in severe cases of COVID-19 (46). The 555 

decreased activation of the LTF danger signal response pathway could potentially 556 

contribute to a weakened interferon response (47). 557 

 558 

The stratified molecular phenotypes were found to have different expected responses 559 

to both medicines used, and medicines not yet used for COVID-19 (Fig. 3). In cluster 560 

1, CSA or cyclosporine has been shown to be safe to use during COVID-19 for the 561 

intended use, however, a reduction in hyperinflammation was observed (48). This 562 

warrants further investigation as highlighted by others (49). Interferon related therapies 563 

that could modulate the pathway activation of cluster 1 were also identified, which have 564 

been shown to have positive effects (50-52). Lifitegrast inhibits SARS-CoV-2 in vitro 565 

(53, 54) By inhibiting TGF-β signalling, Luspatercept may help mitigate the excessive 566 

inflammatory response and tissue damage seen in severe COVID-19 cases. Similarly, 567 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 16, 2024. ; https://doi.org/10.1101/2024.04.15.24305820doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.15.24305820
http://creativecommons.org/licenses/by-nc/4.0/


Sargramostim has shown promise in a small study, but larger trials are needed to 568 

confirm these findings (55). 569 

 570 

Like, cluster 1, CSA was also identified as a potentially effective treatment for clusters 571 

2 & 3. The mechanisms of actions of other medicines only matched the molecular 572 

phenotype of cluster 2. Asenapine, an anti-pyschotic drug identified by others as a 573 

potential drug candidate for COVID-19 (56, 57) Cinryze a human c1 esterase inhibitor 574 

was also identified, these inhibitors have been shown to improve lung computed 575 

tomography scores and increase blood eosinophils, which are indicators of disease 576 

recovery, however, time to clinical improvement was not observed (58). Also, for 577 

cluster 2, we identified Fluoxetine and other SSRIs such as fluvoxamine which has 578 

previously been identified as having potential use for the treatment of COVID-19 and 579 

long-COVID (59) Amisulpride was also identified in cluster 3.  580 

 581 

To further evaluate the utility of the TopMD algorithm for precision medicine, 582 

enrichment analysis was performed on individual data from the 10 fatal cases within 583 

the Florence and Liège cohorts. This approach highlights pathway activation specific 584 

to each patient, bypassing the need for a whole cohort for deconvolution. All 10 585 

patients showed potential therapeutic targets based on pathway enrichment. CXCR2 586 

and GNAS were commonly activated across patients (Figure 5), suggesting drugs 587 

such as Ibuprofen may be able to modulate some pathways associated with their 588 

phenotype. For patients 2 and 6, ITGB2 emerged as one of the top druggable 589 

pathways. Notably, Lifitegrast has shown to inhibit SARS-CoV-2 in vitro (53, 54). 590 

Additionally, CSA or cyclosporine, was also identified, which was another compound 591 

identified in the cluster analysis.  592 

 593 

Multiple patients exhibited CSF2RB enrichment, indicating potential for Sargramostim, 594 

a drug shown to reduce mortality and incubation in small COVID-19 study  (55). 595 

SERPING1 enrichment in 5 patients suggests various approved drugs for pathway 596 

modulation, including antithrombin, human c1 esterase inhibitor and cinryze. Patient 597 

specific findings were also observed. PIK3CD enrichment in patient 5 suggests 598 

Sophoretin as a potentially modulator, with a meta-analysis showing quercetins 599 

(including sophoretin), reduce LDH, hospitalisation risk and mortality (60). Patient 9 600 

displayed TGFBR2 enrichment indicating luspatercept as a potential drug (identified 601 
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in the cluster analysis) as a potential candidate. Lastly, CUL4B enrichment in patient 602 

10, suggests Thalidomide, Pomalidomide, Lenalidomide for pathway modulation. 603 

While Lenalidomide, used to manage multiple myelomas, has been proposed as 604 

protective against sever COVID-19 in a case report (61) a clinical trial showed no 605 

benefit (62). Thalidomide, although showing no benefit itself (62), remains a subject of 606 

discussion for its potential use in COVID-19 (63). 607 

 608 

As a proof of concept, TopMD models were integrated into the Comunicare platform 609 

(27), a tool developed and configured within the framework of the DRAGON project, 610 

aimed at patient empowerment and providing disease management tooling for 611 

clinicians and patients. This proof of concept also enables the analysis of clinical data 612 

for clinicians in a dedicated dashboard to demonstrate the possibilities of 613 

transcriptomics in digital health. As an example, we generated a model that predicts 614 

ICU admission based on our previous work (5) as other outcome variables were too 615 

low in number. If a clinician has access to transcriptomic data, a csv file can be 616 

uploaded to the dashboard and in return activated pathways are returned after running 617 

analysis on the TopMD API. While the use of transcriptomics at the bedside is not 618 

ready for deployment, we propose that it is a major advance to be able to demonstrate 619 

integration of this data into digital health platforms as the growth of precision medicine 620 

continues. 621 

 622 

This study identified three distinct molecular phenotypes in hospitalised COVID-19 623 

patients, which were not associated with differences in CT scans and clinical 624 

observations. However, these molecular phenotypes match the mechanism of action 625 

of different medicines, providing the opportunity for biomarker-led stratified medicine. 626 

Topological analysis of global gene expression to define a patient’s pathway activation 627 

map could be useful in future pandemics to aid in treatment decisions before clinical 628 

trials can be completed. 629 

   630 
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