
Evaluation of a Bayesian hierarchical pharmacokinetic-pharmacodynamic

model for predicting parasitological outcomes in Phase 2 studies of new

antimalarial drugs

Meg K Tully1, Saber Dini1, Jennifer A Flegg2, James S McCarthy3,4,5, David J

Price1,3,†, Julie A Simpson1,6†,∗

1Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global

Health, The University of Melbourne, Melbourne, Australia

2School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia

3Department of Infectious Diseases, The University of Melbourne, at the Peter Doherty

Institute for Infection & Immunity, Melbourne, Australia

4Victorian Infectious Diseases Service, Royal Melbourne Hospital, Parkville, Victoria, Aus-

tralia

5Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia

6Nuffield Department of Medicine, University of Oxford, Oxford, UK

† Co-senior authors

∗ Corresponding author: julieas@unimelb.edu.au

Key words: pharmacokinetic-pharmacodynamic modelling, antimalarial, Bayesian

methods, simulation

CONFLICT OF INTEREST

All authors declared no competing interests for this work.

1



FUNDING

This work was supported by the Australian National Health and Medical Research

Council (NHMRC) Leadership Investigator Grants (#1196068) to JAS and and (#2016396)

to JSM, the Australian Centre for Research Excellence in Malaria Elimination (#2024622)

and a NHMRC Synergy Grant (#2018654).

2



Abstract1

The rise of multidrug resistant malaria requires accelerated development of novel an-2

timalarial drugs. Pharmacokinetic-pharmacodynamic (PK-PD) models relate blood3

antimalarial drug concentrations with the parasite-time profile to inform dosing regi-4

ments. We performed a simulation study to assess the utility of a Bayesian hierarchical5

mechanistic PK-PD model for predicting parasite-time profiles for a Phase 2 study of6

a new antimalarial drug, cipargamin.7

We simulated cipargamin concentration- and malaria parasite-profiles based on a8

Phase 2 study of 8 volunteers who received cipargamin 7 days after inoculation with9

malaria parasites. The cipargamin profiles were generated from a 2-compartment10

PK model and parasite profiles from a previously published biologically informed PD11

model. One-thousand PK-PD datasets of 8 patients were simulated, following the12

sampling intervals of the Phase 2 study. The mechanistic PK-PD model was incor-13

porated in a Bayesian hierarchical framework and the parameters estimated.14

Population PK model parameters describing absorption, distribution and clear-15

ance were estimated with minimal bias (mean relative bias ranged from 1.7 to 8.4%).16

The PD model was fitted to the parasitaemia profiles in each simulated dataset using17

the estimated PK parameters. Posterior predictive checks demonstrate that our PK-18

PD model successfully captures both the pre- and post-treatment simulated PD pro-19

files. The bias of the estimated population average PD parameters was low-moderate20

in magnitude.21

This simulation study demonstrates the viability of our PK-PD model to predict22

parasitological outcomes in Phase 2 volunteer infection studies. This work will in-23

form the dose-effect relationship of cipargamin, guiding decisions on dosing regimens24

to evaluate in Phase 3 trials.25
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1 Introduction26

Almost 40% of the global population live in malaria endemic areas, with an estimated27

249 million clinical cases in 2022, and over 608,000 deaths [1]. Following a significant28

fall in the global malaria burden between 2005 and 2015, the estimated number of29

malaria cases and deaths has begun to rise over recent years [1]. The availability of30

effective antimalarial drugs is key to reducing the burden of morbidity and mortality31

attributable to malaria.32

Artemisinin-based combination therapies (ACTs), comprised of a highly potent33

and rapid-acting artemisinin-derivative with a longer-acting partner drug, are the34

current first-line treatment for Plasmodium falciparum malaria infection. However,35

partial resistance to artemisinins is now widespread across Southeast Asia [2] and36

more recently, has emerged de novo in some African countries [3, 4], South America37

[5] and Papua New Guinea [6]. Moreover, resistance to the partner drugs used in38

ACTs, such as piperaquine, has also been detected in Southeast Asia [7], resulting in39

treatment failures. New antimalarial drugs are urgently needed.40

Drug development is a resource-heavy, expensive and time-consuming process,41

with only approximately 10% of drugs tested in Phase 1 trials ultimately gaining42

approval [8]. The journey from early phase clinical trials to Phase 3 clinical trials43

in patients, to then drug registration, can take many years [9]. Cipargamin is a44

promising candidate antimalarial drug that has transitioned from early phase studies45

[10] to Phase 2 clinical trials of adult patients with falciparum malaria [11, 12]. In46

particular, it is a rapidly acting parenteral agent with promise to replace artemisinin47

[13]. McCarthy and colleagues investigated the efficacy of cipargamin in a Phase 248

clinical trial [14] in 8 healthy volunteer patients who were experimentally infected49

with malaria and seven days later administered a low dose (10mg) of cipargamin.50
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These human challenge studies, also known as volunteer infection studies, involve51

purposeful infection of healthy volunteers in a controlled environment, and produce52

rich data on both parasite and drug concentrations through frequent sampling [15].53

Given the ethical considerations of infecting healthy volunteers, it is imperative that54

the maximum information possible is obtained from these data, in order to guide55

selection of dosing regimens investigated for future Phase 2 and 3 studies. Statistical56

methods that are tailored to generating inferences from these valuable data are thus57

required. Pharmacokinetic-Pharmacodynamic (PK-PD) modelling is a typical frame-58

work used for such analyses. These models integrate the PK model, that describes59

the drug concentration over time, with a PD model that characterises the drug’s ef-60

fect on the parasite population. Ideally, a PK-PD model should capture key elements61

of the underlying biological system, whilst remaining sufficiently simple for practical62

estimation and interpretation of key parameters [16].63

In this study we assessed an adaptation of an existing mechanistic Bayesian hi-64

erarchical PK-PD model developed by Dini et al. [17], which captures the life cycle65

of the parasite within the red blood cell. Within a simulation-estimation framework,66

we investigated how precisely and accurately this model was able to recover the PK67

and PD parameters. The simulation study is based on data from the Phase 2 clinical68

study of cipargamin [14].69
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2 Results70

A detailed description of the PK model, PD model, the Bayesian inference frame-71

work, and simulation study setup, including all model parameters, are provided in72

the Methods section. Definitions of the PK and PD model parameters are given in73

Tables 1 and 2 with a study overview diagram provided in Figure 1.74

75

Pharmacokinetic Model76

Cipargamin concentrations were simulated using a 2-compartment PK model with77

first-order absorption, based on the estimated PK parameters and between-individual78

variability from the analysis of the Phase 2 trial PK data [14] (Table 3). A total79

of 1000 simulated datasets were generated, each dataset included the PK and PD80

profiles of 8 patients, incorporating between- and within-individual variability. The81

simulated 8-patient PK datasets provided a good visual match to the trial data from82

McCarthy et al. [14] (Figure S1). The PK model was incorporated into a Bayesian83

hierarchical framework, and fitted to each of the 1000 simulated datasets, restricting84

data to the cipargamin concentrations which correspond to the sampling times of85

the original Phase 2 trial (1, 2, 3, 4, 6, 8, 12, 16, 24, 36, 48, 72, 96 and 120 hours86

post-treatment), and the posterior median estimate of each population PK parameter87

obtained. To evaluate how accurately this model can estimate PK parameters, we88

calculated the difference (absolute and relative bias) between the posterior median89

estimate of the population-level PK parameter, and the value used to simulate the90

data (i.e., the ‘true’ value). Table 4 shows the ‘true’ PK parameter values used to91

simulate the data, the mean, 2.5- and 97.5-percentiles (herein, 95% intervals) across92

the 1000 posterior median estimates associated with each simulation, and the bias93

(absolute and relative) in these posterior median estimates. The population-level94
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PK parameters were reliably estimated, with the magnitude of relative bias ranging95

from 1.7% to 8.4%, comparing the mean of the posterior median estimates to the96

‘true’ value. To contextualise the bias in these estimates, we compared the PK profile97

created by the ‘true’ population parameters to the PK profiles generated at the 100098

posterior median parameter estimates (Figure 2). This figure demonstrates that the99

average PK profiles for cipargamin are captured well across all simulations.100

The population-level PK parameter least accurately estimated by the model was101

the absorption parameter, ka, with a mean relative bias of 8.4% [95% intervals (-9.7%,102

32%)]. The PK profiles exhibit a short and sharp rise in drug concentration upon103

administration, during which absorption may be estimated, however the availability of104

only 1 to 2 observations from this period impedes the estimation of the ka parameter.105

When the drug concentration profiles produced from the ‘actual’ and ‘estimated’ PK106

parameters were compared (Figure 2), it is clear that the discrepancies between the107

absorption parameter values do not materially impact the cipargamin concentrations108

during the distribution and elimination phases.109

To investigate how well this framework can recover model parameters for a sin-110

gle experiment, we show an example of the posterior samples compared to the ‘true’111

value in Figure 3. These show that the true parameter values are contained within112

the range of posterior samples for each parameter, considering pairwise correlations.113

FigureS4 shows the posterior predictive pharmacokinetic profiles for each of the eight114

patients in a single experiment, again demonstrating that the posterior model fit pro-115

vides an accurate characterisation of the pharmacokinetic profile.116

117

Pharmacodynamic Model118

For each of the above simulated 1000 datasets, the 8 individual cipargamin concentration-119

time profiles were used to simulate 8 parasite count profiles. These parasitaemia pro-120
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files were simulated for the initial 7 days of parasite growth post-inoculation. The121

simulated cipargamin concentration profiles were then used to simulate drug-induced122

killing of the parasites over the next two days, post cipargamin administration on day123

7. The PD model simulated the number of parasites aged 1 to 40 hours at each time124

point, and data for fitting the model was again restricted to the sampling times of the125

original study (72, 96, 108, 120, 132, 144, 156, 168, 172, 176, 180, 184, 192, 198, 204,126

216, 228, 240, 264 and 288 hours post-innoculation). We assumed cipargamin had an127

immediate effect on the parasite, and that the concentration-effect relationship fol-128

lowed Michaelis-Menten kinetics. The PD parameter values and between-individual129

variability selected for generation of the PD profiles are provided in Table 5. The130

1000 simulated PD datasets provided a good visual match to the parasitaemia data131

from McCarthy et al. [14] (Figure S5).132

Table 6 shows the ‘true’ PD parameter values, the mean and 95% intervals across133

the 1000 posterior median estimates, and the absolute and relative bias in the poste-134

rior median estimates for each PD parameter. The magnitude of relative bias for the135

posterior median estimates of the seven PD parameters varied between 1% and 53%.136

As per the PK evaluation, we contextualised this bias by plotting a profile produced137

by the mean PD parameter estimates for each of the 1000 simulations, and compared138

these to the PD profile created by the parameters used to simulate the data (Figure139

4).140

The ‘true’ mean initial parasite age (µipl) was 2 hours, but had a mean estimate141

of 2.96 hours (95% quantiles: [2.69, 3.44]). Although a seemingly large relative bias142

(48% [34.50%, 72.0%]), this discrepancy is less than one hour difference in parasite143

age. These still represent a mean age of parasites in the early ring stage of the parasite144

life cycle. Estimates of the standard deviation of the initial parasite age (σipl) are145

associated with a similarly large relative bias (-53.3%, [-57.3%,-48.3%]). When we146
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compared the profiles produced by the estimated and ‘true’ values, (Figure 4) the147

bias in these estimates had a negligible impact on the overall parasite dynamics.148

The estimated values of the PD parameters representing the maximum drug effect,149

Emax (‘true’ value = 0.23), and the cipargamin concentration at which half of this150

effect is achieved, EC50 (‘true’ value = 15.1), have relatively moderate bias with mean151

posterior median estimates (95% quantiles) of 0.29 (0.23, 0.38) and 17.27 (13.80,152

21.12) ng/ml, respectively. These estimates correspond to mean relative biases of153

26.1% for Emax and 14.4% for EC50. These PD parameters, together with γ, define154

the killing effect of the drug (Equation (2)). As a result, the bias in these estimates155

produces a noticeable discrepancy in the total number of parasites post-treatment156

(Figure 4).157

As with the PK results, we demonstrate that this framework can recover PD158

model parameters (excluding the mean and spread of the initial parasite age distri-159

bution as described above) for a single experiment by presenting an example of the160

posterior samples compared to the ‘true’ value in Figure 5. These show that the161

true parameter values are well contained within the range of posterior samples for162

each parameter, considering pairwise correlations. Supplementary Figure S6 shows163

the posterior predictive PD profiles for each of the eight patients in 3 randomly se-164

lected 8-patient cohorts, again demonstrating that the posterior model fit provides165

an accurate characterisation of the PD profile.166
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3 Discussion167

The results of this simulation-estimation study demonstrate that parameters of the168

biologically informed PK-PD model can be estimated with relatively high accuracy169

for Phase 2 volunteer infection studies. The PK parameters in particular were all es-170

timated with very low bias, whereas the estimation of certain PD parameters showed171

comparatively less precision. In particular, the mean (µipl) and standard deviation172

(σipl) of the initial parasite age distribution corresponded to a relative bias of 48.0%173

and 53.3%. However, in absolute terms, this bias corresponds to approximately one174

hour in the 40-hour parasite life-cycle which does not substantially impact character-175

isation of parasite dynamics.176

Post-treatment parasite counts are often below the limit of quantification (LOQ).177

This model accounts for the measurement uncertainty in those data points by aver-178

aging across the range [0, LOQ], which provides some information on the relevant179

parameter values, but less than contributed by points measured above the LOQ. This180

imperfect observation contributes to the relatively poorer estimation performance of181

the PD model. Generated datasets that had more post-treatment observations under182

the LOQ resulted in poorer modelling accuracy (Figure S7).183

This form of PK-PD Bayesian hierarchical model has been previously applied to184

volunteer infection and patient trial datasets [17, 18]. The mechanistic form includes185

the hourly age of the parasite within the red blood cell for each individual, capturing186

the asexual reproduction cycle of the parasite and also allowing for the inclusion of the187

stage specific action of the antimalarial drug. Estimates of the PK-PD model parame-188

ters can be derived using different statistical methods. Maximum likelihood methods189

are widely used in the analysis of data from early phase antimalarial-drug trials [9,190

16]. However, these methods are limited, often failing to achieve convergence unless191
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many of the parameter values are fixed. Additionally the methods are restrictive in192

the incorporation of pre-existing data or knowledge. In contrast, Bayesian hierar-193

chical methods have a number of advantages, such as incorporating prior knowledge194

or research, and allowing variation in both the population-level parameter values,195

and the correlations between the distributions from which patient-levels values are196

drawn.197

Pharmaceutical research and development is a costly and time-consuming pro-198

cess [19]. Limited understanding of drug effects can result in the waste of resources199

though sub-optimal trial design, simultaneously diverting efforts from other candi-200

date treatments. Therefore, careful statistical analysis and interpretation serves to201

not only maximise the information obtained from a study, but also has the capacity202

to reduce further inaccuracies; potentially limiting unnecessary risks for patients and203

minimising delays in antimalarial drug development — and translation into practice.204

In addition, further computer simulation-estimation studies can be used to determine205

optimal sampling designs for future Phase 2 and 3 studies (e.g., [20, 21]).206

Extrapolation and applicability of these simulation results is necessarily limited207

by the underlying assumptions of the simulation framework. This model is applied208

with the assumption that the underlying drug and parasite dynamics are identical to209

the form of the specified model. An area for further investigation would be evalua-210

tion of the impact of model misspecification on recovering biological parameters via a211

simulation-estimation study, whereby PK and/or PD dynamics are simulated under212

a different model to that used for fitting (e.g., [22]).213

The model presented in this paper has been shown to reliably estimate the key214

population-level PK-PD parameters within the sampling framework from a Phase 2215

clinical trial of cipargamin [14], using simulated data. To date, there has been no216

published formal assessment in a simulation study of the ability of a Bayesian hierar-217
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chical PK-PD model to reliably estimate model parameters in the context of malaria.218

Therefore this paper serves as an example of model performance evaluation through219

a simulation-estimation approach, and provides confidence in the implementation of220

similar mechanistic malaria models and inference framework to analyse such data.221

This flexible model can easily be adapted to study and evaluate emerging antimalar-222

ial compounds in the future.223
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4 Methods224

Herein we describe the pharmacokinetic (PK) and pharmacodynamic (PD) models,225

the simulations generated from each, and the process of estimating model parameters226

from simulated data.227

228

Simulation of cipargamin pharmacokinetic profiles229

This study simulated cipargamin concentrations using a standard two-compartment230

first-order absorption PK model with linear elimination (Text S3 S2), as described in231

McCarthy et al. [14]. The definition of each PK model parameter is given in Table232

1. A hierarchical (or mixed-effects) model was used to account for the between- and233

within-individual variability in cipargamin concentrations.234

We simulated 1000 datasets, each with PK profiles for 8 patients, following the235

sampling intervals from McCarthy et al. [14]. Table 3 contains the population PK236

parameters, θ, and between-individual variability, ω, from McCarthy et al. [14], and237

lower and upper bounds on each PK parameter. The bounds were chosen to allow a238

range of feasible values spanning half to double the PK estimates from McCarthy et239

al. [14].240

Multiplicative error terms for individual observations were drawn from a normal241

distribution with a mean of 0 with variance σ2, and exponentiated. The σ2 value was242

generated individually for each dataset, drawn from a log-normal distribution centred243

at 0.1 (see Text S4 for full details)244

245

Pharmacodynamic Model246

The PD model (presented and developed in [17, 23, 18]) is a mechanistic representa-247

tion of asexual parasite replication and death during the blood stage of the infection248
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in the presence of an anti-malarial drug, represented by a series of difference equa-249

tions. Representing parasite age as an integer ranging from 1 to Tmax, the number250

of parasites that are a hours old at time t, N(a, t), is given by the number that were251

a− 1 hours old at time t− 1. The only unique case is the number that are 1 hour old252

at t > 0: this is given by the number of parasites that are at the end of the life-cycle253

(Tmax) at the previous time step, N(Tmax, t − 1), multiplied by the parasite multi-254

plication factor (PMF), representing the number of new merozoites released into the255

blood following the asexual reproduction of the parasite at the end of its life cycle. A256

stage-specific killing effect of cipargamin, E(a, t), at day 7 is then applied to parasites257

of each age (Equation (1)). Thus, the differences equations governing the parasite258

distribution are:259

N(a, t) =


N(a− 1, t− 1)× (1− E(a− 1, t− 1)), 2 ≤ a ≤ Tmax

N(Tmax, t− 1)× (1− E(Tmax, t− 1))× PMF, a = 1.

(1)

260

Following inoculation, the initial age-distribution, N(a, 0) is assumed to be normally261

distributed and discretised into hourly age groups. This distribution is defined by262

the number of parasites, ipl, and the mean, µipl, and standard deviation, σipl, of the263

parasite age distribution. During the growth phase, as the parasites age and replicate,264

the distribution shifts.265

The effect of treatment on parasites of age a at time t, E(a, t), is assumed to have266

Michaelis-Menten kinetics, and depend on the drug concentration (C(t)) the Maxi-267

mum Killing Effect (Emax), the drug concentration for which 50% of that maximum268

killing effect is achieved (EC50), and lastly the sigmoidicity of the concentration-effect269
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curve (γ):270

E(a, t) = Emax
C(t)γ

C(t)γ + ECγ
50

, E(a, t) ∈ [0, 1]. (2)

For this model, the life cycle was set to 40h in order to enable a visual match271

to the periodic trends of the trial data in McCarthy et al. [14], that were not re-272

producible with a 48h cycle. This is consistent with Wockner et al. [24], where it273

was found that a range of 38.3 to 39.2 hours was the reproductive cycle length most274

strongly supported by their data from volunteer infection studies. Although Wock-275

ner et al. were using a different parasite dynamic model, these estimates were based276

on the same strain of malaria and a population of healthy volunteers with no prior277

malaria infections, similar to the participants of the trial data in McCarthy et al. [14].278

279

Simulation of parasite density versus time profiles280

The 1000 8-patient parasite density-time datasets were simulated using the PD model,281

each corresponding to one set of simulated PK data. Each profile begins with a282

growth-phase starting from inoculation, followed by a treatment-phase from day 7283

onwards. The concentration profiles of the simulated PK data were input into the284

PD equation to generate the killing effect of the drug during treatment. Individ-285

ual PD parameters were generated via the same approach as described for the PK286

parameters. That is, patient-level parameters were drawn from population-level dis-287

tributions centred around θ. Drug effect parameters were given by estimates from288

McCarthy et al. [14], and the parasite multiplication factor informed by [24]. Table289

5 contains the population PD parameters, θ, and lower and upper bounds on each290

parameter. Aside from PK input data, the only other factors that varied between291

simulations were the variance-covariance matrix and noise distribution.292

293
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Estimation of pharmacokinetic and pharmacodynamic parameters294

For each of the 1000 simulated datasets, parameters were estimated in a Bayesian295

framework using a Hamiltonian Monte Carlo No U-Turn Sampler in RStan v2.21.0296

[25] using R version 4.1.1 [26]. For fitting the PK model to the simulated cipargamin297

concentrations three chains were run with 2000 iterations each and 500 discarded as298

warm-up. This produced 4500 posterior samples for each PK parameter, from which299

the posterior median was extracted as a central estimate of the posterior distribu-300

tion. R̂, the effective sample size (neff ), trace plots and posterior predictive interval301

plots were assessed to confirm that the chains had converged and were sufficiently302

will mixed, and that the posterior predictive distributions captured the simulated303

cipargamin concentration profiles accurately (Figures S2 and S3).304

For Bayesian modelling of the simulated parasitaemia data, three chains were305

run with 1000 iterations each and 400 iterations discarded as warm-up, leaving 1800306

for iterations for analysis. This was fewer than the number of iterations for each307

PK dataset due to a comparatively longer processing-time to evaluate the likelihood,308

however visual assessment of the parameter trace plots confirmed adequacy of the309

burn-in period and suitable convergence. The same diagnostics were evaluated as for310

the PK model fitting, in order to ensure chains were appropriately well-behaved, and311

posterior predictive distributions characterised the data (Figure S6).312

313

Graphical Representation314

To evaluate the estimation accuracy of the PK-PD model, we compared the posterior315

medians to the ‘true’ underlying input values. This comparison of the posteriors316

medians (mean [95% intervals]) is presented in Tables 4 (for PK parameters) and317

6 (PD parameters). Additionally, we plotted the hypothetical profiles that would318

be produced by each set of posteriors median parameter values. These profiles are319
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presented in Figures 2 and 4 alongside the profile that would be produced by the true320

population values (i.e. centres of the population parameter distributions).321

Figures 3 and 5 present the full distribution of all posterior samples from the322

STAN fit of a randomly selected single dataset.323

All statistical computing code for the simulation and estimation steps is available324

at https://github.com/M-Tully/pkpd_cipargamin_model.325
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Tables and Figures326

Table 1: Definitions of pharmacokinetic model parameters.

Parameter (units) Definition
Cl (L/h) Clearance rate of the drug
Vc (L) Central compartment volume
Q (L/h) Inter-compartmental clearance rate
Vp (L) Peripheral compartment volume
ka (/h) Absorption rate

Table 2: Definitions of pharmacodynamic model parameters.

Parameter (units) Definition
ipl (total #) Initial Parasite Load. Total number of parasites at inoculation

or model start
µipl (h) Initial mean parasite age
σipl (h) Standard deviation of the age distribution of the initial parasite

load
PMF Parasite multiplication factor. Number of parasites released by

a ruptured schizont at the end of the life cycle
Emax (% killed/h) Maximal hourly killing rate of the drug
EC50 (ng/mL) In vivo drug concentration when killing rate is 50% of Emax

γ Slope of in vivo drug concentration-effect curve

Table 3: Population parameters (θ), and feasible lower (b) and upper (a) bounds

for each parameter in the first-order absorption two-compartment pharmacokinetic

model for cipargamin.

Parameter (units) θ [b, a]
Cl (L/h) 5.5 [2.75, 11]
Vc (L) 64.4 [32.2, 128.8]
Q (L/h) 12.9 [6.45, 25.8]
Vp (L) 107 [53.5, 214]
ka (/h) 0.919 [0.460, 1.838]
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Table 4: Mean PK parameter estimates [95% intervals] over 1000 fitted datasets, and

associated bias when compared to the values used to simulate the data. Estimates

are the posterior median values from a Bayesian hierarchical model.

Parameter ‘True’ Bias
(units) Value Posterior Medians Absolute Relative (%)
Cl (L/h) 5.5 5.41 [5.08, 5.74] -0.09 [-0.42, 0.24] -1.64 [-7.64, 4.36]
Vc (L) 64.4 61.89 [46.52, 77.84] -2.51 [-17.88, 13.44] -3.90 [-27.76, 20.87]
Q (L/h) 12.9 12.36 [10.12, 14.40] -0.54 [-2.78, 1.50] -4.19 [-21.55, 11.63]
Vp (L) 107 111.44 [89.13, 139.44] 4.44 [-17.87, 32.44] 4.15 [-16.70, 30.32]
ka (/h) 0.919 0.996 [0.83, 1.21] 0.08 [-0.09, 0.29] 8.38 [-9.68, 31.66]

Table 5: Population parameters (θ), and feasible lower (b) and upper (a) bounds for

each parameter in the pharmacodynamic model.

Parameter (units) θ [b, a]
ipl (total #) 1800 [1500, 2100]
µipl (h) 2 [1, 24]
σipl (h) 3 [1, 14]
PMF 13 [5, 50]
Emax (% killed/h) 0.23 [0.05, 1]
EC50 (ng/mL) 15.1 [0.5, 30]
γ 5 [0.05, 1.838]
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Table 6: Mean PD parameter estimates [95% intervals] over 1000 fitted datasets, and

associated bias when compared to the values used to simulate the data. Estimates

are the posterior median values from a Bayesian hierarchical model.

Parameter ‘True’ Bias
(units) Value Posterior Medians Absolute Relative (%)
ipl (#×103) 1.8 1.78 [1.75, 1.82] -0.02 [-0.051, 0.018] -1.11 [-2.83, 1.00]
µipl (h) 2 2.96 [2.69, 3.44] 0.96 [0.69, 1.44] 48.00 [34.50, 72.00]
σipl (h) 3 1.40 [1.28, 1.55] -1.60 [-1.72, -1.45] -53.33 [-57.33, -48.33]
PMF 13 14.55 [13.48, 16.80] 1.55 [0.48, 3.80] 11.92 [3.69, 29.23]
Emax (% killed/h) 0.23 0.29 [0.23, 0.38] 0.06 [0.00, 0.15] 26.09 [0.00, 65.22]
EC50 (ng/mL) 15.1 17.27 [13.80, 21.12] 2.17 [-1.30, 6.02] 14.37 [-8.61, 39.87]
γ 5 4.72 [2.86, 6.83] -0.28 [-2.14, 1.83] -5.60 [-42.80, 36.60]
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Figure 1: Flowchart describing the stages of the current simulation study framework.
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Figure 2: PK drug concentration profiles for a 2-compartment model produced from

‘true’ parameters values used in creating the simulations (black), compared to 1000

profiles created from each of the 1000 dataset’s mean estimated values (grey).
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Figure 3: Bivariate distributions of posterior samples for population-level PK pa-

rameters, from the STAN fit of a single simulated dataset. Red dots indicate ‘true’

underlying parameter values used to simulate data.
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Figure 4: PD parasite profiles produced from ‘true’ parameters values used to create

the simulations (black), compared to 1000 profiles created from each of the 1000

dataset’s mean estimated parameter values (grey). Dashed vertical line at day 7

indicates treatment.
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Figure 5: Bivariate distributions of posterior samples for population-level PD pa-

rameters, from the STAN fit of a single simulated dataset. Red dots indicate ‘true’

underlying parameter values used to simulate data.
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