1 Impact of COVID-19 on diabetes mellitus outcomes and care in sub-Saharan Africa:

2 A scoping review.

- 3 Wenceslaus Sseguya^{1,4*}, Silver Bahendeka^{3,4}, Sara MacLennan¹, Nimesh Mody² & Aravinda
- 4 Meera Guntupalli¹,
- ¹ Institute of Applied Health Sciences, University of Aberdeen, Aberdeen, United Kingdom
- ⁶ ² Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- ⁷ ³ Mother Kevin Postgraduate Medical School, Uganda Martyrs University, Kampala, Uganda
- ⁴ Department of Internal Medicine, St Francis Hospital Nsambya, Kampala, Uganda
- 9 *Corresponding author
- 10 Email: <u>w.sseguya.21@abdn.ac.uk</u> (WS)

11 Abstract

12 Background

The COVID-19 pandemic impacted diabetes mellitus clinical outcomes and chronic care globally. However, little is known about its impact in low-resource settings such as sub-Saharan Africa. Hence, to address this, we systematically conducted a scoping review to explore the COVID-19 impact on diabetes outcomes and care in countries of sub-Saharan Africa.

17 Methods

We applied our search strategy to PubMed, Web of Science, CINAHL, African Index Medicus, Google Scholar, Cochrane Library, Scopus, Science Direct, ERIC and Embase to obtain relevant articles published from January 2020 to March 2023. Two independent reviewers were involved in the screening of retrieved articles. Data from eligible articles were extracted from quantitative, qualitative and mixed methods studies. Numerical data were summarised using descriptive statistics, while a thematic framework was used to categorise and identify themes for qualitative data.

25 Results

26 We found 42 of the retrieved 360 articles eligible, mainly from South Africa, Ethiopia and 27 Ghana (73.4%). COVID-19 increased the risk of death (OR 1.30 – 9.0, 95% CI), hospitalisation 28 (OR 3.30 – 3.73: 95% CI), and severity (OR: 1.30-4.05, 95% CI) in persons with diabetes 29 mellitus. COVID-19 also increased the risk of developing diabetes mellitus in hospitalised cases. 30 The pandemic, on the other hand, was associated with disruptions in patient self-management routine and diabetes mellitus care service delivery. Three major themes emerged, namely, (i) 31 32 patient-related health management challenges, (ii) diabetes mellitus care service delivery 33 challenges, and (iii) reorganisation of diabetes mellitus care delivery.

34 Conclusion

- 35 COVID-19 increased mortality and morbidity among people living with diabetes mellitus. In
- addition, the COVID-19 pandemic worsened diabetes mellitus care management. Sub-Saharan
- 37 African countries should, therefore, institute appropriate policy considerations for persons with
- 38 diabetes mellitus during widespread emergencies.

39 Introduction

Global evidence suggests that the coronavirus disease 2019 (COVID-19) resulted in a worldwide surge in mortality, morbidity, and disability, which predominantly occurred among older adults and individuals with chronic disease conditions [1,2]. COVID-19 has been reported to worsen diabetes mellitus (DM) clinical outcomes in particular, and DM care in general generally [3–8]. However, very little in this context is known in low- and middle-income countries, particularly in sub-Saharan Africa (SSA).

46 While SSA is estimated to be host to 24 million of the estimated 537 million people with DM 47 globally, the region records the highest rate of DM-related premature mortality [9]. 48 Furthermore, SSA is predicted to experience the highest rate of rise in DM prevalence than any 49 other region by 2040, depicting the magnitude of a growing threat [9]. DM is an under-50 researched area in SSA, which may underlie the limited understanding of the scale of the COVID-19 impact on persons living with DM (PLWD) and related vulnerabilities within the 51 52 region. To address this gap, we carried out a scoping review to assimilate knowledge in this 53 area that supports evidence-based policy consideration and stimulates future research in this 54 field in SSA.

We, therefore systematically conducted a scoping review of published qualitative, quantitative and mixed methods literature to explore the COVID-19 impact on DM outcomes and care in SSA. Our scoping review aimed to: (i) identify and characterise impact of COVID-19 infection on clinical outcomes of DM; (ii) describe DM care aspects that were impacted by the COVID-19 pandemic; and (iii) identify existing gaps in knowledge and research.

60 Methods

61 Study design

We report our scoping review in line with the Preferred Reporting Items for Systematic Reviews and Meta-analyses extension for Scoping Reviews (PRISMA-ScR) (S1 PRISMA-ScR Checklist). The initial protocol for this scoping review is reposited with Open Science Framework [https://doi.org/10.17605/OSF.IO/9JCKF].

66 Data sources and search strategy

67 We searched ten electronic databases, i.e., PubMed, Web of Science, Cumulative Index to Nursing and Allied Health Literature (CINAHL), African Index Medicus, Google Scholar, 68 69 Cochrane Library, Scopus, Science Direct, Education Resource Information Centre (ERIC) and Embase. We defined our search strategy guided by the SPIDER (Sample population, 70 71 Phenomenon of Interest, Design, Evaluation and Research type) framework as outlined by 72 Cooke et al. [10] to identify relevant literature from qualitative and mixed methods studies. 73 Additionally, to capture relevant literature from quantitative studies, we enriched our search 74 strategy by incorporating appropriate elements of the PICO (Population, Intervention, 75 Comparison and Outcome) framework [11]. The detailed search strategy applied to all citation 76 databases with their respective search strings is provided as supplementary material (S2 77 Search strategy). A search across all databases was initially conducted in May 2022 and later 78 updated using the same search strategy in March 2023 to include any relevant records published between the two periods. This also opened up possibilities for including studies with 79 data on various 'waves' of COVID-19 infection and emerging interventions as the pandemic 80 progressed. All retrieved records were merged into a single MS[®] Excel file for subsequent 81 removal of duplicate records and screening. 82

83 Selection criteria

The retrieved records were screened for eligibility through two stages, i.e., an initial review of article title and abstract and a subsequent full-text review of articles to be considered in final inclusion. An initial screening for the title and abstract was independently conducted by WS

medRxiv preprint doi: https://doi.org/10.1101/2024.04.10.24305598; this version posted April 13, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

and AMG and reviewed by SB, who also resolved any disagreements in screening decisions.

88 The same approach was applied for full-text screening. We defined agreement as a matching

89 decision independently held by the reviewers involved in the screening process.

The inclusion criteria were (i) articles from any country listed under SSA by the World Bank in 2021 [12], (ii) articles focusing on or concerning DM and COVID-19, (ii) peer-reviewed articles and reports and (iv) published from 01 January 2020 – 22 March 2023. The exclusion criteria were (i) no full-text availability, (ii) articles not published in the English language, (iii) nonhuman studies, (iv) reviews, (v) articles with irrelevant scope, (vi) duplicate articles, and (vii) articles published as multicountry studies involving countries outside SSA but without disaggregation of country-specific data (Fig 1).

97 Data extraction and management

Data variables of interest from the selected articles were extracted and charted in the extraction form. The data extraction form was developed by WS and reviewed by AMG, SB, and SM. It was then tested with two randomly selected articles from each set of quantitative, qualitative, and mixed methods studies for appropriateness. Appropriate revisions were made and continuously refined and updated throughout the data extraction process. Data extraction and charting were conducted by WS and independently reviewed by AMG and SB during the extraction and charting phase.

105 Data synthesis

106 We used an inductive thematic approach to synthesise and collate findings of qualitative and 107 mixed-methods studies and open-ended results of quantitative studies.

We used SPSS[®] version 27.0 (IBM Corp, Armonk: New York) to summarise findings from quantitative studies as mean (SD), range (minimum and maximum), proportions and frequencies, where appropriate. Due to the variability in methodological designs of interventions and outcome measures across studies, a meta-analysis was not performed.

112 Results

113 Selection and characteristics of included studies

- A total of 360 unique records were retrieved from database searches, 42 of which were eligible for final inclusion (Fig 1). Inter-reviewer reliability analysis using the Cohen's kappa showed substantial agreement between reviewers at title and abstract screening (k=0.626, p<0.01), and moderate agreement at full-text screening (k=0.545, p<0.01). The detailed description of
- information of the included studies is shown in Table 1.
- 119 The included studies were all observational but dominated by cross-sectional design (69%), 120 with sample sizes ranging from 18 [13] to 3,460,932 [14]. The studies were predominantly 121 retrospective (66.7%) and published between 2021 and 2022 (85.7%). The majority originated 122 in South Africa (40.5%) and were mainly hospital-based (83.3%) and employed quantitative 123 methods (90.4%). The extracted data variables were, DM prevalence among COVID-19 cases, 124 outcomes of DM related to COVID-19 and their predictors, patient-related health management 125 aspects, DM care service delivery aspects, and organisation of DM care related to the 126 pandemic.
- 127
- 128
- 129

130 Table 1: extraction of data from included studies.

Study	Study design	Location and period (study timeline)	Sample	Phenomenon studied/intervent ion	Evaluation / outcome	Key findings
Mash RJ, et al. [15]	Observational cross- sectional study	rural & urban district hospitals, South Africa March 2020 - June 2020 (Retrospective)	1,376 patients admitted with COVID- 19	 Prevalence of comorbidities Predictors of mortality and length of hospitalisation 	 Proportion Odds ratio 	 1. 25.2% had diabetes (20.3% among rural) Type 2 diabetes (AOR 1.84, 1.24 - 2.73, 95%CI) was independently associated with a higher risk of death. 73.2% (n=272) had uncontrolled diabetes (HbA1c>8%), 78.6% from rural hospitals
Dave JA, et al. [16]	Observational cohort	rural & urban district hospitals, western Cape, South Africa March 2020 - July 2020 (Retrospective)	9,305 persons with diabetes diagnosed with COVID- 19	 Prevalence of new- onset diabetes Predictors of hospitalization and death 	 Proportion Odds ratio 	 11.3% of the diabetes cases were newly diagnosed during the COVID 19 episode. Diabetes had a high risk for COVID 19 hospital admission (OR:3.73, 95%CI 3.53,3.94) and mortality (OR:3.01,95%CI: 2.76,3.28) Insulin use was associated with increased risk for hospitalisation (OR:1.39, 95% CI:1.24,1.57) and mortality (OR:1.49, 95% CI:1.27,1.74) Metformin was associated with reduced risk for hospitalisation (OR 0.662, 95% CI:0.55,0.71) and mortality (OR 0.77, 95% CI:0.64;0.92) Being male increased risk of COVIE

						19 hospitalisation (OR 1.41, 95%CI: 1.29,1.54) and mortality (OR 1.70, 95%CI: 1.51, 1.92) • Age per 5-year interval was
						associated with increased risk of COVID-19 hospitalisation (OR 1.15, 95%CI: 1.13,1.17) and mortality (OR 1.33, 95%CI: 1.30,1.37)
Van Hoving DJ, et al.	Observational Cohort	Rural and urban hospitals in South Africa	261 hospitalised patients	Prevalence of comorbiditiesProportion of	 Proportion 	 Diabetes (19.2%) was among the common comorbidities in the admitted patients.
[17]	April 2020 - June 2020 (Retrospective)	admitted for COVID-19 investigatio n	OVID-19 persons with vestigatio diabetes		 37.5% of deaths occurred in persons with diabetes 	
Ratshikho Observational pha E. et cross-	South Africa health	 Prevalence of comorbidities 	 Proportion Odds ratio 	 27.6% of COVID-19 cases had diabetes. 		
al. [18]		 Predictors of COVID-19 severity 		 comorbid diabetes (aOR: 1.3, 95%CI 1.2-1.5) was associated with a higher risk for disease severity. 		
Claassen N, et al.	Observational cross-	Urban hospital in Cape Town,	Urban hospital 568 • characteri in Cape Town, admitted survivors South Africa patients deceased with 19 hospita April 2020 - confirmed patients	 characteristics of survivors and 	vivors and • Odds ratio eased COVID- hospitalised ients	 51% of deaths occurred in patients with diabetes.
[19]	sectional study	South Africa April 2020 - August 2020		19 hospitalised		 Diabetes was associated with a higher risk of death (OR 2.7, 95% CI: 1.8 - 3.9)
		, agast LoLo	0,110 0012			 19% of deaths in patients with diabetes were new onset
Abraha HE, et al.	Observational cohort	ort hospitals in PCR	2,617 RT- PCR positive	CR positive COVID-19 cases • COVID-19 • Predictors of admitted mortality	ProportionRelative risk	 3.1% of all cases and 18.4% of severe cases had comorbid diabetes.
[20]		Northern Ethiopia May 2020 -	coviD-19 admitted patients			 Diabetes was associated with higher in-hospital mortality among COVID- 19 patients (uRR: 7.73, 95% CI:

		October 2020 (Retrospective)				2.58-23.12
Kaswa R, et al. [21]	Observational cross- sectional study	Rural hospital, Eastern Cape South Africa March 2020 - July 2020 (Retrospective)	242 Hospitalised adult (>=18years) with laboratory- confirmed COVID-19	 Characteristics of clinical outcomes 	 Proportion of comorbidity 	 Diabetes occurred in 36.8% of the cases Diabetes was the commonest comorbidity associated with higher mortality
Mbarga NF, et al. [22]	Observational cohort	Urban hospitals in Cameroon April 2020 - July 2020 (Prospective)	313 Patients admitted with suspected or confirmed COVID-19	 Clinical characteristics of cases Predictors of COVID-19 severity 	ProportionOdds ratio	 5.8% of cases had diabetes Diabetes was associated with increased COVID-19 severity (OR: 4.05, 95% CI 1.12,14.15; <i>p=0.01</i>)
Kwaghe VG, et al. [23]	Observational cross- sectional study	Urban hospital in Abuja, Nigeria March 2020 June 2020 (Retrospective)	200 admitted COVID-19 patients	 Characteristics of cases 	 Proportion 	 18.5% of the cases had diabetes
Leulsege d TW, et al. [24]	Observational case-control	Urban hospital in Ethiopia June 2020 - September 2020 (Retrospective)	COVID-19 admitted patients Case =49 (death) Controls = 98 (recovered)	 Predictors of clinical outcomes 	ProportionOdds ratio	 Having diabetes was associated with higher death outcomes than those with no diabetes (53.3% vs 46.7%, <i>p=0.001</i>) Diabetes patients exhibited higher odds of dying compared to those with no diabetes (AOR:3.26, 95% CI:1.35,7.87), <i>p=<0.01</i>.

Brey Z, et al. [25]	Observational cross-	Urban community	2,500 community	 Home delivery of medication for abrania diagona 	EffectivenessChallenges and	 46.2% of the delivery target was achieved
study	sectional study	setting in Cape Town, South Africa (Retrospective)	health workers	chronic disease patients	threats	 The intervention was affected by incomplete, outdated and missing patient records and failure to reach registered phone contacts.
						 Perceived opportunities were improved relationships of community health workers with linkage facilities and improved risk factor tracking.
						 Perceived threats were stigma associated with home delivery
HK, et al. c [26] s	Observational cross- sectional study	Rural and urban hospitals in Ethiopia August 2020 - September 2020 (Prospective)	type 2	adherence to exercise	 Proportion Odds ratio 	 26.4% only adhered to physical exercise recommendations.
						 Rural residence was associated with higher odds of adherence to physical exercise recommendations (AOR: 1.95, 95% CI: 1.16,3.27, p<0.05)
						 Being female was associated with higher odds of physical exercise adherence (AOR: 1.86, 95%CI, 1.27- 2.72, p<0.01)
Bepouka BI, et al.	Observational cohort	Urban hospital in Kinshasa,	141 hospitalised	Characteristics of cases	ProportionSurvival rate	 17% of COVID-19 hospitalised patients had diabetes.
[27]		Democratic Republic of Congo	oublic of with RT-PCR	 Predictors of survival and mortality 		 Patients with diabetes had reduced COVID-19 survival, <i>p=0.015</i>
		March 2020 - June 2020 (Retrospective)				

Boulle, et al. [14]	Observational cohort	Rural and urban hospitals in West Cape Province, South Africa March 2020 - June 2020 (Retrospective)	3,460,932 patients with PCR- confirmed COVID-19	 Predictors of COVID-19 death 	 Hazard ratio 	■ Diabetes was associated with COVID- 19 death with the risk of death increasing with higher HbA1c values: <7% (HR 1.44, 95% CI: 1.06-1.96, p=0.02), 7%<9% (HR 1.81, CI:1.39- 2.35, $p<0.001$), ≥9% (HR 1.60, CI: 1.27-2.0, $p<0.001$) all vs those without diabetes.
Poaty H, et al. [28]	Observational cross- sectional study	Urban hospital in The Congo March 2020 - August 2020 (Retrospective)	30 patients with pre- existing diabetes infected with SARS- CoV-2	 Characteristics of COVID-19 death 	 Proportion 	 Diabetes patients with COVID-19 had a mortality rate of 36.7%
Ikram AS & Pillay S. [29]	Observational cohort	Urban hospital in KwaZulu Natal, South Africa June 2020 - September 2020 (Retrospective)	236 hospitalised patients >13years with laboratory- confirmed SARS-CoV 2 infection	 Predictors of mortality 	 Proportion Odds ratio 	 50% of those admitted with hyperglycaemia having no history of diabetes died 26.6% of those living with diabetes (pre-existing or newly diagnosed) died. patients presenting with admission hyperglycaemia had higher odds of death (OR:4.24, 95%CI:1.12-16) Patients with diabetes had higher odds of dying compared to those with diabetes (OR: 1.97, 95% CI:0.99- 3.89)
Leulsege d TW, et al. [30]	Observational cross- sectional study	Urban hospital in Ethiopia June 2020 - August 2020	admitted	 Characteristics of cases Predictors of COVID-19 severity 	ProportionOdds ratio	 16.6% of cases had diabetes. Diabetes had higher odds of COVID- 19 severity than those who had no diabetes (AOR: 3.93, 95% CI:

		(Prospective)	COVID-19			1.96,7.85)29.9% of the severe cases had diabetes
Leulsege d TW., et al. [31]	Observational cohort	Rural and urban hospitals in Ethiopia July 2020 - September 2020 (Prospective)	1,345 patients admitted with RT-PCR confirmed COVID-19	 Characteristics of cases Predictors of recovery 	ProportionOdds ratio	 13.7% of cases had diabetes. Diabetes had a higher median duration of recovery (15 days) than those with no diabetes. Having diabetes was associated with 45.1% (p=0.005) lower odds of achieving clinical recovery compared to those without diabetes (AOR=0.549, 95% CI:0.337,0.894; p=<0.05).
Adjei P, et al. [32]	Observational cross- sectional study	Urban hospital in Accra, Ghana April 2020 - June 2020 (Retrospective)	50 hospital- admitted COVID-19 diagnosed patients	 Clinical characteristics 	 Proportion 	 42% of cases had diabetes. 90.5% of those with complications had diabetes. 23.8% of those with diabetes died
van der Westhuiz en JN, et al. [33]	Observational cross- sectional study	Rural hospital in Western Cape Province, South Africa June 2020 August 2020 (Retrospective)	1,447 patients admitted with confirmed COVID-19 and pre- existing or newly diagnosed diabetes	 Characteristics of cases Predictors of death 	ProportionOdds ratio	 86.5% had HbA1c >7%, median (IQR): 10% (8-12%). Being male (OR=2.05, 95%CI=1.07,3.93) and on insulin (OR=2.25, 95% CI=1.05,4.85) was associated with higher odds of death
Delobelle AP, et al. [34]	Observational cross- sectional study	Urban primary settings in South Africa	Facility workers = 09 Community-	 Appraisal of care and management 	 Impact 	 Cancellation of routine non- communicable disease clinic services and chronic patient 'clubs'

		October 2020 - November 2020	based workers =			 Reduced availability of healthcare workforce
		(Prospective)	11 Patient with type 2			 Introduction of clinic booking for clinics that improved clinic congestion.
			diabetes and other NCD = 08			 Home delivery of medication using community health workers was adopted to decongest health facilities.
						 Improved performance of community health workforce
						 Patient stigma associated with patient home visits and deliveries.
						 General increase in workload among the health workforce.
						 General decrease in the number of NCD patients visiting the facility compared with prior to COVID-19 period.
						 Higher proportion of patients with uncontrolled diabetes.
Crankson S, et al.	Observational cross-	cross- in Ghana	2,334 PCR confirmed	 Characteristics of cases 	ProportionCorrelation	 Comorbid diabetes occurred in 2% of patients
[35]	sectional study	March 2020 - August 2021	COVID-19 patients	 Predictors of long COVID and hospitalisation 		 Long COVID occurred in 4.3% of persons with diabetes
		(Retrospective)				 Diabetes was associated with longer LOS (B=1.37, 95% CI=0.99-1.88, p <0.05)
Ephraim RKD, et al. [36]	Observational cross- sectional	Rural and urban hospitals in Cape Coast,	157 diabetes patients	 Characteristics of cases 	 Proportion 	 57.3% of patients had known complications including retinopathy (36.3%)
	study	Ghana	aged 20 years and			 Family, friends and close relatives

		June 2020 - September 2020 (Prospective)	over			were the popular form of social support (79.6%) for diabetes patients, followed by diabetes teams (61.2%) fellow patients with diabetes (61.2%), social media (56.7%) and work/school mates (52.9%)
						 Reduced frequency of meals was reported in 42% of the patients
Habineza Observatio JC, et al. cross- [37] sectional study	sectional	Rural and urban communities in Rwanda June 2020 -	52 young adults with type 1 diabetes	 Pandemic experiences and challenges Coping mechanisms 	 Proportion Experiences 	 80.8% reported a drop in family income; 57.7% reported a reduction in meal frequency; 43.1% reported reduced physical activity
		September 2020 (Prospective)				 Hypoglycaemia was the major acute complication (87.5%)
						 Access to diabetes management supplies during the COVID-19 pandemic did not significantly differ from pre-COVID-19.
						 81.8% increase in patients accessing healthcare by foot.
Baguma S, et al.	Observational cohort	Urban Hospital in Northern	664 hospitalised	 Characteristics of cases 	ProportionOdds ratio	 34.4% of deaths occurred in patients with diabetes.
[38]		Uganda March 2020 - October 2021 (Retrospective)	patients with confirmed COVID-19	 Predictors of mortality 		 Diabetes was associated with higher odds of death compared to those who had no diabetes (AOR=9.014, 95% CI=1.726 - 47.067)
Iroungou BA, et al. [39]	Observational cross- sectional study	Urban hospital in Lebreville, Gabon March 2020 - June 2020	837 COVID- 19 hospitalised patients	 Characteristics of severe COVID-19 	 Proportion 	 16.1% patients with a history of diabetes had severe COVID-19

		(Retrospective)				
Awucha NE, et al. [40]	Observational cross- sectional study	Rural and urban community settings in Nigeria May 2020 - June 2020 (Prospective)	374 persons aged 15 years and older	 Impact on essential medicine access 	Proportion	 28.1% had a known history of diabetes The proportion of patients with difficulty in accessing essential medicines during the COVID-19 pandemic was significantly higher than before the pandemic (29.6% vs 5.6%, p<0.001) 52.2% decrease in hospital visits for
Kaswa RP. & Meel B. [41]	Observational cross- sectional study	Urban hospital in Eastern Cape, South Africa July 2020 - January 2021 (Retrospective)	100 patients who died of COVID-19	 Characteristics of COVID-19 deaths 	Proportion	 medicines 37% of patients had diabetes
Usui R, Kanamori S, Aomori M. & Watabe S. [42]	Observational cross- sectional study	Rural and urban hospitals in Cote d'Ivoire March 2020 - July 2020 (Retrospective)	67 COVID- 19 infected persons	 Comorbidities associated with COVID-19 deaths 	 Proportion 	 45% of COVID-19 deaths occurred in patients with diabetes
Tagoe ET, Nonvigno n J, van Der Meer R,	Observational cross- sectional study	Rural and urban hospitals in Ghana November 2020 - February 2021	18 healthcare professional s and health facility administrato	 COVID-19 impact on diabetes service delivery 	 Impact 	 Themes: high medicine and service costs and medicine shortages (disruption in supply chain, rationing, increased pricing of medicines)

Megiddo I, & Godman B. [13]		(Prospective)	rs			 poor patient information management (substandard anthropometric procedures, increase in records with missing data, misplacement of patient record files)
						 few trained healthcare providers (COVID-19 treatment prioritisation, patient rejection of referrals, high patient load)
						 low healthcare provider motivation (unsupportive management)
						 service organisation challenges (extended patient reviews, clinic overcrowding, increased clinic waiting times)
						 national health policy-related concerns (policy restrictions could not allow flexibility in planning and cost sharing)
Sikhosan a LM, Jassat W & Makatini	Observational cross- sectional study	Rural and urban hospitals in Gauteng, South Africa	1,861 SARS CoV 2 admitted patients	 characteristics of cases 	 Proportion 	 21.6% of cases had diabetes
Z. [43]		March 2020 - March 2021 (Retrospective)				
Elijah MI, et al. [44]	Observational cohort	Rural and urban hospitals in Kenya	1,792 admitted COVID-19 patients	 Predictors of hospitalisation and survival Prevalence of 	ProportionOdds ratio	 5.4% cases had diabetes Diabetes was a significant predictor of ICU admissions (aOR: 3.30, 95%CI: 1.94 - 560, p<0.0001)
		March 2020 - April 2021 (Retrospective)		diabetes comorbidity		 Diabetes was significantly associated with less survival probability compared to those without diabetes

Hardy OY, et al. [45]	Observational cross- sectional study	Urban hospital in Ghana March 2020 - October 2020 (Retrospective)	175 adult patients hospitalised with COVID- 19	 Prevalence of comorbid diabetes Predictors of hospitalisation 	ProportionCorrelation	 36.6% patients had type 2 diabetes No significant difference in COVID-19 severity and duration of hospitalisation between patients with diabetes and those without
Huluka KD, et al. [46]	Observational cross- sectional study	Urban hospital in Addis Ababa, Ethiopia March 2020 - September 2020 (Retrospective)	463 SARS CoV-2 positive patients aged ≥18	 Clinical characteristics of cases 	 Proportion 	 20.7% of cases had diabetes. 33.1% of those who experienced severe COVID-19 had diabetes. 35.8% of COVID-19 deaths had diabetes
Nyasulu SP, et al. [47]	Observational cross- sectional study	Urban hospital in South Africa March 2020 - November 2020 (Prospective)	413 ICU admitted COVID-19 patients aged ≥18	 Characteristics of cases and outcomes 	 Proportion 	 51% of patients had comorbid diabetes. 66% of patients with comorbid diabetes died
Solanki G, et al. [48]	Observational cross- sectional study	Rural and urban communities in South Africa March 2020 - June 2021 (Retrospective)	188,292 private health insurance patients who tested positive for COVID-19	 Risk of hospitalisation 	 Odds ratio 	 Diabetes was associated with high risk for hospitalisation (OR 3.6; 95% CI 3.27 - 3.94)
Diarra M, et al. [49]	Observational cross- sectional study	Rural and urban hospitals in Senegal	67,608 patients	 Clinical characteristics Predictors of mortality 	ProportionRelative risk	 38.2% of cases had diabetes Relative risk for COVID-19 mortality was high in persons with comorbid diabetes (aRR=1.31, 95%CI=0.77-

		March 2020 - October 2020 (Prospective)				2.23, <i>p<0.001</i>)
Tolossa T, et al. [50]	Observational cohort	Urban hospital western Ethiopia September 2020 - June 2021 (Retrospective)	304 severe COVID-19 hospital- admitted patients	 Clinical characteristics Predictors of onset diabetes 	 Proportion Hazard ratio 	 Incidence of diabetes among patients was 14.5%. Overall diabetes incidence rate at the end of follow-up (34 days) was 13.7/1,000 person day's observation (95% CI 10.2, 18.4) Median occurrence of diabetes was 11 days (95% CI: 7, 13) Risk of developing diabetes increased for the first 20 days and was constant thereafter (Kaplan-Meier survival estimate) Predictors of Diabetes included older age >41 years (AHR = 2.54, 95% CI: 1.15, 5.57, compared to <25 years, p=0.02), residing in urban settings (AHR = 2.49, 95% CI: 1.12, 5.52, compared to rural, p=0.02), being admitted within 48 hours of clinical manifestation compared to >48 hours (0.49, 95% CI: 0.23, 0.96 ref.≤48 hrs, p=0.04)
David JN, et al. [51]	Observational cross- sectional study	Rural community in South Africa September 2020 - December 2020 (Prospective)	544 type 2 diabetes patients attending routine care	 Home delivery of medicines 	 Impact of home delivery 	 overall, HDM resulted in 0.46% reduction in HbA1c compared to non-HDM (p<0.01) Patients perceived HDM as timesaving. Patients perceived HDM as reducing exposure to coronavirus infection

Sane HA, et al. [52]	Observational cross- sectional study	Urban hospitals in Addis Ababa, Ethiopia September 2020 - September 2021 (Retrospective)	244 COVID- 19-admitted patients with diagnosed diabetes	 Prevalence of new- onset diabetes Predictors of new- onset diabetes 	 Proportio Odds rat 	
Jassat W, et al. [53]	Observational cross- sectional study	Rural and urban hospital in South Africa November 2020 - June 2021 (Prospective)	3,217 COVID-19 hospitalised patients	 Prevalence of diabetes 	 Proportion 	 26.6% had self-reported diabetes 7.3% of diabetes case were new diagnoses
Mengist B, Animut Z & Tolossa T. [54]	Observational cohort	Rural and urban hospitals in Northwest Ethiopia March 2020 - March 2021 (Retrospective)	552 COVID- 19 hospitalised patients	 Prevalence of diabetes Predictors of mortality 	 Proportion Hazard r 	

133 **Prevalence and incidence of DM among COVID-19 cases**

- 134 As shown in Table 2, comorbidity of DM and COVID-19 was very prevalent, with up to 51%
- pre-existing cases reported, and a mean (SD) figure of 23% (±13.8). Prevalence as high as
- 136 31.1% was also reported for new-onset DM among COVID-19 hospitalised cases, and a high
- incidence rate of 37/1,000 person days [50].

138 Table 2: Studies reporting on different COVID-19 outcome variables.

Outcome variable	Range or value	Study reference
Comorbidity of DM and COVID-19		
Incidence of DM in COVID-19 cases (per 1,000-person day's observation)	13.7	[50]
Prevalence of new-onset DM among COVID-19 cases	7.3% - 31.1%	[16,50,52,53]
Prevalence of DM among COVID-19 cases*	2.0% - 51.0%	[15–18,20–23,30– 32,35,38,40,43,45–47,49,53– 56]
COVID-19-related outcomes in DM patients		
Proportion of DM deaths attributed to COVID-19	5.3% - 66%	[17,19,24,28,29,32,33,42,46,47]
DM risk for COVID-19 mortality (odds ratio, 95% CI)**	1.30 - 9.0	[14–16,19,20,24,38,49,54]
Proportion of DM hospitalisation attributed to COVID- 19***	17%	[27]
DM risk for COVID-19 hospitalisation (odds ratio, 95% CI)**	3.30 - 3.73	[16,35,48]
Proportion of DM-related COVID-19 severity	16.1% - 33.1%	[20,30,39,46]
DM risk for COVID-19 severity (odds ratio, 95% CI)**	1.30 - 4.05	[18,22,30]
Duration of hospitalisation of DM patients with COVID-19	4.7 - 15.0 days	[22,31]
Proportion of PLWD experiencing COVID-19 complications	4.3% - 90.5%	[32,35]
Predictors of COVID-19-related clinical outcomes in DM		
Predictors of COVID-19 mortality in PLWD (odds ratio, 95% CI)		
Age (per 5-year ageing interval)	1.13 - 1.37	[16]
Gender (Male)	1.50 - 2.04	[16,18,33]
Medication (Insulin)	1.49 - 2.25	[16,33]
Glycaemic control (HbA1c≥7%) Predictors of COVID-19 hospitalisation in PLWD (odds ratio, 95% CI)	1.39 - 1.60	[14]
Age (per 5-year ageing interval)	1.13 - 1.17	[16]
Gender (Male)	1.29 - 1.54	[16]
Medication (Insulin)	1.24 - 1.57	[16]
Predictors of new-onset DM in COVID-19 patients (odds ratio, 95% CI)		
Age (>41years)	1.15 - 5.57	[50]

Gender (Male)	1.2 - 7.1	[52]
Residence (Urban)	1.12 - 5.52	[50]

*(mean=23% ±13.8%); ** compared to those with no diabetes; *** figure reported from single studies
 without confidence interval; HbA1c: Glycated Haemoglobin; CI: confidence interval

140 without confidence interval; HDA1C: Glycated Haemoglobin; CI: confidence interv

141 COVID-19-related outcomes of DM and their predictors

As shown in Table 2, mortality, hospitalisation, severity, and complications were the major 142 outcomes related to COVID-19 in DM. The proportions of COVID-19-attributed mortality 143 [17,19,24,28,29,32,33,42,46,47], hospitalisation [27], and severity [20,30,39,46] for PLWD 144 were noticeable to high across the studies. The major predictors of COVID-19-related mortality 145 and hospitalisation in PLWD were age, gender, DM treatment, and glycaemic control. For 146 147 every 5-year age interval , being male, insulin treatment and HbA1c \geq 7.0% were independently associated with higher odds for both COVID-19-related mortality [14,16,18,33] 148 and hospitalisation [16]. On the other hand, new-onset DM, defined as DM diagnosed in 149 hospitalised COVID-19 patients with prior normoglycaemia, was associated with age over 41 150 151 years, male gender and urban residence [50,52].

152 Impact of the COVID-19 pandemic on DM care

Using an inductive thematic approach, we constructed three major themes from qualitative, mixed methods studies and open-ended quantitative results. The findings were thematically categorised as patient-related health management challenges, DM care service delivery challenges, and reorganisation of DM care delivery (S3 Themes). Table 3 presents a summary

157 of studies that reported on each theme category.

159

158 Table 3: Studies reporting COVID-19 pandemic's impact on various aspects of DM care

management.		
Major theme	Sub-theme	Reference
Patient-related health management challenges	Self-management challenges	[15,33,36,37]
5 5	Affordability challenges	[13,37]
	Health service accessibility challenges	[13,37,51]
DM care service delivery	Health workforce challenges	[13,34]

challenges	Healthcare infrastructure challenges	[13]
	Health information challenges	[25]
	Medicines and medical supplies	[13]
Re-organisation of DM	Patient-level reorganisation of care access	[25,34,51]
care delivery	Clinic-level reorganisation of management	[34]
	Community-level re-organisation of community health worker services	[25,34,51]

160

161 **Patient-related health management challenges**

162 The three sub-themes that emerged under patient-related health management challenges were, self-management challenges, affordability challenges, and health service accessibility 163 challenges. Self-management challenges reported among PLWD during the COVID-19 164 pandemic include reduced daily meal frequency [36,37], inadequate physical activity [26,37], 165 166 and worsening glycaemic control [15,33,34]. Affordability challenges were related to increased costs of medicines [13] and reduced individual or household income [37]. PLWD also 167 experienced health service accessibility challenges reported as increased clinic waiting time 168 [13] and limited transport means to healthcare facilities [16,51]. Type 1 DM-specific challenges 169 were limited food access, reduced affordability of living costs and accessibility of DM care 170 services [37]. 171

172 **DM care service delivery challenges**

Four sub-themes emerged under DM care delivery challenges, namely, health workforce challenges [13,34], healthcare infrastructure challenges [13,34], health information management challenges [13,25], and medicines and medical supplies [13]. Health workforce challenges were characterised by health workers' hesitancy towards work and the limited number of available DM specialists. This resulted in fewer active health workers at health facilities that increased workload [13,34]. At the same time, inadequate healthcare infrastructure limited available physical clinic space due to overwhelming patient numbers

180 [13,34]. The COVID-19 pandemic was also characterised by poor management of health information and medical records attributed to the heavy workload of health workers and the 181 fear of the risk of cross-infection while collecting patient data [13,25]. Additionally, the 182 183 pandemic worsened shortages of medicine and medical supplies at health facilities [13].

184

Reorganisation of DM care delivery

Four sub-themes, as shown in Table 3, were categorised under the reorganisation of DM care 185 delivery as a result of the pandemic, namely, patient-level reorganisation of care access 186 [25,34,51], clinic-level reorganisation in management [34], and community-level reorganisation 187 188 of community health worker services [25,34,51]. The reorganisation of DM care delivery was in response to the challenges patients and healthcare facilities faced in accessing and 189 190 delivering DM care services. The interventions included delivery of patient medicines to their homes through their community health workers [25,34,51], which addressed the risk of 191 infection and mitigated the health facility accessibility challenges faced by patients during 192 lockdowns [34]. At clinic level, routine non-communicable disease 'walk-in' clinics were 193 replaced with a clinic booking system to manage patient appointments and control clinic 194 patient numbers [34]. At the community level, community health workers were empowered to 195 monitor and follow up on patients with non-communicable diseases, including DM, aimed at 196 197 reducing the workload of health facility staff [25,34,51].

198 Discussion

199 Our scoping review of 42 articles highlighted COVID-19's impact on DM outcomes and care in SSA. It also lays down existing gaps in knowledge and research. To the best of our knowledge, 200 this is the first systematic scoping review in SSA to investigate outcomes of DM with COVID-19 201 202 and the pandemic's effect on DM care. Our results show an inequitable representation in DM 203 research in countries of SSA, with research outputs mainly contributed by South Africa.

204 Overall, our scoping review shows that COVID-19 increased the risk of mortality and hospitalisation in PLWD, which were associated with older age, poor glycaemic control, insulin 205 use and being male. These risk factors have also been reported in the US [57], China [58] and 206 207 the UK [59]. We observed that PLWD had up to nine times higher risk of death, more than 208 three times higher risk of hospitalisation and up to four times higher risk for severity due to COVID-19 compared to those without DM. Notably, similar findings but with varying levels of 209 210 mortality and morbidity have been reported in China and the USA by Kumar et al. [60]. They 211 revealed higher odds of COVID-19-related mortality (2.16, 95% CI: 1.74-2.65) and severity (2.75, 95% CI: 2.09-3.62) in PLWD than those without DM. COVID-19's impact on DM clinical 212 213 outcomes in SSA is significant and consistent with reports from the World Health Organization 214 that indicate COVID-19 is deadlier in PLWD in Africa due to the region's characteristic poor glycaemic control [61,62]. Additionally, COVID-19 was associated with an increased risk of 215 216 developing new-onset DM, especially among hospitalised COVID cases over 41 years, males and urban residents. We observed a DM incident rate of 13.7/1,000 person-days (the 217 equivalent of 5/1,000 person-years) and a prevalence of new-onset DM of up to 31% among 218 219 COVID-19 cases in SSA. This rate is, however, considerably lower than what has been reported in the US (23-83/1,000 person-years) [63], England (37.2/1,000 person-years) [64] and China 220 221 (13.5/1,000 person-years) [65]. Whereas the variation in diabetes incidence among COVID-19 222 patients in SSA may be due to underreporting, COVID-19's epidemiological threat to the 223 growing burden of DM in SSA needs to be tracked.

As a pandemic, COVID-19 also impacted DM indirectly by causing disruptions in patient selfmanagement routines and delivery of DM services in SSA. As our scoping review highlights, this impact manifested through challenges posed by instituted COVID-19 restrictions. For PLWD, we observe that this negatively affected their dietary intake and engagement in physical activity and limited their access to healthcare. The experience in SSA was however, in marked contrast with reports from India [66] and the UK [67], which showed no notable negative COVID-19

230 impact on access to essential services among PLWD. This stark variation may be explained by 231 the different countries' approaches to containing COVID-19, which in most SSA countries mainly targeted geographical containment, closure of non-essential services and prohibition of 232 233 gatherings [68]. These unprecedented approaches created blockades to accessibility and 234 affordability of various services, including health and social services [69–71]. On other grounds, there was a considerable shortage of health workforce, physical infrastructure and 235 236 severe shortages of DM medicine and medical supplies. Whereas we acknowledge the preexistence of challenges in the health workforce, healthcare infrastructure and medical supplies 237 238 in SSA before the COVID-19 pandemic, the magnitude might have worsened during the 239 pandemic due to a shift in healthcare resource prioritisation toward COVID-19 [72][73][74][73,75]. 240

Interestingly, we also observed from our scoping review that the pandemic presented some 241 242 opportunities for DM care innovation. For instance, the delivery of medicine to patient homes implemented in South Africa reportedly reduced the risk of COVID-19 infection among PLWD, 243 mitigated DM care access challenges and ensured continued chronic patient follow-up [40]. 244 245 Home delivery of medicine has also been reported to improve treatment adherence among chronic disease patients in Rwanda, which shows its feasibility in other SSA countries [76]. The 246 247 pandemic, as demonstrated in South Africa, has also evidenced the value of integrating chronic 248 non-communicable disease prevention and care in the services of community health workers. Additionally, clinic booking systems introduced to replace walk-in clinics in public health centres 249 were found to mitigate clinic overcrowding, reduce clinic waiting time, and provide better 250 251 doctor-to-patient time. These changes in the reorganisation of healthcare service delivery proved vital in addressing many challenges posed by the COVID-19 pandemic and offer lessons 252 253 to policy and practice in future planning.

254 Gaps in knowledge and research

255 In our scoping review, we note various gaps in knowledge that can inform subsequent research. Firstly, there is a gap in the published literature on the use of guidelines for 256 managing COVID-19 and DM in SSA countries, which would help evaluate their appropriateness 257 258 for future similar occurrences. Secondly, the studies in our scoping review did not report on 259 vaccine uptake or how the different 'waves' of COVID-19 infection influenced COVID-19 260 outcomes among PLWD. This would provide an understanding of the outcomes of PLWD across 261 evolving pandemic dynamics and health system interventions. Exploiting research opportunities to address such gaps in knowledge can provide further and comprehensive understanding to 262 263 shape appropriate post-pandemic DM care approaches and health system preparedness in 264 addressing chronic care vulnerabilities during possible future pandemics.

265 Limitations

While this scoping review provides reliable information by scoping various research types and 266 267 sources, there are some limitations. Firstly, our scoping review only included articles published 268 in English. This may have limited studies published from non-English speaking countries within SSA; therefore, some relevant studies may have been missed. However, considering what was 269 270 retrieved from most SSA countries, we predict this number to be likely minimal. Secondly, the 271 included studies were dominated by three countries, which may limit the generalisation of 272 findings to SSA. Thirdly, the studies were mainly conducted in the initial phase of the pandemic 273 in 2020, indicating that changes experienced after that may render some findings unrepresentative of the post-2020 dynamics including the impact of emerging COVID-19 274 variants. Moreover, the limited disaggregation of data by studies in our scoping review, 275 276 especially age, gender and type of DM, limited the drawing of specific conclusions and analyses. Finally, we only included peer-reviewed literature, which may have excluded some 277 278 valuable literature sources such as manuscripts, institutional reports and archives.

Nevertheless, this scoping review provided critical information and insights on how COVID-19
 impacted PLWD and healthcare systems in SSA.

281 **Conclusions**

- 282 COVID-19 increased mortality and morbidity among PLWD and the occurrence of DM. In
- addition, the pandemic worsened DM self-care and DM service delivery generally. Therefore,
- further research in SSA is needed to understand the disease syndemism of pandemics such as
- 285 COVID-19 and DM to inform future management strategies and policy considerations.

287 **References**

288	1.	Wang H, Paulson KR, Pease SA, Watson S, Comfort H, Zheng P, et al. Estimating excess
289		mortality due to the COVID-19 pandemic: a systematic analysis of COVID-19-related
290		mortality, 2020–21. Lancet. 2022;399: 1513–1536. doi:10.1016/S0140-6736(21)02796-3
291	2.	Post LA, Argaw ST, Jones C, Moss CB, Resnick D, Singh LN, et al. A SARS-CoV-2
292		Surveillance System in Sub-Saharan Africa: Modeling Study for Persistence and
293		Transmission to Inform Policy. J Med Internet Res. 2020;22: e24248. doi:10.2196/24248
294	3.	Fu Y, Hu L, Ren H-W, Zuo Y, Chen S, Zhang Q-S, et al. Prognostic Factors for COVID-19
295		Hospitalized Patients with Preexisting Type 2 Diabetes. Merlotti D, editor. Int J
296		Endocrinol. 2022;2022: 1–13. doi:10.1155/2022/9322332
297	4.	Hayden MR. An Immediate and Long-Term Complication of COVID-19 May Be Type 2
298		Diabetes Mellitus: The Central Role of β -Cell Dysfunction, Apoptosis and Exploration of
299		Possible Mechanisms. Cells. 2020;9: 2475. doi:10.3390/cells9112475
300	5.	Landstra CP, de Koning EJP. COVID-19 and Diabetes: Understanding the
301		Interrelationship and Risks for a Severe Course. Front Endocrinol (Lausanne). 2021;12.
302		doi:10.3389/fendo.2021.649525
303	6.	Filip R, Gheorghita Puscaselu R, Anchidin-Norocel L, Dimian M, Savage WK. Global
304		Challenges to Public Health Care Systems during the COVID-19 Pandemic: A Review of
305		Pandemic Measures and Problems. J Pers Med. 2022;12: 1295.
306		doi:10.3390/jpm12081295
307	7.	Topkar V. Interactions Between Diabetes And Covid-19: A Scoping Review. Yale
308		University. 2022. Available:
309		https://elischolar.library.yale.edu/ysphtdl/2207?utm_source=elischolar.library.yale.edu%
310		2Fysphtdl%2F2207&utm_medium=PDF&utm_campaign=PDFCoverPages

- 8. Khunti K, Aroda VR, Aschner P, Chan JCN, Del Prato S, Hambling CE, et al. The impact
- 312 of the COVID-19 pandemic on diabetes services: planning for a global recovery. Lancet
- 313 Diabetes Endocrinol. 2022;10: 890–900. doi:10.1016/S2213-8587(22)00278-9
- 314 9. IDF. IDF Diabetes Atlas 10th Edition. Brussels; 2021.
- 10. Cooke A, Smith D, Booth A. Beyond PICO. Qual Health Res. 2012;22: 1435–1443.
- 316 doi:10.1177/1049732312452938
- Richardson S, Wilson MC, Nishikawa J, Hayward RS. The well-built clinical question: a
 key to evidence-based decisions. ACP J Club. 1995;123.
- 12. World Bank. FOCUS: Sub-Saharan Africa. 2021 [cited 22 Feb 2024]. Available:

320 https://openknowledge.worldbank.org/pages/focus-sub-saharan-africa

- 13. Tagoe ET, Nonvignon J, van Der Meer R, Megiddo I, Godman B. Challenges to the
- 322 delivery of clinical diabetes services in Ghana created by the COVID-19 pandemic. J

Health Serv Res Policy. 2023;28: 58–65. doi:10.1177/13558196221111708

- 14. Boulle A, Davies M-A, Hussey H, Ismail M, Morden E, Vundle Z, et al. Risk Factors for
- 325 Coronavirus Disease 2019 (COVID-19) Death in a Population Cohort Study from the
- Western Cape Province, South Africa. Clin Infect Dis. 2021;73: e2005–e2015.
- 327 doi:10.1093/cid/ciaa1198
- 15. Mash RJ, Presence-Vollenhoven M, Adeniji A, Christoffels R, Doubell K, Eksteen L, et al.
- 329 Evaluation of patient characteristics, management and outcomes for COVID-19 at district
- hospitals in the Western Cape, South Africa: descriptive observational study. BMJ Open.
- 331 2021;11: e047016. doi:10.1136/bmjopen-2020-047016
- 16. Dave JA, Tamuhla T, Tiffin N, Levitt NS, Ross IL, Toet W, et al. Risk factors for COVID19 hospitalisation and death in people living with diabetes: A virtual cohort study from
 the Western Cape Province, South Africa. Diabetes Res Clin Pract. 2021;177: 108925.

335 doi:10.1016/j.diabres.2021.108925

336	17.	van Hoving DJ, Hattingh N, Pillay SK, Lockey T, McAlpine DJ, Nieuwenhuys K, et al.
337		Demographics and clinical characteristics of hospitalised patients under investigation for
338		COVID-19 with an initial negative SARS-CoV-2 PCR test result. African J Emerg Med.
339		2021;11: 429–435. doi:10.1016/j.afjem.2021.09.002
340	18.	Ratshikhopha E, Muvhali M, Naicker N, Tlotleng N, Jassat W, Singh T. Disease Severity
341		and Comorbidities among Healthcare Worker COVID-19 Admissions in South Africa: A
342		Retrospective Analysis. Int J Environ Res Public Health. 2022;19: 5519.
343		doi:10.3390/ijerph19095519
344	19.	Claassen N, van Wyk G, van Staden S, Basson MMD. Experiencing COVID-19 at a large
345		district level hospital in Cape Town: A retrospective analysis of the first wave. South
346		African J Infect Dis. 2022;37. doi:10.4102/sajid.v37i1.317
347	20.	Abraha HE, Gessesse Z, Gebrecherkos T, Kebede Y, Weldegiargis AW, Tequare MH, et
348		al. Clinical features and risk factors associated with morbidity and mortality among
349		patients with COVID-19 in northern Ethiopia. Int J Infect Dis. 2021;105: 776–783.
350		doi:10.1016/j.ijid.2021.03.037
351	21.	Kaswa R, Yogeswaran P, Cawe B. Clinical outcomes of hospitalised COVID-19 patients at
352		Mthatha Regional Hospital, Eastern Cape, South Africa: A retrospective study. South
353		African Fam Pract. 2021;63. doi:10.4102/safp.v63i1.5253
354	22.	Fouda Mbarga N, Epee E, Mbarga M, Ouamba P, Nanda H, Nkengni A, et al. Clinical
355		profile and factors associated with COVID-19 in Yaounde, Cameroon: A prospective
356		cohort study. Zivkovic AR, editor. PLoS One. 2021;16: e0251504.
357		doi:10.1371/journal.pone.0251504
358	23.	Kwaghe VG, Habib ZG, Akor AA, Thairu Y, Bawa A, Adebayo FO, et al. Clinical

- 359 characteristics and outcome of the first 200 patients hospitalized with coronavirus
- disease-2019 at a treatment center in Abuja, Nigeria: a retrospective study. Pan Afr Med
- 361 J. 2022;41: 118. doi:10.11604/pamj.2022.41.118.26594
- 362 24. Leulseged TW, Maru EH, Hassen IS, Zewde WC, Chamiso NH, Abebe DS, et al.
- 363 Predictors of death in severe COVID-19 patients at millennium COVID-19 care center in
- 364 Ethiopia: a case-control study. Pan Afr Med J. 2021;38.
- 365 doi:10.11604/pamj.2021.38.351.28831
- 366 25. Brey Z, Mash R, Goliath C, Roman D. Home delivery of medication during Coronavirus
- disease 2019, Cape Town, South Africa: Short report. African J Prim Heal Care Fam Med.
- 368 2020;12. doi:10.4102/phcfm.v12i1.2449
- 369 26. Abate HK, Ferede YM, Mekonnen CK. Adherence to physical exercise recommendations
- among type 2 diabetes patients during the COVID-19 pandemic. Int J Africa Nurs Sci.
- 371 2022;16: 100407. doi:10.1016/j.ijans.2022.100407
- 372 27. Bepouka BI, Mandina M, Makulo JR, Longokolo M, Odio O, Mayasi N, et al. Predictors of
- 373 mortality in COVID-19 patients at Kinshasa University Hospital, Democratic Republic of
- the Congo (from March to June 2020). Pan Afr Med J. 2020;37.
- doi:10.11604/pamj.2020.37.105.25279
- 28. Poaty H, Emergence Poaty G, NDziessi G, Godefroy Ngakeni E, Doukaga Makouka T,
- 377 Soussa Gadoua R, et al. Diabetes and COVID-19 in Congolese patients. Afr Health Sci.
- 378 2021;21: 1100–1106. doi:10.4314/ahs.v21i3.18
- 279 29. Ikram A, Pillay S. Hyperglycaemia, diabetes mellitus and COVID-19 in a tertiary hospital
- in KwaZulu-Natal. J Endocrinol Metab Diabetes South Africa. 2022;27: 32–41.
- 381 doi:10.1080/16089677.2021.1997427
- 382 30. Leulseged TW, Abebe KG, Hassen IS, Maru EH, Zewde WC, Chamiso NW, et al. COVID-

383	19 disease severity	and associated	factors among	Ethiopian	patients:	A study of the
-----	---------------------	----------------	---------------	-----------	-----------	----------------

- 384 millennium COVID-19 care center. Taghizadeh-Hesary F, editor. PLoS One. 2022;17:
- 385 e0262896. doi:10.1371/journal.pone.0262896
- 386 31. Leulseged TW, Hassen IS, Maru EH, Zewsde WC, Chamiso NW, Bayisa AB, et al.
- 387 Characteristics and outcome profile of hospitalized African patients with COVID-19: The
- 388 Ethiopian context. Mossong J, editor. PLoS One. 2021;16: e0259454.
- 389 doi:10.1371/journal.pone.0259454
- 390 32. Adjei P, Afriyie-Mensah J, J. Ganu V, Puplampu P, Opoku-Asare B, Dzefi-Tettey K, et al.
- 391 Clinical characteristics of COVID-19 patients admitted at the Korle-Bu Teaching Hospital,
- 392 Accra, Ghana. Ghana Med J. 2020;54: 33–38. doi:10.4314/gmj.v54i4s.6
- 393 33. Van der Westhuizen J-N, Hussey N, Zietsman M, Salduker N, Manning K, Dave JA, et al.
- Low mortality of people living with diabetes mellitus diagnosed with COVID-19 and
- 395 managed at a field hospital in Western Cape Province, South Africa. South African Med
- 396 J. 2021;111: 961. doi:10.7196/SAMJ.2021.v111i10.15779
- 397 34. Delobelle PA, Abbas M, Datay I, De Sa A, Levitt N, Schouw D, et al. Non-communicable
- disease care and management in two sites of the Cape Town Metro during the first wave
- of COVID-19: A rapid appraisal. African J Prim Heal Care Fam Med. 2022;14.
- 400 doi:10.4102/phcfm.v14i1.3215
- 401 35. Crankson S, Pokhrel S, Anokye NK. Determinants of COVID-19-Related Length of
- 402 Hospital Stays and Long COVID in Ghana: A Cross-Sectional Analysis. Int J Environ Res
- 403 Public Health. 2022;19: 527. doi:10.3390/ijerph19010527
- 404 36. Ephraim RKD, Duah E, Nkansah C, Amoah S, Fosu E, Afrifa J, et al. Psychological impact
- 405 of COVID-19 on diabetes mellitus patients in Cape Coast, Ghana: a cross-sectional
- 406 study. Pan Afr Med J. 2021;40: 76. doi:10.11604/pamj.2021.40.76.26834

407	37.	Habineza JC, James S, Sibomana L, Klatman E, Uwingabire E, Maniam J, et al. Perceived
408		impact of the COVID-19 pandemic on young adults with type 1 diabetes in Rwanda. Pan
409		Afr Med J. 2021;40. doi:10.11604/pamj.2021.40.252.28899
410	38.	Baguma S, Okot C, Alema NO, Apiyo P, Layet P, Acullu D, et al. Factors Associated With
411		Mortality Among the COVID-19 Patients Treated at Gulu Regional Referral Hospital: A
412		Retrospective Study. Front Public Heal. 2022;10. doi:10.3389/fpubh.2022.841906
413	39.	Iroungou BA, Mangouka LG, Bivigou-Mboumba B, Moussavou-Boundzanga P, Obame-
414		Nkoghe J, Nzigou Boucka F, et al. Demographic and Clinical Characteristics Associated
415		With Severity, Clinical Outcomes, and Mortality of COVID-19 Infection in Gabon. JAMA
416		Netw Open. 2021;4: e2124190. doi:10.1001/jamanetworkopen.2021.24190
417	40.	Emmanuel Awucha N, Chinelo Janefrances O, Chima Meshach A, Chiamaka Henrietta J,
418		Ibilolia Daniel A, Esther Chidiebere N. Impact of the COVID-19 Pandemic on Consumers'
419		Access to Essential Medicines in Nigeria. Am J Trop Med Hyg. 2020;103: 1630–1634.
420		doi:10.4269/ajtmh.20-0838
421	41.	Kaswa RP, B Meel. A Study on the Characteristic Features of Covid-19 Deaths in a
422		Regional Hospital in Mthatha in the Eastern Cape, South Africa. Indian J Forensic Med
423		Toxicol. 2021;16: 1554–1559. doi:10.37506/ijfmt.v16i1.17723
424	42.	Usui R, Kanamori S, Aomori M, Watabe S. Analysis of COVID-19 mortality in patients
425		with comorbidities in Côte d'Ivoire. J Public Health Africa. 2022;13.
426		doi:10.4081/jphia.2022.1748
427	43.	Sikhosana ML, Jassat W, Makatini Z. Characteristics of hospitalised COVID-19 patients
428		during the first two pandemic waves, Gauteng. South African J Infect Dis. 2022;37.
429		doi:10.4102/sajid.v37i1.434
430	44.	Elijah IM, Amsalu E, Jian X, Cao M, Mibei EK, Kerosi DO, et al. Characterization and

431		determinant factors of critical illness and in-hospital mortality of COVID-19 patients: A
432		retrospective cohort of 1,792 patients in Kenya. Biosaf Heal. 2022;4: 330–338.
433		doi:10.1016/j.bsheal.2022.06.002
434	45.	Hardy YO, Libhaber E, Ofori E, Amenuke DAY, Kontoh SA, Dankwah JA, et al. Clinical
435		and laboratory profile and outcomes of hospitalized COVID \Box 19 patients with type 2
436		diabetes mellitus in Ghana – A single□center study. Endocrinol Diabetes Metab. 2023;6.
437		doi:10.1002/edm2.391
438	46.	Huluka DK, Etissa EK, Ahmed S, Abule HA, Getachew N, Abera S, et al. Clinical
439		Characteristics and Treatment Outcomes of COVID-19 Patients at Eka Kotebe General
440		Hospital, Addis Ababa, Ethiopia. Am J Trop Med Hyg. 2022;107: 252–259.
441		doi:10.4269/ajtmh.21-1270
442	47.	Nyasulu PS, Ayele BT, Koegelenberg CF, Irusen E, Lalla U, Davids R, et al. Clinical
443		characteristics associated with mortality of COVID-19 patients admitted to an intensive
444		care unit of a tertiary hospital in South Africa. Aouissi HA, editor. PLoS One. 2022;17:
445		e0279565. doi:10.1371/journal.pone.0279565
446	48.	Solanki G, Wilkinson T, Bansal S, Shiba J, Manda S, Doherty T. COVID-19 hospitalization
447		and mortality and hospitalization-related utilization and expenditure: Analysis of a South
448		African private health insured population. Kuo RN, editor. PLoS One. 2022;17:
449		e0268025. doi:10.1371/journal.pone.0268025
450	49.	Diarra M, Barry A, Dia N, Diop M, Sonko I, Sagne S, et al. First wave COVID-19
451		pandemic in Senegal: Epidemiological and clinical characteristics. Mossong J, editor.
452		PLoS One. 2022;17: e0274783. doi:10.1371/journal.pone.0274783
453	50.	Tolossa T, Lema M, Wakuma B, Turi E, Fekadu G, Mulisa D, et al. Incidence and
454		predictors of diabetes mellitus among severe COVID-19 patients in western Ethiopia: a

- retrospective cohort study. J Endocrinol Metab Diabetes South Africa. 2023;28: 42–48.
- 456 doi:10.1080/16089677.2022.2144016
- 457 51. David NJ, Bresick G, Moodaley N, Von Pressentin KB. Measuring the impact of
- 458 community-based interventions on type 2 diabetes control during the COVID-19
- 459 pandemic in Cape Town A mixed methods study. South African Fam Pract. 2022;64.
- 460 doi:10.4102/safp.v64i1.5558
- 461 52. Sane AH, Mekonnen MS, Tsegaw MG, Zewde WC, Mesfin EG, Beyene HA, et al. New
- 462 Onset of Diabetes Mellitus and Associated Factors among COVID-19 Patients in COVID-
- 463 19 Care Centers, Addis Ababa, Ethiopia 2022. Kretchy I, editor. J Diabetes Res.
- 464 2022;2022: 1–9. doi:10.1155/2022/9652940
- 465 53. Jassat W, Mudara C, Vika C, Dryden M, Masha M, Arendse T, et al. Undiagnosed
- 466 comorbidities among individuals hospitalised with COVID-19 in South African public
- 467 hospitals. South African Med J. 2022;112: 747–752.
- 468 doi:10.7196/SAMJ.2022.v112i9.16417
- 469 54. Mengist B, Animut Z, Tolossa T. Incidence and predictors of mortality among COVID-19
- 470 patients admitted to treatment centers in North West Ethiopia; A retrospective cohort
- 471 study, 2021. Int J Africa Nurs Sci. 2022;16: 100419. doi:10.1016/j.ijans.2022.100419
- 472 55. Kaswa P, Meel B. A Study on the Characteristic Features of Covid-19 Deaths in a
- 473 Regional Hospital in Mthatha in the Eastern Cape, South Africa. Indian J Forensic Med
- 474 Toxicol. 2022;16. doi:10.37506/ijfmt.v16i1.17723
- 475 56. Elijah IM, Amsalu E, Jian X, Cao M, Mibei EK, Kerosi DO, et al. Characterization and
- 476 determinant factors of critical illness and in-hospital mortality of COVID-19 patients: A
- 477 retrospective cohort of 1,792 patients in Kenya. Biosaf Heal. 2022;4: 330–338.
- 478 doi:https://doi.org/10.1016/j.bsheal.2022.06.002

479	57.	Chen U-I, Xu H, Krause TM, Greenberg R, Dong X, Jiang X. Factors Associated With
480		COVID-19 Death in the United States: Cohort Study. JMIR Public Heal Surveill. 2022;8:
481		e29343. doi:10.2196/29343
482	58.	Xu PP, Tian RH, Luo S, Zu ZY, Fan B, Wang XM, et al. Risk factors for adverse clinical
483		outcomes with COVID-19 in China: a multicenter, retrospective, observational study.
484		Theranostics. 2020;10: 6372–6383. doi:10.7150/thno.46833
485	59.	Bhaskaran K, Bacon S, Evans SJ, Bates CJ, Rentsch CT, MacKenna B, et al. Factors
486		associated with deaths due to COVID-19 versus other causes: population-based cohort
487		analysis of UK primary care data and linked national death registrations within the
488		OpenSAFELY platform. Lancet Reg Heal - Eur. 2021;6: 100109.
489		doi:10.1016/j.lanepe.2021.100109
490	60.	Kumar A, Arora A, Sharma P, Anikhindi SA, Bansal N, Singla V, et al. Is diabetes mellitus
491		associated with mortality and severity of COVID-19? A meta-analysis. Diabetes Metab
492		Syndr Clin Res Rev. 2020;14: 535–545. doi:10.1016/j.dsx.2020.04.044
493	61.	Burki T. COVID-19 and diabetes in Africa: a lethal combination. Lancet Diabetes
494		Endocrinol. 2022;10: 23. doi:10.1016/S2213-8587(21)00315-6
495	62.	Fina Lubaki J-P, Omole OB, Francis JM. Glycaemic control among type 2 diabetes
496		patients in sub-Saharan Africa from 2012 to 2022: a systematic review and meta-
497		analysis. Diabetol Metab Syndr. 2022;14: 134. doi:10.1186/s13098-022-00902-0
498	63.	Birabaharan M, Kaelber DC, Pettus JH, Smith DM. Risk of New-Onset Type 2 Diabetes
499		Mellitus in 600,055 Persons after COVID-19: a cohort study. Diabetes, Obes Metab.
500		2022;24: 1176–1179. doi:10.1111/dom.14659
501	64.	Tazare J, Walker AJ, Tomlinson LA, Hickman G, Rentsch CT, Williamson EJ, et al. Rates
502		of serious clinical outcomes in survivors of hospitalisation with COVID-19 in England: a

- descriptive cohort study within the OpenSAFELY platform. Wellcome Open Res. 2022;7:
- 504 142. doi:10.12688/wellcomeopenres.17735.1
- 505 65. Xie Y, Al-Aly Z. Risks and burdens of incident diabetes in long COVID: a cohort study.
- 506 lancet Diabetes Endocrinol. 2022;10: 311–321. doi:10.1016/S2213-8587(22)00044-4
- 507 66. Madan J, Blonquist T, Rao E, Marwaha A, Mehra J, Bharti R, et al. Effect of COVID-19
- 508 Pandemic-Induced Dietary and Lifestyle Changes and Their Associations with Perceived
- 509 Health Status and Self-Reported Body Weight Changes in India: A Cross-Sectional
- 510 Survey. Nutrients. 2021;13: 3682. doi:10.3390/nu13113682
- 511 67. O'Connell M, Smith K, Stroud R. The dietary impact of the COVID-19 pandemic. J Health
- 512 Econ. 2022;84: 102641. doi:10.1016/j.jhealeco.2022.102641
- 513 68. Haider N, Osman AY, Gadzekpo A, Akipede GO, Asogun D, Ansumana R, et al. Lockdown
- 514 measures in response to COVID-19 in nine sub-Saharan African countries. BMJ Glob
- 515 Heal. 2020;5: e003319. doi:10.1136/bmjgh-2020-003319
- 516 69. Sseguya W, James S, Manfred B, Munyagwa M, Klatman E, Ogle G, et al. Impact of
- 517 COVID-19 pandemic on young persons with type 1 diabetes in western Uganda.
- 518 Manuscr Submitt Publ. 2021.
- 519 70. Kebirungi H, Mwenyango H. Impacts of COVID-19 Pandemic Lockdown on the
- 520 Livelihoods of Male Commercial Boda-Boda Motorists in Uganda. In: Laituri M,
- 521 Richardson RB, Kim J, editors. The Geographies of COVID-19: Geospatial Stories of a
- 522 Global Pandemic. Cham: Springer International Publishing; 2022. pp. 195–207.
- 523 doi:10.1007/978-3-031-11775-6_16
- 524 71. Hrynick TA, Ripoll Lorenzo S, Carter SE. COVID-19 response: mitigating negative
- impacts on other areas of health. BMJ Glob Heal. 2021;6: e004110. doi:10.1136/bmjgh-
- 526 2020-004110

527	72.	Uwizeyimana T, Hashim HT, Kabakambira JD, Mujyarugamba JC, Dushime J,
528		Ntacyabukura B, et al. Drug supply situation in Rwanda during COVID-19: issues, efforts
529		and challenges. J Pharm Policy Pract. 2021;14: 12. doi:10.1186/s40545-021-00301-2
530	73.	Amu H, Dowou RK, Saah FI, Efunwole JA, Bain LE, Tarkang EE. COVID-19 and Health
531		Systems Functioning in Sub-Saharan Africa Using the "WHO Building Blocks": The
532		Challenges and Responses. Front Public Heal. 2022;10. doi:10.3389/fpubh.2022.856397
533	74.	Moolla I, Hiilamo H. Health system characteristics and COVID-19 performance in high-
534		income countries. BMC Health Serv Res. 2023;23: 244. doi:10.1186/s12913-023-09206-z
535	75.	Ayanore MA, Amuna N, Aviisah M, Awolu A, Kipo-Sunyehzi DD, Mogre V, et al. Towards
536		Resilient Health Systems in Sub-Saharan Africa: A Systematic Review of the English
537		Language Literature on Health Workforce, Surveillance, and Health Governance Issues
538		for Health Systems Strengthening. Ann Glob Heal. 2019;85. doi:10.5334/aogh.2514
539	76.	Tran DN, Kangogo K, Amisi JA, Kamadi J, Karwa R, Kiragu B, et al. Community-based
540		medication delivery program for antihypertensive medications improves adherence and
541		reduces blood pressure. Weinrauch LA, editor. PLoS One. 2022;17: e0273655.
542		doi:10.1371/journal.pone.0273655
543		
544	Sup	porting information

- 545 S1 PRISMA-ScR Checklist
- 546 S2 Search strategy
- 547 S3 Themes

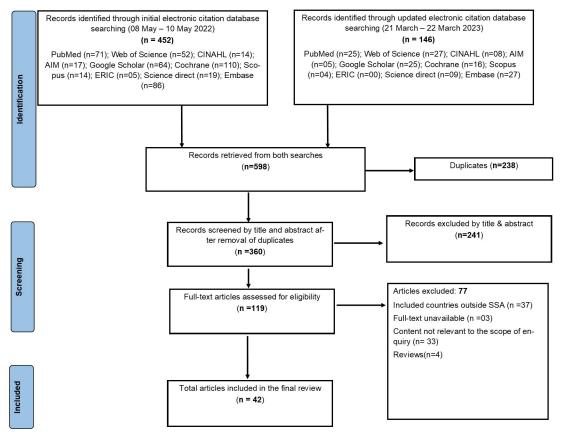


Fig. 1: PRISMA-ScR diagram reporting outcomes of the systematic scoping review process.