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Effective monitoring of infectious disease incidence remains a major

challenge to public health. Difficulties in estimating the trends in

disease incidence arise mainly from the time delay between case

diagnosis and the reporting of cases to public health databases.

However, predictive models usually assume that public data sets

faithfully reflect the state of disease transmission. In this paper,

we study the effect of delayed case reporting by comparing data re-

ported by the Johns Hopkins Coronavirus Resource Center (CRC)

with that of the raw clinical data collected from the San Antonio

Metro Health District (SAMHD), San Antonio, Texas. An insight

on the subtle effect that such reporting errors potentially have on

predictive modeling is presented. We use an exponential distribu-

tion model for the regression analysis of the reporting delay. The

proposed model for correcting reporting delays was applied to our
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recently developed SEYAR (Susceptible, Exposed, Symptomatic,

Asymptomatic, Recovered) dynamical model for COVID-19 trans-

mission dynamics. Employing data from SAMHD, we demonstrate

that the forecasting ability of the SEYAR model is substantially

improved when the rectified reporting obtained from our proposed

model is utilized. The methods and findings demonstrated in this

work have ample applicability in the forecasting of infectious disease

outbreaks. Our findings suggest that failure to consider reporting

delays in surveillance data can significantly alter forecasts.

1 Background

In December of 2019, a novel coronavirus (SARS-CoV-2) was first reported in the City of

Wuhan, Hubei Province, China. On January 30th, 2020, the SARS-CoV-2 outbreak was

declared a public health emergency of international concern. On March 11th, 2020 the

World Health Organization declared a global pandemic (43).

Early in the pandemic, two resources rose to prominence as sources of data. The

Coronavirus Resource Center (CRC) at Johns Hopkins University (11), and The New York

Times (NYT) coronavirus database (50). An important characteristic of these privately-

maintained public databases is that after data is initially entered, it is usually not updated.

Various models have been used during the COVID-19 outbreak. Applications of these

models include to inform public health policies (13,36), to assess the impact of government

interventions (5, 31, 45), to project hospital utilization (38), and to assess disease trans-

mission dynamics (33). The outcomes of these models rely on three important factors: (i)

the quality of the case data used to calibrate the model, (ii) the validity of parametric as-

sumptions, and (iii) the number of parameters. The current focus on improving predictive
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case modeling has been centered around the limitations that arise from poor parametric

assumptions, and the large number of parameters used in some models. As a result, the

problem of poor data quality has received comparatively little attention.

Quality epidemiological data is central to infectious disease surveillance and model-

ing. From a public health viewpoint, accurately monitored data is a crucial resource for

understanding the true extent of population-level disease progression during an epidemic

event (17). This knowledge can then be used to support critical decision making by public

health authorities. Previous epidemics such as Zika, Ebola and Swine flu have revealed

the usefulness of accurate epidemiological data for emergency preparedness (9), vaccine

distribution (22), and planning for the future demand of critical infrastructure (30, 41).

From an infectious disease modelling viewpoint, quality data is critical to ensuring accu-

rate epidemic forecasting (39). Furthermore, the accuracy of epidemiological parameters

required by compartmentalized models (28), agent based models (8,15,24), and/or train-

ing and validation of machine learning and statistical models (21,48,52) is directly related

to the quality of input data used to estimate these parameters.

Data quality is affected by case tracing and delays in reporting. For case counts, the

epidemiological event date, E, is often defined in practice as: (i) E = Date of onset of

symptoms, (ii) if date of onset is not available, then E = date of sample collection, (iii)

if date of sample collection is not available, then E = date of lab report, and (iv) if date

of lab report is not available, then E = date entered into database.

The epidemiological event date changes continuously as case trace investigations take

place, which can last a variable number of days depending on the operations of the

municipality collecting the data. As a result, the case counts for past dates become

updated with the results obtained from the case trace investigations, with older unresolved

cases being dropped from the tracing process. Another source of variation in case reporting
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is the generalized inherent delay due to the time it takes for samples to be analyzed, the

time to register an identified case into a database, and overburdened surveillance systems

sometimes operating with a throughput lower than the influx of new cases. It is important

to note that the CRC and NYT databases do not change the data once it is reported.

This raises concerns in relation to the accuracy of predictive models since many modelers

do not have access to raw case tracing data.

The challenge of reporting delays was first studied by Harris (26) who contrived the

problem as a partial multinomial distribution. Thereafter, various statistical methods

(6,49,55) have been employed to address the problem of delays from infection to symptom

onset, as well as the subsequent delays that arise before the data is entered into surveillance

databases. These techniques broadly fall into parametric and non-parametric methods.

The parametric approach accounts for reporting delay based on the assumption that

delayed case data belongs to a parametric family of probability distributions. A number

of parametric-based methods that model the reporting delay in previous disease outbreaks

(6,10,19,27), and in the COVID-19 pandemic (1,37) have been reported.

The non-parametric approach provides an estimate of the reporting delay distribu-

tion without making any parametric assumption about the form of the underlying de-

lay distribution. There are two common computational methods employed for finding

non-parametric estimates of the reporting delay distribution. The first is based on the

generalized linear model (e.g. Poisson regression or the non-parametric back-propagation

of delayed cases) which requires cross-classification of reported cases by calendar time of

diagnosis and reporting delays (6, 55). The back-propagation process uses a diagnosis

distribution to estimate the number of case counts for previous time periods (4, 32, 34),

and has recently been used to assess infection incidence of COVID-19 (37). The second

method employs a survival analysis approach which involves expressing the delay distri-
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bution as a product of conditional probabilities, from which an estimate for the reporting

delays is obtained.

Another approach used to account for delays in case data produces real-time estimates

for the current number of confirmed infections while correcting for underreporting. This

new technique is referred to as ’nowcasting’ (18,20,42,51,54). Depending on the assump-

tions it is premised on, this method could be considered either a parametric or a non-

parametric approach. For example, nowcasting procedures based on the non-parametric

approach have been used to assess the Shiga toxin–producing E. coli (STEC) O104:H4 out-

break in Germany (29). On the other hand, to study influenza A/H1N1 during the 2009

pandemic, a nowcasting procedure that involved the parametric method was utilized (12).

In addition, nowcasting has been used for real-time COVID-19 tracking (23,25,47).

Data assimilation techniques have also been used (14,16,40) to study reporting delays.

These methods begin with a wide prior distribution for the model parameters from which

a posterior estimation of parameters leads to model predictions that closely agree with

the observations. An interesting example of data assimilation is Abott et al. (1), since

there is explicit consideration of reporting delay. In all these methods, model updates

occur when new observations become available.

In this present study, we consider an approach that is notably different from nowcasting

and data assimilation. It is informed by the comparison of the totality of records of daily

cases from public databases against the real-time number of hospitalizations and cases.

The COVID-19 data used here is for the City of San Antonio, Texas, the seventh largest

city in the US, with a population of 1.5 million people. It is the most visited city in Texas,

and the 17th most visited city in the US, attracting 37 million visitors in 2019 (3). Given

the high density of visitors year-round, the city has the potential to become an epicenter

of transmission during a pandemic. The City of San Antonio entered a partnership with
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Bexar County to create the San Antonio Metro Health District (SAMHD); this entity is

in charge of collecting case data for infectious diseases.

To better account for delays in reporting COVID-19 case-data, and to accurately

forecast the number of confirmed cases, we adopted the following approach. First, we

analysed the complete set of epidemiological event dates for confirmed COVID-19 cases

and developed an algorithm that rectifies delays in public epidemiological data. Then,

we incorporated the proposed rectification algorithm into our compartmentalized SEYAR

model to project the number of cases in Bexar County, Texas, whilst taking into account

reporting delays.

2 Methods

2.1 Epidemiological data extraction

We employed two different data sets which were obtained from two different sources.

The first being the COVID-19 case-data retrieved from the CRC. The second was the

data regarding the epidemiological date for COVID-19 cases acquired from the SAMHD

between April 4, 2020 through June 28, 2020. The epidemiological event dates received

daily from the SAMHD include; (i) illness onset, (ii) sample collection, (iii) test result,

and (iv) case entered into the database. It is usually not the case that information is

available for every epidemiological date mentioned ((i)-(iv)); but at least one of these

dates is available for each confirmed case.

2.2 Extracting the delay distribution from surveillance data

Let ajk be the data reported on day k into the SAMHD registry, for each day j subject

to 1 ≤ j ≤ k. Let bjk be the ‘stable’ data where ‘stable’ means that as time progresses,

the number of cases for day bjk does not change. The residue rjk = ajk − bjk is modeled
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as an exponential distribution characterized by yj = peqj where the parameters p and q

denote the correction rate.

The least-squares objective function is expressed as

min
p,q

J(p, q) =
1

2

∑
j=1

(peqj − yj)2

=
1

2

∑
j=1

fj(p, q)
2

=
1

2
F (p, q)TF (p, q) (1)

where F is the vector-valued function F (p, q) = (f1(p, q) f2(p, q) ... fi(p, q))
T . The

derivatives are made less cluttered by scaling the problem by 1
2
. The gradient of f is

∇f(p, q) =
1

2

( ∑
j=1(pe

qj − yj)eqj∑
j=1(pe

qj − yj)pjeqj
)
. (2)

Suppose the solution of the least-squares problem is given by p∗, q∗, then f(p∗,q∗) = 0.

This implies that for all j, fj(p∗, q∗) = 0, suggesting that the model is in agreement with

the data with minimal error. Consequently, F (p∗, q∗) = 0 for p ≈ p∗, q ≈ q∗ which justifies

that the required first-order condition is met.

After training, the obtained parameters were averaged and used to test the model.

Finally, the averaged estimated parameters obtained from the model validation process

were employed to estimate the delayed daily case counts for each data set reported by the

CRC.

2.3 Minimizing the time lag between CRC and SAMHD data

The number of confirmed cases for Bexar County entered into the SAMHD registry was

updated each day to reflect the number of delayed cases, hence providing an accurate
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baseline. Our objective is to minimize the error between the data entered into the SAMHD

and CRC registries.

Let amk and cnk be the case data reported into the SAMHD and CRC registries

respectively on day k, for each day m (for SAMHD data) and n (for CRC data) subject

to 1 ≤ m ≤ k and 1 ≤ n ≤ k respectively. The optimal data time ∆t that minimizes

the time lag between these two case data is estimated by taking the difference between

the dates at which the number of cases in amk and cnk are equal. The optimal data time

objective function is an average expressed as

y =min [tmk − tnk]

subject to: amk(t) = cnk(t). (3)

Finally, ∆t = y.

2.4 SEYAR Model Modification

Consider the SEYAR dynamical system (4) introduced by Aguilar et. al (2), which

describes the dynamics of COVID-19 transmission in a human population by decomposing

the total host population (N) into the following five epidemiological classes: susceptible

human (S), exposed (E), symptomatic (Y ), asymptomatic (A), and recovered (R).

Ṡ = −
(
βY

Y
N

+ βA
A
N

)
SQ,

Ė =
(
βY

Y
N

+ βA
A
N

)
SQ− γE,

Ẏ = γ(1− α)E − (δ + λY R)Y,

Ȧ = γαE − λARA,

Ṙ = λARA+ λY RY.

(4)

Here βY , βA denote the effective contact rates for symptomatic and asymptomatic carriers

respectively, γ represents the latent period, λ−1
Y R, λ−1

AR represent the infectious periods for
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the symptomatic and asymptomatic sub-populations, and α, (1−α) represent the proba-

bility of becoming asymptomatic and symptomatic upon infection respectively. Moreover,

the risk presented at time t is represented by Q(t) = e−kt and is formulated under the

assumption that the rate of change of risk decreases proportionally to the amount of risk

present. In the presence of reporting delay, the amount of risk at any time t is propor-

tional to the corrected number of reported COVID-19 cases, i.e. the number of corrected

cases increases with an increase in the risk of infection. Thus, we arrive at the following

modification of (4): 

Ṡ = −
(
βY

Y
N

+ βA
A
N

)
Spej(q−k),

Ė =
(
βY

Y
N

+ βA
A
N

)
Spej(q−k) − γE,

Ẏ = γ(1− α)E − (δ + λY R)Y,

Ȧ = γαE − λARA,

Ṙ = λARA+ λY RY.

(5)

where the parameters p and q were fitted for a given value of the coefficient of risk

mitigation k.

To compute the confidence intervals, a sum of 100 bootstrap replications of the case

time series were used to find the possible value of the parameter that is close to a global

minimum. With the parameters obtained from bootstrapping, the SEYAR model was

computed using both datasets. When computing, the model considered the past two

weeks of data from the most recent date of available case data.

3 Results

Figure 1 summarizes the daily number of confirmed cases in Bexar County, Texas due

to the COVID-19 pandemic, as reported by both the SAMHD and CRC. The various

solid curves illustrate the daily numbers of cases reported by SAMHD between May

4th 2020 through July 4th 2020. In particular, each solid curve represents a corrected
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Table 1: Average values of parameters used to compute Figure 3. The fitted parameters
were selected from the optimal fit of the model calibrated for Bexar County.

Parameter Description Dimension Value

FITTED
βY Effective contact rate from days−1 1.17

symptomatic to susceptible.
βA Effective contact rate from days−1 1.16

asymptomatic to susceptible.
k Risk mitigation coefficient n/a 0.03
n Days prior, patient zero n/a 25
Parameter Description Dimension Mean Variance

BIOLOGICAL
γ−1 Mean latent period. days 2.99 1.36
α Probability of becoming n/a 0.21 1.48

asymptomatic upon infection.
λ−1
YR Mean symptomatic days 13.5 31.8

infectious period.
λ−1
AR Mean asymptomatic days 11.2 16

infectious period.
δ Disease-induced death rate. days−1 0.026 0.094

version of the number of cases reported in the past. The dashed curve represents the

data reported by the CRC between May 4th 2020 through July 4th 2020. In contrast

to the SAMHD data sets, the CRC data for the number of cases reported in the past

are not corrected. Moreover, the time lag between the solid and dashed curves was

computationally estimated at 8 days.

In Figure 2, the CRC data sets reported between May 4th 2020 and July 4th 2020

were rectified using our proposed data rectification algorithm which was subsequently

compared with the baseline SAMHD data set reported on July 4th and the individual un-

rectified CRC data sets. The Figure indicates congruence between the data transmitted

on the same date by the SAMHD, and the rectified CRC data. Additionally, it can

be observed that the SAMHD and the CRC reported different numbers of cases for the
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majority of dates. A significant increase in reporting delay of daily case counts is noticed

from approximately the beginning of June and through the conclusion of this study.

Taking into account the parameters reported in Table 1, and the five major government

mitigation policies that were enacted in Bexar county between March 2020 and July 2020,

Figure 3 summarizes an implementation of a SEYAR model calibrated with three sets of

data: the time series obtained from CRC, the rectified CRC data, and the data collected

from SAMHD. Figure 3 (a) shows a comparison between the average SEYAR model

output calibrated using the un-rectified CRC data set reported on June 30th 2020 and

the data retrospectively obtained for the month of October 2020. Figure 3 (b) shows a

comparison between the average SEYAR model output calibrated using the rectified CRC

data set reported on June 30th 2020 and the data retrospectively obtained for the month

of October 2020. Figure 3 (c) shows a comparison between the average SEYAR model

output calibrated using the SAMHD data set reported on June 30th 2020 and the data

retrospectively obtained for the month of October 2020.
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Figure 1: Daily number of confirmed COVID-19 cases in Bexar County, Texas reported for
the period between May 4th 2020 through July 4th 2020. Comparison of daily case counts
reported by the San Antonio Metro Health District (SAMHD) and the Johns Hopkins
Coronavirus Resource Center (CRC). The solid curves represent individual SAMHD data
sets across this time period for which previously reported data sets are corrected. The
dashed curve refers to the CRC data set for which no corrections are made in the data
sets reported in the past.
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Figure 2: Rectification for individual CRC data sets reported between May 4th 2020
through July 4th, 2020. The solid curve indicate the rectified daily confirmed cases that
were reported during the pandemic. The dash-dotted curve represents our baseline data,
i.e the data set reported by the SAMHD on July 4th 2020. The dotted curve represents
the un-rectified CRC data between May 4th 2020 through July 4th 2020.
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Figure 3: Projections of COVID-19 cases in Bexar County from July 2020 to October
2020, using a SEYAR model calibrated with three data sets: (a) the time series obtained
from CRC, (b) the rectified CRC data, and (c) the data collected from SAMHD. The
projected number of cases with 95% confidence interval for each of the data sets were
obtained under the conditions that applied on July 4th 2020. The blue-dashed line (CRC
raw data) denotes the un-rectified daily number of cases reported by the Johns Hopkins
Coronavirus Resource Center. The solid vertical lines indicate the timings of various
government intervention (GI) strategies.

4 Discussion

By analyzing the COVID-19 case count data for Bexar County, Texas, obtained from

two different sources –the SAMHD and CRC, we have been able to study how reporting

delays in CRC case-data could affect the predictability of trends in the number of daily

confirmed cases, as well as the quality of data on which predictive models are calibrated.

Accounting for reporting delays in epidemic data enhances the ability to gauge the actual

daily case counts for forecasting reliable trends in the number of confirmed cases. This
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is supported by the findings from the works of Brookmeyer and Liao (7), White and

Pagano (53).

Many of the aforementioned studies on reporting delay rely on an underlying assumed

probability density function such as Poisson, Binomial etc. Whilst there are theoretical

basis for making such assumptions, unless the chosen distribution is measured from sample

data, it remains an assumption which has the potential for introducing a bias. Instead

of trying to fit parameters for assumed distributions that make a model fit the data, this

present study fits a regression from the complete analysed case tracing data, making the

minimum number of assumptions possible. By considering past dates of the pandemic,

we can retrospectively evaluate the accuracy of our rectification and forecasting estimates

for the number of confirmed cases in Bexar County.

The data pattern that emerged in San Antonio is captured in Figure 1. The solid curves

represent cases reported by SAMHD in multiple days. The dashed curve represents data

reported by CRC, a source that never updates its initial data entries. It is evident from

Figure 1 that case records are constantly corrected at SAMHD by case tracing, and they

tend to mimic daily CRC counts with a delay. If data obtained from public databases

is substantially different from the true count of cases, then this begs the question of

how to create accurate predictive models when most modelers have access only to public

databases.

Under-reporting of confirmed cases poses a potentially major challenge in COVID-

19 surveillance. Early investigations suggested that most cases are not reported to the

Centers for Disease Control (44). This justifies our analysis of the cases reported by

the CRC for Bexar County (Figure 2), which indicates an incomplete number of daily

cases reported. More recent findings indicated a detection rate of only 1–2 % of total

actual COVID-19 cases (35). As revealed by our analysis of reporting delays, the rate of
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unreported cases may vary depending on the time lapse between identification of a case

and reporting to public registries.

The significant differences observed in the daily number of confirmed cases reported

to the CRC is related to the effect of variation in the chosen epidemiological event date

caused by case tracing. As a consequence of overwhelmed surveillance systems during

the pandemic, there was an usually long turnaround time between the date of onset of

illness, date of diagnosis, date of laboratory sample collection, laboratory test result date,

and the date that a confirmed case is entered into an official database. These delays in

processing lead to imprecise day-to-day case reporting. These challenges have also been

shown to introduce a bias in the estimate of case fatality ratio (46).

The minimization of the time lag from the reporting of cases and the subsequent

adjustment of daily case counts using our proposed method produced a rectification of

the public CRC data that approximated data in the official database after case tracing

corrections. In terms of rectification of delayed cases, the exponential distribution has

provided an accurate model for adjusting delay in case reporting. The agreement between

the SAMHD data and rectified CRC data (as shown in Figure 2) indicates the reliability

of the proposed rectification method.

When using an unrectified CRC data set for the SEYAR model calibration, projections

were significantly lower as compared to those obtained using the CRC data set, as shown in

Figure 3 (a). On the other hand when using a rectified data set for calibration, projections

were slightly higher than the CRC data, as shown in Figure 3(b). These findings suggest

that forecasts obtained following model calibration with rectified data are less biased.

Using the SAMHD data for calibration, the model’s average projected cases for July

through mid-September 2020 were nearly in agreement with the CRC data (Figure 3 (c)).

It is worth noting that the distribution used in this study is measured from case
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data that were recorded during the early phase of the COVID-19 pandemic. Making the

application of our proposed algorithm more suitable during the exponential growth phases

of an outbreak.

Some possible limitations of the rectification algorithm deserve comment. First, the

SAMHD data was available until July 7, 2020. After that date, changes in the reporting

system made case tracing adjustments unavailable. Thereafter, the only baseline for

comparison became CRC. Second, the measure of the delay distribution was based on

data for Bexar County, Texas, (COVID-19 epidemiological event dates of confirmed cases)

obtained from the San Antonio Metro Health District; based on our data, the optimal

time that minimizes the reporting delay in CRC data was computationally estimated

at 8 days. If there is evidence of a significantly higher delay in reporting in a different

geographical region, the optimal data time should be measured for that location to reduce

bias in the rectification.

The effect of reporting delays in data used for forecasting is often overlooked by many

predictive models. Those models which utilize daily case counts often assume that the

public case data are a faithful account of reality, which is hardly the case in practice as

reporting delays in epidemic data remain inevitable. It is expected that the use of our

methodological approach for rectifying and minimizing reporting delay when implement-

ing prediction models could significantly improve the predictability of an epidemic.

5 Conclusion

To analyze the delays in case reporting to public health databases, we utilized both

surveillance data and data obtained from public databases. We developed a method that

rectifies such delays in public epidemiological data. Unlike the approaches reported in

the literature, the rectification algorithm proposed here is premised on an exponential
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distribution that is measured from case tracing data with minimal assumptions. The

method was shown to reliably account for the delays in reporting. The rectification of

reporting delays in conjunction with our SEYAR prediction model seems promising for

forecasting the actual number of daily cases. We stress the importance of capturing

and publishing daily case counts as the data changes over time. This is particularly

important as public databases such as the CRC do not currently update their daily case

count records. This study has potential importance in terms of assessing the severity of

a pandemic, particularly during its early stages. The results presented here also have the

potential to aid in assessing the impact of possible control measures.
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