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Abstract: 

Background: Variability in antibody responses among individuals following 

vaccination is a universal phenomenon. Single-cell transcriptomics offers a 

potential avenue to understand the underlying mechanisms of these variations 

and improve our ability to evaluate and predict vaccine effectiveness. 

Objective: This study aimed to explore the potential of single-cell 

transcriptomic data in understanding the variability of antibody responses 

post-vaccination and its correlation with transcriptomic changes. 

Methods: Blood samples were collected from 124 individuals on day 21 post 

COVID-19 vaccination. These samples were categorized based on antibody 

titers (high, medium, low). On day 135, PBMCs from 27 donors underwent 

single-cell RNA sequencing to depict the transcriptome atlas. 

Results: Differentially expressed genes (DEGs) affecting antibody expression 

in various cell types were identified. We found that innate immunity, B cell, 

and T cell population each had a small set of common DEGs (MT-CO1, HLA-

DQA2, FOSB, TXNIP, and JUN), and Macrophages and Th1 cells exhibited 

the largest number of DEGs. Pathway analysis highlighted the dominant role 

of the innate immune cell population in antibody differences among 
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populations, with a significant impact from the interferon pathway. 

Furthermore, protein complexes analysis revealed that alterations in the 

ribosome complex, primarily regulated by DC cells, may play a crucial role in 

regulating antibody differences. Combining these findings with previous 

research we proposed a potential regulatory mechanism model of DC cells on 

B cell antibody production. 

Conclusion: While direct prediction of specific antibody levels using single-

cell transcriptomic data remains technically and data-wise challenging, our 

study demonstrated the vast potential of single-cell transcriptomics in 

understanding the mechanisms underlying antibody responses induced by 

vaccines.  

 

Keywords: Antibody responses; Single-cell transcriptome sequencing; 

COVID-19 vaccine; Vaccine effectiveness 

 

Introduction: 

Vaccine efficacy is often gauged by measuring the levels of specific 

antibodies generated post-vaccination, which play a crucial role in identifying 

and neutralizing pathogens, thus preventing diseases. Studies have 

consistently demonstrated a positive link between vaccine-induced antibody 

levels and their protective capacity, highlighting the importance of post-

vaccination antibody assessment[1-4]. Therefore, measuring the antibody 

levels after vaccination has become a key indicator for assessing vaccine 

effectiveness. However, it's common to observe variations in antibody levels 

within the population following vaccination. While most individuals exhibit an 

"average" antibody response, a subset of individuals generates exceptionally 

high antibody levels (high-responder), while others display low antibody levels 

(non-responder). This phenomenon, attributed not solely to the type of antigen 

of a vaccine, has also been observed across successful COVID-19 vaccines, 

including mRNA and inactivated vaccines[5-8].   

Numerous studies have investigated the variation of antibody responses 

in populations following vaccination. It is generally believed that these 

differences can be attributed to two main factors. Firstly, vaccine-related 

factors such as antigen type, vaccine formulation, type of vaccination[9], 

number of doses, and vaccination schedule[10] play a role. Secondly, host-

related factors including age, gender, weight, health status[11], and genetic 

background differences are also influential[5, 12]. In terms of research focus, 

there is a greater emphasis on optimizing vaccination programs than on 

exploring the mechanisms of host variations. This may be partly due to the 

statistical challenge of eliminating the interference of various vaccine 
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formulations on inter-host differences. However, for COVID-19 vaccines, 

studies have already demonstrated the impact of host factors such as age[13], 

medical history[14], and genetic background[15, 16] on post-vaccination 

antibody levels. Nevertheless, these studies mainly report statistical aspects, 

with limited exploration of underlying mechanisms. 

Generally, the production of specific antibodies in peripheral blood after 

vaccination is a complex process involving the activation of the immune 

system. In this process, innate immune cells first recognize the antigen, 

followed by the activation of B cells, which then differentiate into plasma cells 

in the peripheral blood and produce a large number of antibodies targeting 

specific pathogens[17, 18]. However, the activation of B cells is not a single 

step but rather a process involving multiple cells and complex transcriptional 

regulation interactions. Single-cell transcriptomic sequencing technology 

provides a powerful tool for in-depth understanding of transcriptional 

interactions between cells in peripheral blood[19, 20]. Through detailed and 

comprehensive transcriptomic analysis of peripheral blood mononuclear cells 

(PBMCs), this technology can reveal the dynamic changes in cell 

heterogeneity and their transcriptional regulation under different health 

conditions. Therefore, analyzing single-cell transcriptomic data from different 

response groups after vaccine administration can help to detail the key 

features influencing vaccine antibody responses at the peripheral blood 

transcriptomic level. However, in practical applications, single-cell 

transcriptomic sequencing technology still faces several challenges[21, 22]. 

One of these challenges is establishing a unified method for classifying and 

annotating cell types across different organs and tissues. Even in the single-

cell transcriptomic relatively well-studied field PBMCs, previous single-cell 

transcriptomic studies have often shown inconsistency in cell type annotation, 

and the use of marker sets lacks uniform standards. While efforts are currently 

underway in the research to develop standardized reference databases and 

bioinformatics-based unified annotation methods, these approaches are still in 

the developmental stage and have yet to be widely implemented and 

adopted[23, 24]. 

The aim of this study is to investigate the immunological mechanisms 

underlying the differences in antibody responses by analyzing the 

transcriptional characteristics of different antibody response groups four 

months after receiving the inactivated COVID-19 vaccine. To accurately 

identify cell types, we employed a traditional flow cytometry-based approach, 

focusing primarily on identifying known peripheral blood mononuclear cell 

(PBMC) populations rather than discovering new cell subtypes. Our goal is to 
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analyze the transcriptomic differences among classical cell subtypes and 

reveal key cell types, transcriptional regulatory factors, and immune regulatory 

networks that may influence antibody responses. This will provide deeper 

insights into understanding and supporting immune protection following 

vaccination. Additionally, we have developed a flow cytometry-based single-

cell annotation method that has shown good application performance in this 

study, and we anticipate its widespread use in future research. 

 

 

Results: 

Result 1: Identifying PBMC Cell Subtype Profiles of Antibody Response 

Groups by Reference to Flow Cytometry Markers 

Sine the purpose of this study was to characterize the transcriptomic 

profile of different antibody response groups at the single-cell level. We 

divided the antibody response population into high, medium, and low groups 

based on a normal distribution of antibody data from 124 healthy volunteers. 

These volunteers had received two doses of the COVID-19 inactivated 

vaccine and were tested for antibody titers on day 21 after the second dose 

(Fig1A). We defined the middle response group as comprising 80% of the 

population (Fig1H), and then selected a total of 27 samples (4 from the high-

response group, 19 from the middle-response group, and 4 from the low-

response group) to collected blood samples at 4 months for antibody testing, 

PBMC isolation and transcriptome sequencing. We also confirmed that the 

statistical differences in antibody response were consistent at Day 21 and Day 

135, and these differences were independent of age and sex composition. 

(Fig1I and Table S1).  

Subsequently, we aimed to tackle the challenge of annotating cell types in 

PBMC single-cell transcriptome data. As outlined in the background section, 

the markers utilized in different studies are generally inconsistent, leading to 

variations in annotated cell types. To address this issue, we first compiled a 

list of classic cell type markers commonly used in flow cytometry (Table S2) 

and then explored the annotation effects of different marker combinations. 

Furthermore, in line with the objectives outlined in the background, our study 

specifically focused on accurately identifying classical PBMC cell types for 

improved analysis and comparison with previous flow cytometry-based results. 

This thought is particularly relevant as flow cytometry analysis remains the 

primary method for identifying cell types and investigating cell type-based 

mechanisms, including cytokine expression in vaccine studies[25, 26]. Hence, 

our study did not delve into the exploration of potential new cell subtypes in 
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peripheral blood PBMC, as our primary focus was on the identification of 

classical PBMC cell types. 

It might have been easy to anticipate, but our exploratory analysis 

revealed the challenge of accurately annotating cell subtypes using a single 

set of markers, particularly for classical B cell and T cell subtypes. The 

characteristics of positively identified cells in annotated clusters often do not 

align fully with theoretical flow cytometry identifications. This discrepancy can 

be attributed to differences between transcript expression and protein 

expression, as demonstrated by CD45RA and CD45RO. In these cases, gene 

expression typically only detects CD45 (PTPRC) gene expression at the 

mRNA level, making it challenging to directly distinguish between the two 

protein isoforms. While some solutions have been explored for this issue[27], 

the overall usability remains challenging and requires further improvement. 

Finally, we utilized 4 sets of markers for primary and subcellular cell type 

annotation (Table S2). By employing a method that annotates small group 

subdivisions from large group annotations, we annotated the PBMCs into 21 

cell subtypes in this study (Fig1B-F). Detailed illustration can be found in the 

Methods section (FigS1-S7). Our annotation includes 5 types of innate 

immune cells, including NK cells, macrophages, monocytes and DC cells 

(FigS8-S9). 4 B cell subgroups, including naive, plasma, memory and B 

regulatory cells (FigS10-S11), and 13 T cell subgroups (CD4, CD8, naive, 

memory, regulatory T cells, helper T cells, cytotoxic T cells) (Fig S12-S15). We 

compared the proportions of these cell types among the high, medium, and 

low antibody titer groups and found most cell type showed no significant 

differences in their overall distribution (Figure 1G). However, plasma cells with 

high expression of IL-6 showed varying proportions between the normal and 

high antibody titer groups (Figure S12). Considering that the samples were 

collected four months after vaccination, we expected the major cell types to 

be in a relatively stable state. However, minor differences may still exist in the 

proportions of certain cell subtypes. Overall, our analysis results align with this 

expectation. 

In general, the proportions of various cell subtypes were consistent with 

our expectations (Figure 1G). Additionally, we specifically focused on the 

proportions and ratio of Th1 and Th2 cell subtypes. The evaluation of Th1 and 

Th2 cell proportions is commonly used to assess vaccines, particularly for 

infectious diseases like COVID-19 and RSV, where the Th1/Th2 ratio is 

indicative of the likelihood of vaccine-enhanced respiratory disease (VERD). 

Our results showed that in the evaluated samples, the proportion of Th1 cells 
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was 0.27% of total PBMCs and 6.78% of CD4+ T cells, while the proportion of 

Th2 cells was relatively low (0.13% of total PBMCs and 3.26% of CD4+ T 

cells). This suggests a prevailing Th1 bias in the cellular antibody response 

four months after the administration of the COVID-19 booster vaccine. These 

findings indicate the potential of single-cell transcriptomic analysis as a 

complementary method for assessing cellular antibody responses following 

vaccination.  

 

Result 2: Macrophages and Th1 cells exhibit the highest number of 

genes contributing to antibody variances 

For each cell type we identified, differential gene analysis was conducted 

by comparing two groups (both low vs median and median vs high groups). 

Upon aggregating all identified differential genes for analysis, we found that 

cell subtypes in PBMC with the most genes affecting antibody titer after 

vaccination were macrophages (112 genes), Th1 cells (104 genes), memory B 

cells (75 genes), as well as two types of DC cell subtypes (cDC, 68 genes; 

and pDC, 65 genes) (Fig2F).  

It's easy to spot the traditional understanding of Th1 cells, memory B cells, 

and DC cells supports our finding of a relative important roles on antibody 

production post-vaccination: Th1 cells can enhance antibody production by 

stimulating B cell proliferation and differentiation[28]. Memory B cells rapidly 

produce antibodies with high affinity upon re-encountering antigens[29], while 

DC cells efficiently process and present antigens to activate T cells and B 

cells for antibody response and antibody production[30]. However, the high 

relative number of differentially expressed genes (DEGs) in macrophages is 

unexpected. Despite being a classic immune cell, there is little direct evidence 

linking macrophages to antibody production. Nevertheless, macrophages are 

considered the central players in the entire immune system, initiating and 

guiding almost all antibody responses, including those involving T cells and B 

cells/adaptive immunity.[31]. We will be comparing the differentially expressed 

gene (DEG) enriched pathways identified in macrophages with pathways 

enriched in other cell types later. 

On the other hand, overall, there doesn't seem to be a clear bias in the 

ratio of upregulated (positive correlation with antibody titer) and 

downregulated genes (negative correlation with antibody titer) during antibody 

response. Across different cell subtypes, the ratio generally does not exceed 

1:3 or 3:1 (Fig2F). This indicates that antibody response regulation involves 

both upregulation and downregulation of genes across multiple cell types, 
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rather than being solely influenced by one cell type. However, at the gene 

level, some genes show a strong association with antibody response across 

multiple cell types. For example, the HLA-DQB1 gene exhibits significant 

intergroup upregulation differences in both pDCs and cDCs (Fig2E). HLA-

DQB1 encodes an MHC-II protein that presents exogenous antigens to CD4+ 

T cells, playing a crucial role in the immune system. Besides, previous studies 

have shown that HLA-DQB1 may influence humoral immune response elicited 

by inactivated Japanese encephalitis vaccine (IJEV) [32]. Genes of the MHC-

II class are associated with high-frequency antibody responses to five out of 

nine recombinant proteins tested in Rondonia State, Brazil [33]. All of these 

findings indicate the potential role of HLA-DQB1 in influencing population-

specific antibody variations following vaccination. 

Finally, we identified shared and specific DEGs among different subtypes: 

MT-CO1 for innate immune cells, HLA-DQA2 and FOSB for B cells, TXNIP 

and RPS10-NUDT3 for CD4+ T cells, and MT-ND3, RPS10-NUDT3, and JUN 

for CD8+ T cells (F2A-E). These genes play roles in energy production, T cell 

functions, and adaptive immunity, indicating its potential associations with 

antibody production by regulation multiple cells. 

 

Results 3: Innate antibody response cells dominate the majority of 

pathways contributing to antibody expression variants among individual 

Using gene annotation and enrichment analysis tool Metascape [34], we 

try to depict pathways influencing population-level antibody differences across 

multiple cell types. We utilized databases such as GO, KEGG, Reactome, 

WikiPathway, CORUM, and Canonical Pathways. In total, we obtained 614 

enriched pathways (Table S4). To organize these pathways, Metascape 

employed hierarchical clustering based on pathway similarity, resulting in 20 

pathway categories (Table S3). We classified these categories into three 

groups based on the proportion of enriched pathways in each cell type (innate 

immune cells, B cells, and T cells), as shown in Figure 3A. The first group 

consists of pathways enriched in almost all cell types, referred to as "Common 

Pathways." The second group is primarily enriched in innate immune cells and 

B cells, with fewer pathways enriched in T cells. The third group is dominated 

by pathways enriched in innate immune cells. From the overall picture, we 

observed the involvement of monocytes, macrophages, and dendritic cells 

(DCs) in pathways across all 20 major terms (Fig3A). However, at the T cell 

level, there was a greater enrichment of pathways associated with cytotoxic T 

lymphocytes (CTLs) and Th1 cells. These findings suggest that innate 
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antibody response cells, along with B cells, play a crucial role in driving the 

differences in antibody expression among populations, while T cells, 

particularly CTLs and Th1 cells, have specific pathway enrichments. 

From the perspective of shared signaling pathways, the common pathway 

observed in all cells is the cellular response to stress (RHSA2262752). This 

term encompasses a complex biological process with diverse signal 

transduction pathways and molecular mechanisms, playing a regulatory role 

in both innate and adaptive immune responses [35]. Our finding indicates a 

potential link between the cellular stress response and antibody production 

post-vaccination, relevant to all peripheral blood cell types. Besides the 

cellular stress pathway, our findings also underscore the importance of 

effective cytokine regulation in developing a strong antibody response:  

Cytokine signaling emerges as a key shared pathway across various cells, 

highlighted in pathways like Cytokine Signaling in the Immune System 

(RHSA1280215), Network Map of SARS-CoV-2 Signaling Pathway 

(WP51150), and IL-17 Signaling Pathway (hsa04657) (Fig3A). 

In the “Innate immune and B-cell dominated” pathway, pathways involving 

in this categorize primarily relate to interferon signaling and pathways 

associated with the adaptive immune system (such as T cell activation and 

antigen presentation) (Fig3A). In antibody responses. Interferons are mainly 

produced by innate immune cells, such as macrophages and monocytes[36]. 

Previous studies have shown that interferons play diverse roles in regulating 

B cell antibody production, including promoting B cell activation, enhancing 

antibody responses, increasing antibody production, regulating antibody class 

switching, enhancing antibody affinity, and balancing immune reactions[36-39]. 

Our results suggest that differential responses to interferon signaling in the 

population contribute to variations in antibody production among different 

individuals, primarily mediated by cells of the innate antibody response and B 

cells. 

The last category is mainly composed of pathways related to innate 

immunity, including the Activation of innate antibody responses (GO: 000218), 

Neutrophil degranulation (RHSA6798695), cell activation (GO:0001775:), and 

cell killing (GO:0001906:). Our analysis results show that in these pathways, 

the non-innate immune cells typically include Th1, CTL, and Tc1. In terms of 

inter-pathway correlations, we observed that most pathways are strongly 

correlated (Fig3B). Antigen presentation, which is a crucial link connecting 

innate and adaptive immunity, is located in the center of the entire pathway 

regulatory network, which is not surprising. By presenting antigens to T cells, 
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antigen presentation triggers subsequent adaptive antibody responses. 

Interestingly, the cellular stress response pathways are largely uncorrelated 

with the overall pathway network. This suggests that while cellular stress 

response pathways play important roles in maintaining cellular homeostasis 

and survival, they may primarily influence the inter-individual differences in 

antibody expression through mechanisms other than direct involvement in the 

core pathways of antibody responses. 

In the immune system, different types of cells play unique roles and 

participate in antibody responses through specific signaling pathways. A total 

of eight cell types were identified, each enriched with cell type-specific 

pathways, including Th1 (12 pathways), Tc1 (12 pathways), DC (8 pathways), 

Monocyte (4 pathways), Macrophage (4 pathways), Exhausted T (3 pathways), 

Th2 (2 pathways), and CTL (1 pathway) (Fig3C). We then particularly focus in 

the specific enrichment pathway in macrophages, as they have the highest 

number of DEGs (differentially expressed genes) among cell types (Fig2F). 

We have discovered that macrophages exhibit a unique enrichment in Type I 

interferon induction and signaling during SARS-CoV-2 infection (WP4868). 

While previous research has linked the lack of the Type I interferon pathway 

to severe COVID-19 infections [40, 41], our findings suggest that the varying 

response of this pathway within macrophages in the population may account 

for differences observed following antibody vaccination. 

 

Result 4: Deciphering the Impact of Protein Complex Networks 

Produced by PBMC Cells on Antibody Expression Variability 

After depicting the pathways enriched with genes that contribute to inter-

individual differences in antibody expression, we further attempted to 

understand the interactions between the proteins encoded by these genes 

and their potential connection to antibody responses. Protein-protein 

interaction relationships were determined using metascape [34], which utilized 

the STRING and BioGrid databases [42, 43]. Additionally, the Molecular 

Complex Detection (MCODE) algorithm was employed to identify densely 

connected network components [44]. The analysis identified a total of eight 

MCODE protein complexes: MCODE1 ribosome complex network, MCODE2 

interferon complex network, MCODE3 MHC complex network, MCODE4 

inflammation response complex network, MCODE5 ATP complex network, 

MCODE6 RNA splicing complex network, MCODE7 B cell receptor complex 

network, and MCODE8 kinase transcription factor complex network (Fig4A).  

Among these, the ribosome complex network involved the largest number 
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of proteins and exhibited significantly higher enrichment compared to other 

complexes. By analyzing the cellular composition responsible for secreting 

these complexes, we found that although various cell types were involved, DC 

cells were notably the most prominently engaged (Fig4B). By targeting the 

MCODE1 ribosome complex network-related pathways, significant enrichment 

was observed in the Eukaryotic Translation Elongation (R-HSA-156842) and 

peptide chain elongation (R-HSA-156902) pathways (Fig4B). Eukaryotic 

Translation Elongation is a crucial phase in the synthesis of proteins, where 

peptide chain elongation involving the coordinated action of various ribosomal 

proteins and related factors. This ensures the accurate translation of mRNA-

encoded amino acid sequences into corresponding proteins. This mechanism 

is vital for the normal functioning of all cells, including dendritic cells (DCs) 

within the immune system. DCs act as a pivotal link between innate and 

adaptive immunity; thus, any factor that affects DC functionality could 

significantly impact immune responses [45-47].  

 

Result5: Possible mechanism of Dendritic Cells on Antibody Production 

Through Ribosome Complex Network 

Based on above findings, it's plausible to suggest that dendritic cells 

(DCs), given their significant role in the ribosome complex network, could 

influence antibody production through various mechanisms: 

1. Enhanced Antigen Presentation: DCs can boost cytokine secretion by 

TH1 cells and support the development and maturation of naive B 

cells. By controlling the production of specific proteins, DCs enhance 

their ability to process and present antigens more effectively. This 

leads to better activation of T cells and increased antibody production 

by B cells (Fig5). This mechanism serves as a key pathway by which 

DCs indirectly affect B cell antibody production [48, 49]. Our analysis 

also shows a higher proportion of complexes presented by MHCII are 

attributed to DCs (Fig4B), further supporting this pathway. 

2. Cytokine Modulation: DCs can emit pro-inflammatory cytokines, such 

as IL-6 and IL-12 [50-52], which facilitate B cell class switching (Fig5). 

This action bolsters IgG secretion via the ribosome complex network. 

3. Immune Memory Formation: DCs, through the ribosome complex 

network, contribute to the regulation of immune memory cell 

generation [53]. This is crucial for sustaining long-term antibody 

responses. While antibodies have a finite lifespan, memory B cells 

can persistently activate to produce new plasma cells, keeping 
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antibody levels against specific pathogens steady. Our data indicate 

that samples with high antibody expression 21 days post-second 

vaccination maintained elevated antibody levels at 4 months. 

However, it's important to note that this process predominantly occurs 

in the germinal centers (GC) of lymph nodes and not in the peripheral 

blood, hence it's not depicted in Fig5.  

4. Direct B Cell Maturation Induction: Evidence suggests that DCs can 

directly induce B cell maturation through receptor CD40 [54], including 

instances where conventional DCs (cDCs) present antigens directly to 

B cells [55]. 

In summary, our research demonstrates that the ribosome complex 

network, primarily facilitated by DCs, plays a crucial role in regulating antibody 

production. This underscores the intricate nature of cellular interactions and 

the critical need for precise regulation within the immune system. 

 

Discussion： 

 The study of differences in antibody production among different 

populations after vaccination is a complex issue that involves multiple 

dimensions such as genetic background, environmental factors, and lifestyle. 

With the rapid advancement of biotechnology, single-cell transcriptomics has 

emerged as a powerful tool for gaining a deeper understanding of the 

fundamental reasons behind these differences. By measuring RNA 

expression at the single-cell level, single-cell transcriptomics provides a 

unique approach to analyze the functions and states of cells, revealing unique 

expression patterns of different cell types in complex biological tissues and 

how they respond under various physiological and pathological conditions. 

In the exploration of antibody generation following vaccination, the 

application of single-cell transcriptomics has demonstrated its unique value. 

Firstly, it enables the identification of key cell subtypes involved in the 

antibody response, including rare cell types that may be overlooked in 

population-level analyses. This detailed analysis provides a more 

comprehensive understanding of the antibody response. Secondly, by 

comparing the gene expression differences of the same cell types among 

different individuals, single-cell transcriptomics helps identify key genes and 

signaling pathways that may influence antibody production. This is crucial for 

uncovering the molecular mechanisms underlying differences in antibody 

production. Finally, by observing changes in cellular transcriptomes after 

vaccination, single-cell transcriptomics can help us gain a deeper 
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understanding of the regulatory mechanisms of the antibody response. This 

includes identifying the cell types and molecules involved in antibody 

production and regulation, thus providing valuable insights into how the 

immune system responds to vaccination. 

Analyzing transcriptome data four months after vaccination provides a 

unique perspective in understanding the differences in antibody generation 

among different populations. This time frame allows the immune system to 

mount an initial response to the vaccine and enter a relatively stable memory 

phase, reflecting the variation in immune memory formation and antibody 

production among individuals. By analyzing the transcriptome at this crucial 

time point, researchers can deeply evaluate the formation of long-term 

immune memory. This includes observing the transcriptomic changes in 

memory cells and other key immune cells to understand how immune memory 

is established in different populations, revealing factors that influence long-

term immune protection. Additionally, this analysis can help identify factors 

that continue to impact antibody levels post-vaccination, such as persistent 

gene expression patterns and cellular state changes. This may include 

chronic inflammatory responses or alterations in cellular metabolism, both of 

which could have significant effects on antibody production and persistence. 

Furthermore, through transcriptome analysis, researchers can track potential 

mechanisms leading to immune evasion. If differences in antibody production 

exist, this analysis can uncover potential reasons for these differences, such 

as changes in antigen-presenting cell function, which are crucial for 

understanding individual variations in vaccine efficacy. 

This study employs single-cell transcriptomic sequencing technology to 

conduct innovative research aimed at revealing the molecular mechanisms 

underlying differences in antibody production following vaccination. The main 

findings of this study cover several key aspects. Firstly, the research 

successfully identified genes and cell subpopulations closely associated with 

differences in antibody production among individuals. This discovery 

highlights the roles of specific genes and cell subpopulations in the antibody 

generation process and emphasizes the importance of innate antibody 

response cells, providing a new perspective on understanding differences in 

antibody responses among different populations. Secondly, the study 

identified the central role of the ribosomal complex network in regulating 

antibody production. Through analysis of peripheral blood transcriptomic 

expression complexes, the research revealed the potential key role played by 

the ribosomal complex network, predominantly led by dendritic cells (DCs), in 
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regulating antibody production. This finding presents new targets for future 

design of targeted immune intervention strategies, particularly in optimizing 

vaccine design (such as considering the targeted addition or enhancement of 

certain cell types or pathways to achieve better antibody response effects, 

and in improving immune efficiency) and enhancing immune efficiency.  

Of particular note is the significant potential of single-cell transcriptomic 

data in evaluating cytokine profiles and assessing immune storm occurrences 

post-vaccination. Cytokines, as messengers in the immune system, reflect the 

immune system's active state and potential abnormal reactions through 

changes in their expression patterns. Through single-cell transcriptomic 

analysis, we can precisely identify the activated cell subpopulations 

responding post-vaccination and the specific cytokines they secrete. This not 

only aids in a better understanding of how vaccines trigger protective antibody 

responses but also helps us predict and mitigate potential adverse reactions, 

such as immune storms. Furthermore, by integrating single-cell transcriptomic 

data with traditional antibody response assessment data, we can construct 

more comprehensive and precise antibody response models. These models 

not only provide crucial biological foundations for vaccine design and 

assessment but also offer guidance for future personalized immunotherapy 

strategies. 

In conclusion, while directly predicting specific antibody levels using 

single-cell transcriptomic data currently faces technical and data challenges, 

our research demonstrates the vast potential of single-cell transcriptomics in 

deeply understanding the mechanisms of antibody responses triggered by 

vaccines. We believe that with technological advancements and the 

accumulation of more high-quality data, single-cell transcriptomics will play an 

increasingly important role in future vaccine research and immunotherapy 

fields. 
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Method 

Study subjects 

Healthy adult individuals who had received the COVID-19 vaccine were 

recruited as study subjects. In order to ensure data reliability and consistency, 

the following inclusion criteria were established: 1) participants with no prior 

SARS-CoV-2 infection who had completed the two-dose regimen of the 

inactivated COVID-19 vaccine; 2) the interval between the initial and booster 

doses was 3 to 4 weeks; 3) the final vaccination occurred between July 15, 

2020, and August 30, 2020. Details including vaccination dates, gender, and 

age were recorded for each participant, with blood samples collected 21 days 

post-second dose and between 135 to 140 days post-vaccination to assess 

serum IgG antibody levels. Blood collection took place at BGI YouKang Clinic. 

All participants provided informed consent, and the study was approved by 

the BGI Institutional Review Board (approval number BGI-IRB 20161). 

 

Antibody Detection 

The SARS-CoV-2 RBD/S antibody detection kit (HWTS-RT055A, Macro & 

Micro-Test) was used to identify SARS-COV-2 specific IgG antibodies. This kit 

operates on a double-antigen sandwich enzyme-linked immunosorbent assay 

principle, with the SARS-CoV-2 RBD antigen initially coated on the microplate. 

Following this, blood samples are diluted in gradients and added to the 

microplate, then incubated with an enzyme-labeled antigen. In the presence 

of antibodies against the SARS-CoV-2 S protein RBD region, a "coated RBD 

antigen-SARS-CoV-2 antibody-enzyme-labeled RBD antigen" complex is 

formed. Addition of a chromogenic substrate leads to the enzyme catalyzing 

the production of a blue substrate. The reaction is halted, resulting in the 

substrate turning yellow. If RBD or S antibodies are absent in the sample, no 

color change occurs. The ELISA reader measures the OD value of the 

reaction, and positivity or negativity is determined based on a predefined 

cutoff value. The reciprocal of the dilution at which the OD falls below the 

critical reference value corresponds to the antibody titer in the serum. 

 

Peripheral blood mononuclear cell (PBMC) collection  

For each participate, Peripheral blood samples (3 mL) were collected into 

EDTA anticoagulant tubes and gently mixed by inverting 4-6 times. The whole 

blood was then diluted with 3 mL of phosphate-buffered saline (PBS) and 

transferred to a 15 mL centrifuge tube. Using Ficoll-Paque Plus (Sigma Aldrich) 

solution, PBMCs were isolated following standard density gradient 
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centrifugation methods. Cell collection and counting were performed using the 

Cellaca MX high-throughput cell counter (Nexcelom Bioscience). The isolated 

PBMCs were resuspended in a freezing medium consisting of 90% fetal 

bovine serum (FBS, HyClone) and 10% DMSO, followed by freezing at -80°C 

for 24 hours using Nalgene® Mr. Frosty Cryo 1°C freezing containers (Thermo 

Fisher Scientific) before long-term storage in liquid nitrogen. All procedures 

were carried out under sterile conditions. 

 

Single-nucleus suspension preparation 

Frozen PBMC storage vials were rapidly thawed in a 37°C water bath for 

approximately 2 minutes until only a small ice crystal remained. Thawed 

PBMCs were quenched with 4 mL of pre-warmed 1X phosphate-buffered 

saline (PBS, Thermo Fisher Scientific) at 37°C and supplemented with 10% 

FBS. The mixture was centrifuged at 500 x g for 10 minutes at room 

temperature. The supernatant was removed, and the cell pellet was 

resuspended in 3 mL of 1X PBS containing 0.04% bovine serum albumin 

(BSA, Sangon Biotech). 

The resuspended cells were filtered through a 40 μm cell strainer (Falcon) 

and then subjected to centrifugation. Following the manufacturer's protocol, 

dead cells were removed using magnetic bead purification (Miltenyi Biotech) 

before proceeding to single-cell RNA sequencing (scRNA-seq). The cells 

were resuspended in a cell resuspension buffer to achieve a concentration of 

1000 cells/μL. 

 

Library construction and Single-cell RNA-seq 

We prepared scRNA-seq libraries using the DNBelab C single-cell library 

preparation kit (MGI, #1000021082) following previously reported methods. 

Briefly, cell nuclei were resuspended in a PBS solution containing 0.04% BSA 

and filtered through a 40μm cell strainer. The concentration of the cell 

suspension was recorded and measured for the use of DNBelab C single-cell 

library preparation kit (MGI, #1000021082) to generate droplets. After 

collecting the mixed droplets, emulsion breaking was performed, followed by 

reverse transcription, cDNA and oligonucleotide amplification, and product 

filtration. Oligonucleotide products were then barcode-labeled for PCR to 

create oligonucleotide circular libraries, while cDNA products were prepared 

into single-stranded DNA libraries. Finally, sequencing was conducted at the 

China National GeneBank (Shenzhen) using the DNBSEQ-T1 sequencer with 

a read length of 30bp for reads1 and 100bp for reads2.  
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Single-cell RNA-seq data processing  

The raw sequencing reads of DIPSEQ-T1 were filtered and demultiplexed 

by PISA (v.0.2) (https://github.com/shiquan/PISA). The reads were aligned to 

the human genome (GRCh38_release95) using STAR (v.2.7.4a)[56] and 

sorted using Sambamba (v.0.7.0)[57]. Doublet and contaminant cells were 

rigorously filtered based on clustering in the UMAP embedding space, 

unmarked expression, and estimation using DoubletFinder[58]. Cells with 

feature counts below 200 or above 4000 (filtered out) and cells with 

mitochondrial UMI counts exceeding 10% (filtered out) were removed from the 

gene-cell matrix. Prior to filtering, the median gene count per cell across all 

cells was 3628 [IQR 2118-5497], and the median feature count was 1222 

[IQR 848-1625]. After filtering, the median gene count per cell across all cells 

was 3768 [IQR 2287–5600], and the median feature count was 1253 [IQR 

890–1645]. The SCTransform function in Seurat (version 4.1.1) was 

performed to normalize the data for further clustering purposes. 

 

Cell clustering, annotation, and DEGs identify 

PCA and UMAP were used for dimensionality reduction in Seurat (version 

4.1.1)[59]. Based on markerset1 in the Supplementally Table 1, the first 20 

principal components were utilized for UMAP projection and clustering 

analysis to differentiate innate immune cells, B cells, and T cells into three 

clusters. Subsequently, the Innate cells subtype marker set (dim=10, 

resolution=0.2), B cells subtype marker set (dim=15, resolution=0.2), CD4+ T 

cell subtype marker set (dim=14, resolution=0.4), and CD8+ T cell subtype 

marker set (dim=10, resolution=0.4) were used to identify subtypes within the 

three clusters. Following subtype identification, the barcode information from 

each cell-id was used to mapped back to the original three-cluster plot to 

visualize the cellular subtypes. For differential gene identification, the Seurat 

FindAllMarkers function was employed to recognize differentially expressed 

genes between clusters, with the parameters set as pos = TRUE, min.pct = 

0.25, logfc.threshold = 0.25, test.use = 'wilcox'. Genes with an adjusted p-

value < 0.01 were considered differentially expressed. 

For achieve the goal of annotation of classical PBMC cell types, we 

employed a three-step approach. Firstly, we used a set of markers to classify 

all cells into innate immune cells, B cells, and T cells (Figure S6). Secondly, 

we further subdivided these three major cell types into subtypes by extracting 

different clusters and using distinct subtype markers (Figures 1C-F and Figure 
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S8-S15). After subtyping, in the third step, we remapped back to the original 

clustering diagram for visualization, resulting in Figure 1B. It is important to 

note that the results of differential gene expression and cell composition 

analysis presented in this study are based on cell subtype classification and 

not on the clustering visualization in Figure 1B. We believe that the results 

obtained by further subclassifying cell types using subtype markers, although 

eliminating cells that cannot be differentiated using subtype markers, are 

more accurate due to the use of additional subtype markers and finer 

subdivision within subtypes. Moreover, in subtype annotation, we also 

considered the issue of cell type proportions, enhancing the accuracy of 

subtype analysis. Specific code can be found in the Code Available Part. 

 

Differential Gene Enrichment and Protein Interaction Analysis 

The enrichment analysis of the differentially expressed genes in the 

transcriptome was conducted using the Metascape software[34]. Specifically, 

the differential genes from various cell types were tabulated and uploaded to 

the Metascape online software, and the resulting data was further processed 

using default parameters. For the differential genes in different cell types, we 

utilized Venn diagrams, violin plots, and bar charts for visualization. The Venn 

diagram was created using the online software Eveen[60], the violin plot used 

the built-in function VlinPlot in Seurat, and the bar chart was generated using 

ggplot2[61]. 

By calculating the proportion of enriched pathways across all cell types, 

the representative 20 pathways were categorized into three groups: Common 

Pathway, Innate Immunity and B-cell Dominance, and Innate Immunity 

Dominant. The selection of representative pathways was based on the 

significance of the p-value and the cell type proportion. The pathway 

enrichment heatmap was plotted using the pheatmap (version 1.0.12) 

package in R. The network enrichment diagram was directly produced by 

Metascape, while the petal diagram was drawn using Eveen. 

The MCODE network diagram was created by downloading the network 

generated by Metascape and visualizing it in Cytoscape[62]. The bubble 

charts for the pathways involved in each MCODE were plotted using R 

package ggplot2[61]. 
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Figure 1: Transcriptomic Profiles of Individuals with Different Antibody Titers Four 

Months Post SARS-CoV-2 Vaccination 

(A) Overview of Study Design. A total of 27 participants were enrolled in this study. They 

were classified into high, median, and low groups based on the antibody titers measured 

on day 21 and day 135 post-vaccination. All samples' PBMCs on day 135 were subjected 

to Single-Cell Transcriptomics Sequencing. (B-F) Overall Transcriptomic Landscape of 

PBMCs from 27 Samples. An integrated transcription map from all participants (B), 

transcription map colored by three cell types (C), Innate Immune Cells (D), B cells (E), and 

CD8+ T Cells (F). (G) Cell Proportion Analysis Across 27 Cell Clusters. The x-axis 

represents the sample grouping, and the y-axis represents the cell proportion. (H) A 

histogram displaying the antibody titers on Day 21 post-vaccination, based on data from 

124 healthy donors who received two doses of the COVID-19 inactivated vaccine. (I) Graph 

illustrating the differences in antibody titers between groups, with group categories on the 

x-axis and antibody titers on the y-axis. Each panel represents the time interval after the 

second vaccine dose. The differences between each pair of groups are calculated using 

Wilcoxon test and displayed as p-values. 
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Figure 2: Differential Expression Genes (DEGs) Affecting Antibody Titers Across 

Various Cell Types 

(A-D) Venn diagrams illustrating the DEGs that influence antibody titers. These diagrams 

are presented for collections of innate immune cells (A), B cells (B), CD4+ T cells (C), and 

CD8+ T cells (D). (E) Violin plot showed DEGs that exhibit significant differences across 

various antibody titer groups. (F) Displays the count of DEGs within different types of cells. 

The x-axis denotes the categories of cells, while the y-axis indicates the number of DEGs. 

In the upper panel, the counts of DEGs are distinguished by colors, with genes positively 

correlated with antibodies marked in red and those negatively correlated marked in blue. 

The lower panel uses different colors to indicate the origins of the DEGs identified. Genes 

originating from the Normal vs High group are highlighted in purple, those from the Low vs 

Normal group in green, and the intersection of these two groups is shown in yellow. 
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Figure 3. Enrichment Map of Differential Genes Influencing Antibody Expression in 

Various Cells 

(A) Heatmap illustrating the enrichment of biological terms that influence antibody 

expression across different cell types. The x-axis lists the categories of cells, while the y-

axis lists representative biological terms from similar term clusters. The color intensity 

within each cell of the heatmap signifies the level of enrichment significance, with gray 

indicating a lack of enrichment for that pathway in the specified cell type. (B) Network 

diagram that visualizes the enrichment biological terms impacting antibody expression in 

various cells. Pathways with similarities are grouped together. The size of each node within 

the network correlates with the degree of enrichment significance. Node colors are 

consistent with those in panel A, representing biological terms from different enrichment 

clusters. The number of nodes reflects the number of pathways associated with each term. 

(C) Petal diagram for the enrichment terms associated with biological terms that affect 

antibody expression in different cells. The center of the petal represents pathways shared 

across cell types, while the petals indicate the count of unique pathways specific to 

individual cell types. The right panel of this diagram showcases some significant cell-

specific terms. 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 8, 2024. ; https://doi.org/10.1101/2024.04.07.24305443doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.07.24305443
http://creativecommons.org/licenses/by/4.0/


RBL2

HLA-DRA

RPS28

RAC1

HLA-DQB1
RPS26

ITGB2

HLA-DQA2RPS24

ITGB1

HLA-DQA1

RPS17

ID2

HLA-DPB1

RPS15A

FOS

HLA-DPA1
RPS14

FCER1G

CTSS
RPS11

FCER1A

CTSD

RPS6

CYBA

CD74

RPS4Y1

PSME2

CD3D

RPS3A

PSME1

XAF1

RPS2

PSMB9

SAMHD1

RPL39

NFKBIA

IFITM2

RPL29

RBM25

IFITM3RPL28

SRRM2

IFITM1

RPL30

DDX17

STAT2

RPL23A

ISG15

STAT1

RPL19

UBE2L6

IRF7

RPL18A

PFN1

IRF1

RPL18

MYBL1

IFIT3

RPL17

APOBEC3A

HLA-C

RPL13

UQCR11

HLA-B

RPL10

ND4L

GNB2

RPL9

ND4

GBP2

RPL6

ND3

RPS10-NUDT3

RPL5

ND2

RPL36A

RPL10A

ND1

RPL17-C18

RPSA

JUND

CYTB

RPL13A

EEF2

JUNB

COX2

RPL35

EEF1A1

FOSB

COX1

UBC

TUBA1B

HLA-DRB5

UBB

S100A9

HLA-DRB1

UBA52

MCODE 1 MCODE 2 MCODE 3

MCODE 8 MCODE 7 MCODE 6 MCODE 5 MCODE 4

A
M

C
O

D
E_

8
M

C
O

D
E_

7
M

C
O

D
E_

6
M

C
O

D
E_

5
M

C
O

D
E_

4
M

C
O

D
E_

3
M

C
O

D
E_

2
M

C
O

D
E_

1

0 250 500 750
Enrichment Score

Log q value

GeneInHitList

10

20

30

ITGB1

HLA-DQA1

RPS17

ID2

HLA-DPB1

RPS15A

FOS

HLA-DPA1

RPS14

FCER1G

CTSS

RPS11

FCER1A

CTSD

RPS6

CYBA

CD74

RPS4Y1

PSME2

CD3D

RPS3A

PSME1

XAF1

RPS2

PSMB9

SAMHD1

RPL39

NFKBIA

IFITM2

RPL29

RBM25

IFITM3

RPL28

SRRM2

IFITM1

RPL30

DDX17

STAT2

RPL23A

ISG15

STAT1

RPL19

UBE2L6

IRF7

RPL18A

PFN1

IRF1

RPL18

MYBL1

IFIT3

RPL17

APOBEC3A

HLA-C

RPL13

UQCR11

HLA-B

RPL10

ND4L

GNB2

RPL9

ND4

GBP2

RPL6

ND3

RPS10-NUDT3

RPL5

ND2

RPL36A-HNRNPH2

RPL10A

ND1

RPL17-C18orf32

RPSA

JUND

CYTB

RPL13A

EEF2

JUNB

COX2

RPL35

EEF1A1

FOSB

COX1

UBC

TUBA1B

HLA-DRB5

UBB

S100A9

HLA-DRB1

UBA52

RBL2

HLA-DRA

RPS28

RAC1

HLA-DQB1

RPS26

ITGB2

HLA-DQA2

RPS24

B

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 8, 2024. ; https://doi.org/10.1101/2024.04.07.24305443doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.07.24305443
http://creativecommons.org/licenses/by/4.0/


Figure 4. Protein Interaction Networks in Peripheral Blood Affecting Antibody 

Expression 

(A) Protein complexes in peripheral blood affecting antibody expression predicted using 

the Molecular Complex Detection (MCODE) algorithm. Each complex is represented by a 

distinct color. Each node within these complexes corresponds to a protein that is translated 

from one of the DEGs previously identified on antibody expression. (B) The left panel 

presents a dot plot illustrating the biological pathways associated with the complexes 

identified in part A. The enrichment score is plotted on the x-axis, while various enrichment 

terms are listed on the y-axis. The size of each dot reflects the count of genes present in 

the corresponding enriched pathway, and the color of the dots indicates the significance 

level of enrichment. The right panel outlines the cellular origins of each protein within the 

complexes, with different cell types distinguished by unique colors. 
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Figure 5: Dendritic Cells (DCs) and Their Role in Ribosome Complex Network-

Mediated Antibody Production. This figure showcases the complex influence of 

dendritic cells (DCs) within the ribosome complex network on antibody 

secretion. It highlights three primary mechanisms through which DCs can either 

directly or indirectly affect B cell antibody production: 1). Enhanced Antigen 

Presentation: Illustration includes a DC presenting antigens to a T helper cell 

(TH1) via MHC II. This process fosters interactions between activated T cells 

and naive B cells, ultimately leading to B cell maturation and an increase in 

antibody production. 2). Cytokine Modulation: Depicts a DC releasing pro-

inflammatory cytokines (IL-6 and IL-12), which facilitate B cell class switching 

and the secretion of IgG antibodies. 3). Direct B Cell Maturation Induction: 

Shows a DC directly engaging with a B cell through the CD40 receptor, CD80-

CD28 interaction, or by presenting antigens to B cells, thereby inducing B cell 

maturation. Each pathway underscores the significant regulatory capabilities of 

DCs in modulating immune responses and enhancing antibody secretion. 

Figure Created with BioRender.com, with permission. 
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