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ABSTRACT 
Culture is currently the gold standard for diagnosis of urinary tract infections (UTIs); however, it 
has poor sensitivity detecting urogenital pathogens, especially if patients have already initiated 
antimicrobial therapy, or have an infection from an organism that is not commonly cultured.  
False negative urine culture results can lead to the inappropriate use of antimicrobial therapies 
or to the progression to urosepsis in high-risk patients. Though not commonly applied to urine in 
a clinical setting, Next-generation sequencing (NGS)-based metagenomics offer a solution as a 
precision diagnostic. We developed and validated BIOTIA-ID, a clinical-grade NGS-based 
diagnostic pipeline for the detection and identification of pathogens in urine specimens. 
Remnant clinical urine specimens, and contrived sterile urine spiked with common UTI 
pathogens, were processed with our end-to-end assay including extraction, metagenomic library 
preparation and Illumina NextSeq 550 sequencing.  We trained and applied a bioinformatic 
pipeline that uses machine learning (ML) to identify pathogens. Internal controls and other 
quality control measures were incorporated into the process to provide rigorous and 
standardized results. The assay was tested on 1,470 urine specimens and achieved 99.92% 
sensitivity, 99.95% specificity and a limit of detection (LoD) of <25,000 CFU/mL and <5,000 
CFU/mL in bacteria and fungi, respectively. Discordant results were reconciled with additional 
testing by target-specific qPCR or 16S Sanger sequencing; 87% of the NGS results were 
ultimately determined to be the correct result. Overall, these data demonstrate that BIOTIA-ID is 
a highly accurate clinical-grade diagnostic tool with notable advantages over current culture-
based diagnostics. 
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INTRODUCTION 
Annually, 11 million people in the United States and 404 million people worldwide are 

diagnosed with a urinary tract infection (UTI) (1, 2). Immunocompromised patients and patients 
with urological conditions are at higher risk to develop complicated and/or recurrent UTI 
(cUTI/rUTI) as well as to progress to urosepsis, resulting in higher morbidity and mortality and 
increased cost of care(3–8). In hospitalized patients, UTIs are associated with 2.3% of the 
mortality rate and an estimated annual cost of $340 to $450 million in the United States 
alone(1). Approximately 30% of septic patients have an infection originating from the urogenital 
tract, with a multinational study revealing that 12% of nosocomial UTI patients progressed to 
urosepsis (7, 9). Rapidly identifying UTI pathogens in high-risk patients is crucial to 
administering an appropriate treatment and minimizing unnecessary broad-spectrum antibiotic 
use.  

Urine culture is the standard of care (SOC) for the detection and identification of 
pathogens causing UTIs. However, culture-dependent approaches are focused on an 
Enterobacterales-centric paradigm which is based on assumptions that urine is sterile (10–14), 
disregards mixed infections as contamination (15–17), and is based on clinical studies 
employing heterogeneous definitions and thresholds for a UTI (18, 19). Culture has several 
limitations, including: (1) an inability to identify hard-to-grow microbial organisms, such as 
anaerobes and fungi; (2) challenges in identifying rare pathogens or organisms not routinely 
cultured; and (3) risk of false negative results for patients being treated with antibiotics (20–23). 
Long diagnostic turnaround time (TAT) or inconclusive results could lead to the empiric 
treatment of suspected infections with broad-spectrum antibiotics that are often inappropriate 
and may contribute to increased rates of drug resistance (24, 25).   

The emergence of new molecular and culture-based techniques has underscored the 
drawbacks of traditional culture and challenged our understanding of UTIs, raising questions 
around what is considered a urogenital pathogen and the role of mixed bacterial communities in 
UTIs(12, 20, 26–32).  Genomics-based assays enable direct specimen analysis without the 
need for culturing by sequencing genetic material, which is analyzed for the presence of 
pathogenic organisms through detection of their DNA. By comparing detected genetic 
sequences to a comprehensive microbial genome database, genomics-based tests can 
accurately and rapidly identify pathogens in cUTI samples, which may have atypical pathogens, 
multiple co-infecting organisms, and complex drug resistance profiles. Concerns have been 
raised about the sensitivity of molecular approaches to differentiate between opportunistic and 
commensal pathogen detection and differentiation of colonization versus infection (30, 33–36). 
However, careful development of genomics-based assays that center on extensive validation 
leveraging culture, molecular and bioinformatics techniques can increase the utility of this 
methodology in routine clinical practice, thus offering promising supplemental testing method to 
the current gold standard UTI testing.   

Here, we developed, optimized, and clinically validated a (NGS)-based urine assay, 
BIOTIA-ID, that has high diagnostic sensitivity and specificity and provides comprehensive 
detection of urogenital pathogens within a single test. 
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MATERIALS AND METHODS 
Clinical Validation Strategy.  
All specimens were processed with our version-controlled BIOTIA-ID Urine NGS Assay 
laboratory protocol, analytical pipeline, and reference microbial database in Biotia’s CLIA-
certified laboratory. The assay and clinical validation were designed based on New York State 
Department of Health validation guidelines for submission of a Laboratory Developed Test for 
bacteriology and mycology nucleic acid amplification assays. An overview of the assay workflow 
and clinical validation design is illustrated in Figure 1.  
 
Clinical Specimens and Reference Materials.  
Deidentified urine specimens in urine transport tubes (UTT) were collected as residual samples 
after routine clinical testing from different microbiology reference laboratories and were provided 
with the culture results for each specimen following their standard operating procedures to 
report pathogens. Samples were collected and processed under an institutional review board 
(Advarra Pro00038083) without demographic information. A collection of clinical and reference 
isolates (ATCC, Zeptometrix) was also used for the clinical validation including bacteria, fungi, 
viruses, and parasites (listed in Table 1). Reference and clinical microbial isolates used in the 
contrived specimens were inoculated and grown in Tryptic Soy Agar with 5% Sheep Blood at 
37oC for 24-48 hours.  
 
Clinical-Grade Metagenomic Sequencing for Infectious Disease Diagnostics.  
BIOTIA-ID Urine NGS Assay. Genomic DNA (gDNA) extraction from 2 mL of urine was 
performed with QIACube-MDx and yields were quantified with the Qubit Flex. Normalized gDNA 
was spiked with 5% internal positive control (IPC) and processed with the Illumina DNA prep 
library preparation kit. Libraries were quality checked for size and concentration with 
Tapestation 4200 and Qubit Flex, respectively. Libraries were pooled in equimolar 
concentrations and sequenced on an Illumina NextSeq 550 platform. 
 
Assay Controls. Each NGS run includes three external controls and one internal control, which 
are processed with each batch of samples. The external controls consist of a no template 
control (NTC, nuclease free water), positive control (PC, Zymobiomics) and negative extraction 
control (NEC, negative urine matrix). The IPC is a proprietary gDNA that is spiked into each 
sample at 5%. 
 
BIOTIA-DX Software. After sequencing, the FastQ files were first subjected to a filtering step 
which removed low-quality reads and sequencing adapters. Detection of the internal positive 
control was performed for each sample as a confirmation of overall sequencing quality. Human 
sequence data was then removed from downstream analysis. The remaining reads were first 
compared against a large database of microbial genomes in a coarse classification step using a 
commonly used metagenomics tool, kraken2 (37). We use a custom kraken2 microbial 
database within BIOTIA-DX that includes curated, high-quality genetic sequences from 
bacterial, fungal, viral, and non-fungal eukaryotic parasitic organisms. In total, more than 7,000 
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organisms are represented in the database, with diverse representation of microbial species 
and strains.  
 
Despite any degree of database curation, metagenomics tools often result in spurious, false 
positive hits, which has historically made it difficult to use NGS in a clinical diagnostic 
setting(38–41). To distinguish between clinically relevant infections, off-target spurious hits by 
the metagenomics software, or low levels of cross-contamination, we designed a classifier using 
ML that estimates the probability that a microbial organism is present in a sample. Targets 
exceeding predefined kraken2 thresholds in the coarse classification step were tested using this 
ML classifier in a fine classification step. Finally, organisms which exceeded a pre-defined 
probability threshold from the classifier were called as present in the sample.  
 
Pre-Validation (BIOTIA-DX Training Set). 
To ensure clinical-grade diagnostic accuracy of these detection thresholds, we trained our ML 
classifier to recognize clinical-level infections using a training set of clinical samples with known 
and orthogonally validated infectious organisms. We sequenced and tested a pre-validation 
sample set of 114 clinical urine samples with known organisms identified by culture, and in 
cases where our algorithm results differed from culture results, we used PCR testing as a 
comparator assay. Results from PCR tests were then used to update the list of known 
organisms in the pre-validation set and re-train the ML classifier with the updated results. The 
classifier uses a variety of bioinformatic features chosen specifically to distinguish true infections 
from false positives. These features were calculated for each organism being tested and 
included statistics such as the depth and evenness of genome coverage, read identity to 
reference genomes, and the quality of assembled contigs. 
 
Analytical Validation. 
Specificity. Reference organisms and clinical isolates were tested and validated to establish the 
specificity of the assay. Whole organisms of urogenital pathogens detected by the assay, 
genetically related organisms, and other organisms that can be present in urine specimens were 
tested by spiking microbial cells into negative urine matrix.  A total of 69 microbial species 
(bacteria, fungi, viruses, and parasites) and 154 strains were evaluated (Table 1).  Microbial 
isolates were spiked into a negative urine matrix at concentrations of 25,000-50,000 CFU/mL 
and processed with the assay. 
 
Analytical Sensitivity. The analytical sensitivity was assessed in 16 of the most prevalent 
urogenital pathogens, by spiking reference whole organisms into negative urine matrix 
(Bacteria: Acinetobacter baumanii, Bacteroides fragilis, Escherichia coli, Enterococcus faecalis, 
Gardnerella vaginalis, Klebsiella pneumoniae, Prevotella spp., Proteus mirabilis, Pseudomonas 
aeruginosa and Staphylococcus aureus; Fungi: Candida albicans, Candida auris, Candida 
glabrata, Candida krusei, Candida parapsilosis, Candida tropicalis). Serial dilutions of each 
pathogen were spiked in triplicate followed by gDNA extraction. The limit of detection was 
defined when the target organism is detected in ≥95% of the samples. 
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In silico Analytical Specificity. To assess the analytical specificity of our pipeline, we used a total 
of 12,264 RefSeq genomes from 5,847 unique bacteria, eukaryotic organisms, and viruses, to 
simulate sequencing files with 100,000 reads each. A random mutation rate of 0.5% was 
applied during simulation to introduce a reasonable degree of variability. Simulated read files 
were then run through BIOTIA-DX in an identical manner to sequenced laboratory samples and 
tested for key organisms to assess the potential for organisms outside our laboratory sample set 
to generate false positive results for key organisms. 
 
Inter/Intra-Reproducibility. For assessment of the reproducibility in bacterial detection, five 
different pools containing one clinical strain each of E. coli, E. faecalis, K. pneumoniae, P. 
mirabilis and S. aureus were tested.  Each pool had different strains for each species 
(altogether 25 different strains) and were spiked into a negative urine matrix at a concentration 
of 25,000 CFU/mL per analyte. Each pool was then tested daily for three consecutive days in 
three technical replicates for a total of 15 replicates per pool), 45 replicates per analyte and 6 
negative samples. A smaller follow up study sought to evaluate reproducibility of bacterial 
detection at different concentrations 100,000 CFU/mL (high), 25,000 and 20,000 CFU/mL 
(medium) and 15,000 CFU/mL (low). Two bacterial pools per concentration were tested in 
triplicate across three different days for a total of 9 replicates per concentration per analyte. A 
similar experimental design was performed to assess fungal reproducibility of ten fungal 
analytes. Five different pools each containing one different strain of C. albicans, C. auris, C. 
glabrata, C. krusei, C. parapsilosis, and C. tropicalis and a sixth pool with one strain of C. 
dubliniensis, C. guilliermondii, C. kefyr and C. lusitaniae were tested in triplicate across three 
different days. A total of 15 replicates per pool, 45 replicates per analyte and 27 negative 
samples were evaluated. 
 
Clinical validation.  
Accuracy. We tested a combination of urine clinical specimens and contrived samples (whole 
organism microbial reference strains and clinical isolates spiked into negative clinical matrix) to 
assess accuracy. Deidentified, remnant clinical urine samples were obtained from a reference 
laboratory and stored at -80°C until processing with the assay. Urine clinical samples were 
collected based on the pathogens diagnosed by culture.  At least 30 specimens each with the 
most common urogenital pathogens (E. coli, E. faecalis, K. pneumoniae, P. mirabilis and S. 
aureus) were collected.  When fewer than 30 samples for a given pathogen were available, 
contrived specimens were used to bring the total number of samples for that target to 30 (a total 
of 335 samples; 167 clinical specimens and 168 contrived). Contrived samples were used for S. 
aureus (n=30), P. mirabilis (n=9), K. pneumoniae (n=8), C. albicans (n=33), C. auris (n=30), C. 
glabrata (n=30), C. krusei (n=33), C. parapsilosis (n=34), C. tropicalis (n=30) with a spike in 
concentration close to the LoD (~2.5 - 5× LoD). In addition, 35 specimens negative by culture 
were tested. 
 
Comparator Testing. gDNA from urine specimens was used to perform confirmatory testing of 
clinical samples yielding results in which NGS and culture findings did not agree.  Discrepant 
results were adjudicated either with qPCR or Sanger Sequencing. Taxa- or group-specific 
molecular assays were used to amplify analytes of interest (primers and references are listed in 
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Supplemental Table 1). PCR amplicons were sent for Sanger sequencing and consensus 
sequences were used to determine percent identity of the organism detected in the clinical 
specimen. A total of 8 different target-specific qPCR assays and 8 Sanger sequencing assays 
were used to test 123 discrepant taxa and 19 concordant taxa.  
 
Code Availability. The BIOTIA-DX software used is described in the Methods section. The 
software leverages the following openly available tools: fastp v0.23.3, bowtie2 v2.5.1, minimap2 
v2.22, SNAP aligner 2.0.3, samtools v1.6, and kraken2 v2.1.3. The ML classifier is a proprietary 
portion of the code(37, 42–46). 
 
Data Availability. The data supporting the study findings are available from the corresponding 
author on request. Sequencing data that support the finding of this study (with human reads 
removed) have been deposited in GeoSeeq, a publicly available metagenomic platform, and 
available upon request.  
 
RESULTS 
We developed an end-to-end urine clinical diagnostic metagenomics assay to detect urogenital 
pathogens and validated its performance on 1,470 samples sequenced in 65 sequencing runs 
(Figure 1). Clinical and analytical validation experiments were conducted with clinical and 
contrived specimens to assess specificity, sensitivity, BIOTIA-DX in silico performance, 
reproducibility, and accuracy (Figure 1B).  
  
Microbial read counts, IPC detection, and external positive (PC) and negative controls (NEC 
and NTC) sequencing performance was assessed. Validation samples averaged 7.9M raw 
reads and 4.7M microbial reads after human removal (Figure 2A). The PC generated similar 
read depths as testing samples, while the NEC and NTC had reads < 750K. The IPC was 
detected within expected range (1-5% relative abundance), except in the negative controls (75% 
relative abundance) (Figure 2B). 
 
Key performance characteristics of BIOTIA-ID.  
SPECIFICITY 
The similarity among different microbial genomes, the diversity of clinical isolates from reference 
genomes and contaminating DNA fragments impacts the analytical sensitivity of a metagenomic 
test. Urogenital pathogens detected by the assay and genetically related organisms were 
processed with BIOTIA-ID (Table 1), yielding a sensitivity and specificity of 100% and 99.96% 
for bacterial targets and 100% sensitivity and specificity for fungal targets. During assay 
development, several taxa not extensively represented in the clinical training set generated false 
positive and false negative results leading us to process 64 additional species in 80 contrived 
urine samples to feed more training data to the model. This approach coupled with 
hyperparameter tuning of the model ensued the increased sensitivity and specificity reported 
above.  
 
SENSITIVITY 
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The analytical sensitivity studies established the lowest concentration of pathogen reliably 
detected by our assay. Ten bacterial and six fungal species were tested as 6 replicates per 
concentration, per analyte evaluated (Figure 3A). A total of 709 contrived specimens were 
processed resulting in an overall LoD of <25,000 CFU/mL for bacteria and <5,000 CFU/mL for 
fungi. Specifically, the LoDs established were 1,000 CFU/mL for C. glabrata, C. krusei, C. 
parapsilosis, C. tropicalis; 5,000 CFU/mL for C. albicans and C. auris; 7,500 CFU/mL for E. coli, 
G. vaginalis, K. pneumoniae and P. mirabilis; 10,000 CFU/mL for E. faecalis; 12,500 CFU/mL 
for Prevotella spp.; 15,000 CFU/mL for A. baumanii and S. aureus; and 25,000 CFU/mL for B. 
fragilis and P. aeruginosa (Figure 3B).  
 
REPRODUCIBILITY 
Qualitative precision was established with inter- and intra-assay reproducibility experiments in 
which 19 different contrived pools containing at least 3-6 different microbial species were 
assessed. To account for genetic variation, a total of 66 strains belonging to 15 species of 
bacteria and fungi were processed. Each pool was tested in triplicate for three consecutive days 
obtaining a sensitivity, specificity, and qualitative reproducibility of 100%. Detailed results are 
presented in Supplemental Table 2. 
 
IN SILICO 
The in silico studies assessed BIOTIA-DX’s ability to identify a large, diverse set of 
microorganisms absent in clinical or contrived samples and determined whether the pipeline 
would misidentify closely related organisms (i.e., “cross-reactivity”). The sensitivity and 
specificity obtained is 99.99% (a detailed breakdown of results is summarized in Supplemental 
Table 3). Only 1.7% of synthetic samples tested (n=147) showed cross-reactivity and most 
species observed were within the same genus, do not have clinical relevance, or are unlikely to 
be found in a urine specimen (Supplemental Table 4). Cross-reactivities within the same genus 
were further differentiated by targeting specific genes containing abundant discriminating sites 
between species. Cross-reactive samples from 49 species were assigned the correct species in 
94% of cases, further reducing false positives to 0.3% (n=27) (Supplemental Table 4). BIOTIA-
DX overall performance on the training set, specificity, and in silico studies is shown on 
Supplemental Figure 2.   
 
ACCURACY 
The accuracy verification study evaluated the precision of the assay in detecting uropathogens 
in clinical urine specimens compared to the current gold standard diagnostic (culture). 
Deidentified clinically tested urine specimens were collected from a reference laboratory based 
on the pathogens diagnosed by culture. A total of 335 samples (167 clinical and 168 contrived) 
were tested including 35 culture-negative specimens. Culture conducted by the reference 
laboratories reported the following CFU/mL distributions in the specimens processed: 42.5% 
with >100,000 CFU/mL, 11.5% with 50-100k CFU/mL, 22.4% with 10-50k CFU/mL, and 23.6% 
with insignificant growth or no growth.  
 
BIOTIA-ID detected the spiked microorganisms in contrived specimens and predicted a total of 
250 urogenital pathogens in the clinical specimens, classifying 83.2% (n=139) as positive for 
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UTI (Figure 4A, B). Single organism infections were observed in 43.1% of the specimens while 
40.1% were coinfections and polymicrobial infections (3+ pathogens, 19.8%). Conversely, 
72.5% of specimens were considered single organism infections by culture (data not shown). As 
depicted in Figure 4C, BIOTIA-ID detected 27 different urogenital pathogen species, and as 
expected due to collection bias, higher frequencies of E. coli, E. faecalis, K. pneumoniae, P. 
mirabilis and S. aureus were observed. Of these, 22 additional species not reported by culture 
were predicted with BIOTIA-ID, representing 52.4% (n=131) of the total urogenital pathogens 
detected by NGS (n=250). Approximately one third (n=39) of these belonged to the 5 key 
bacterial species used throughout this validation, a further 29.8% (n=39) were uropathogens 
commonly reportable by culture (e.g., S. agalactiae, Staphylococcus spp. and other gram-
negative Enterobacterales species), while 24.4% (n=32) were organisms not usually culturable 
with the SOC (e.g., Aerococcus spp., G. vaginalis and Prevotella spp.). NGS detected Candida 
species (C. albicans, C. glabrata, C. tropicalis and C. krusei) in 16% (n=21) of the unreported 
taxa, while culture reported yeast in only 2 specimens.  
 
Of the clinical specimens tested, 50.9% (n=85) revealed a disagreement between NGS and the 
gold standard and 11.3% (n=19) completely disagreed on the species detected. Due to culture 
limitations and the high sensitivity of NGS, comparator testing of 123 analytes (qPCR n=82, 
Sanger sequencing n=39) was conducted to reconcile discrepancies between findings from both 
methods. A subset of 19 concordant analytes were used as clinical positive controls and 100% 
of the analytes detected agreed across the three methods (Figure 4D, Supplemental Table 5).  
Apparent false positives and false negatives from 19 analytes, where BIOTIA-ID differed from 
the SOC, were tested and 87% of these NGS results were ultimately correct according to the 
comparator (Figure 4C, D). E. faecalis, K. pneumoniae, E. coli, Candida spp., Aerococcus spp., 
and G. vaginalis represented the highest frequency of disagreements (65%) between the SOC 
and NGS. Comparator reconciled results by taxa tested are shown in Supplemental Figure 1. 
Moreover, analytes adjudicated as false positives by NGS (n=12, 9.7%) mostly belong to G. 
vaginalis and Anginosus group streptococci, two common opportunistic pathogens of the 
urogenital tract.  However, false negative (n=4, 3.3%) samples with analytes E. faecalis, K. 
pneumoniae and E coli yielded below threshold BIOTIA-ID prediction probabilities, 
demonstrating BIOTIA-DX’s low statistical confidence in defining the presence of the pathogen 
reported by the SOC.  
 
Following comparator adjudication, the accuracy study revealed a 98.4% sensitivity and 99.7% 
specificity while performance in clinical specimens achieved a 97.2% sensitivity and 99.6% 
specificity (Table 2). Overall, BIOTIA-ID accomplished >99.9% sensitivity and specificity across 
all samples and analytes processed, exceeding ~14.5k analytes evaluated (Table 2). Contrived 
specimens yielded >99.9% sensitivity and specificity and analyte breakdown are presented in 
Supplemental Table 6. 
 
DISCUSSION 
In this study, we developed and validated a clinical-grade NGS assay, BIOTIA-ID, for accurate 
pathogen identification in urine specimens using ML-classification. BIOTIA-ID overcomes 
challenges specific to urine molecular diagnostics including sample collection and transport, low 
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gDNA yields, presence of inhibitors, high human background, and taxonomic bias due to 
suboptimal extraction (47–56). The laboratory process is compatible with UTT, the preservative 
of choice for standard urine cultures in a clinical setting. DNA extraction was optimized for 
efficient lysis of gram-positive bacteria and fungi ensuring sufficient gDNA yields from 2 mL of 
urine, specifically from low biomass samples, such as those collected from males, from 
catheterized patients, or from patients with prior antibiotic use. Three external controls and one 
internal control were implemented to validate the process (PC), monitor cross contamination 
coming from the process or reagents (NEC, NTC), and ensure integrity and validity of each 
sample minimizing false negatives due to inhibition (IPC). BIOTIA-DX has a clinically curated 
pathogen database, and the ML-classifier was trained with a combination of urine clinical 
specimens, clinical and reference isolates, and synthetic metagenomic specimens. Comparator 
validation of discrepant results along with a comprehensive training set increased the specificity 
and robustness of pathogen prediction. Analytical performance was assessed on 20 prevalent 
urogenital pathogens in 1,305 contrived samples, 12,250+ in silico simulations, and 167 clinical 
specimens. BIOTIA-ID demonstrated high sensitivity (99.92%) and specificity (99.95%) in 
predicting uropathogens, making it a promising alternative testing to culture-based diagnostics.  
 
Although urine culture is highly reliable with reported ~90% sensitivity and 86% specificity in 
healthy outpatient women, its specificity is exceptionally variable in chronically ill patients (76-
95%) and in patients with indwelling catheters where it drops close to 0%(57). BIOTIA-ID’s 
ability to precisely detect pathogens at low concentrations (LoD <1,000-25,000 CFU/mL) 
enhances its clinical utility, particularly in the context of managing high-risk 
immunocompromised patients, rUTI and cUTIs, and/or catheter-associated UTIs (CAUTI).  UTI 
diagnostics currently rely on culture, and while effective, 20-30% of cases go undiagnosed (58–
61), with this number increasing in complicated cases. Culture-based diagnostics fail due to 
numerous issues, including prior antibiotic exposure, collection or storage errors, cross-
contamination, selectivity of culture conditions, and inadequate identification of fastidious, 
anaerobic, and fungal infections (19, 22), many of which can be addressed with NGS-based 
diagnostics.  
 
In this study, half of the NGS tested clinical specimens revealed a disagreement with culture 
findings, with most cases detecting more than one urogenital pathogen, including the species 
reported by culture. About 11.3% of specimens had different species detected with NGS and 
about 15% exhibited clinically relevant discrepancies like detecting a gram-positive (E. faecalis) 
instead of a gram-negative pathogen (E. coli).  Despite being highly abundant by both NGS and 
qPCR testing, E. faecalis was the top missed organism by culture. Notably, close to 43% of the 
clinical specimens which culture diagnosed as P. mirabilis (n=9/21) showed E. faecalis as the 
dominant pathogen with an NGS-based approach. E. faecalis is frequently under-reported by 
standard culture with 50% detection rates when compared to Enhanced Quantitative Urine 
Culture (20, 62). Further, Candida species were missed (n=17) or only reported by culture as 
yeast (n=2), representing 11.9% of the clinical specimens tested. While Candida can be isolated 
with the SOC, sensitivity is rather poor. A study compared Candida detection in urine samples 
with confirmed yeast presence on urinalysis, finding that standard urine culture identified 37% of 
Candida infections whereas using a fungal-specific media (Sabouraud Dextrose Agar) 
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increased detection to 98%(63). Studies have shown that standard urine culture does not 
provide optimal growth conditions for all urogenital pathogens causing organisms such as 
Enterobacterales to outcompete other microbes like Enterococcus and Candida (20, 26). Failure 
to detect the correct pathogen results in physicians prescribing inadequate antibiotics, thus 
exacerbating the emergence of antimicrobial resistance, and increasing patient suffering and 
medical burden(64–68). For example, Enterococcus is the second leading cause of CAUTI, 
accounting for 45% of CAUTI infections and the third leading cause of hospital acquired UTIs 
(69–72). Although UTIs represent the primary cause for antibiotic prescriptions in people living 
in nursing homes, 40 to 75% of cases receive inappropriate antimicrobial therapy (1, 73–75). 
NGS-based metagenomic tools offer an opportunity for precise infectious disease diagnostics 
and have the potential to enhance antimicrobial stewardship efforts. 
 
We preferentially procured specimens diagnosed with specific urogenital pathogens that are 
easily and more consistently cultured with SOC, such as E. coli which accounts for up to 75% of 
uncomplicated UTIs and 65% of cUTI cases (76–80). Standard urine culture is selective for 
typical microorganisms that are most commonly responsible for acute and uncomplicated UTIs; 
nonetheless, augmented culture methods and diagnostic tests are better suited when there is a 
high clinical suspicion for UTI caused by atypical organisms, as seen in neutropenia (e.g., 
candiduria), genitourinary tuberculosis, and urinary tract abnormalities (e.g., anaerobic bacteria) 
(81). Like other molecular-based studies, BIOTIA-ID showed increased detection of atypical 
pathogens including Candida, G. vaginalis, Aerococcus spp., anaerobic bacteria (Prevotella 
spp.) and fastidious bacteria, organisms not reported with culture-based diagnostics (30, 82–
85). Although the rise of molecular based diagnostics and clinical studies using these 
technologies have revealed that gram-positive, atypical, or fastidious pathogens account for a 
larger percentage of cUTI infections, more interventional, and clinical utilization studies are 
needed to understand the pathogenesis and epidemiology of these understudied microbes (19, 
62, 86–88). Despite specimen collection bias, BIOTIA-ID identified a significant number of 
atypical pathogens in the tested clinical specimens leading us to hypothesize that the detection 
frequency would likely rise in clinical studies that focus on culture-negative cUTI cases, a 
population which could greatly benefit from improved diagnostics. 
 
Polymicrobial infections with more than two pathogens are usually considered contamination 
under the current SOC and reporting of these results as infection is a topic of debate (18). In 
accordance with other UTI studies employing molecular approaches, about 40 % of clinical 
specimens tested in this validation showed more than one pathogen detected (83, 85, 89–92). 
Most clinical algorithms designed for uropathogen detection provide optimal growth conditions 
for a limited number of microbes and are based on a threshold of 105 CFU/mL. Understandably, 
many guidelines aim to prevent over prescription of antibiotics. Nonetheless, the development of 
improved diagnostics can help better guide antimicrobial stewardship efforts while still providing 
a comprehensive report. It has been demonstrated that presence of certain pathogens, even at 
low levels, can heighten the virulence of other dominant pathogens and could impact response 
to antimicrobial therapy (93–99). 
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Regarding concerns about the potential oversensitivity of an NGS-based assay, BIOTIA-DX was 
intentionally designed and trained to increase stringency and reduce false positive detection of 
urogenital commensals or opportunistic pathogens present at colonization levels often a 
common weakness of many molecular diagnostic tools and clinical studies (34, 81, 88, 100, 
101). Relative abundance of microbial species, percentage of human reads, IPC detection and 
complexity of the microbial profiles are features implemented to enhance the BIOTIA-DX’s 
ability to correctly predict an infection. This study highlights how ML coupled with extensive 
laboratory and bioinformatic validation could improve infectious disease diagnostics by 
addressing the failures of culture-based diagnostics.  It is worth noting that we observed a 
strong linear correlation between spiked CFU/mL and relative abundance of LoD contrived 
samples (data not shown). The complexity of a clinical urine specimen requires the 
consideration and development of additional pipeline features for the implementation of a 
quantification metric that could be relevant and useful to physicians. Additional clinical studies 
are required to generate a robust dataset, facilitating the creation of an updated, user-friendly 
NGS-based metric that aligns more closely with current clinical and antibiotic stewardship 
guidelines for UTI treatment and management (17, 28, 85, 102)  
 

Further studies and real-world evaluations are warranted to validate the clinical impact and cost-
effectiveness of BIOTIA-ID as a UTI diagnostic tool. The observed performance characteristics 
suggest potential clinical applications where the advantages of sensitivity, specificity, and 
comprehensive testing outweigh some of the limitations associated with sequencing cost and 
TAT. Some use cases that would most benefit from this approach include symptomatic patients 
with negative culture, cUTI and rUTI, and immunocompromised patients with nonspecific 
infection symptoms who are at high-risk of developing sepsis. 
 
BIOTIA-ID represents a significant advancement in UTI diagnostics, offering notable 
advantages over culture-based methods. Its high accuracy, low LoD, and potential to guide 
targeted antimicrobial therapy support the goals of antimicrobial stewardship. Implementation of 
BIOTIA-ID in clinical settings has the potential to improve patient outcomes, reduce the misuse 
of antibiotics, and contribute to the global fight against antimicrobial resistance.  
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Figures

 
Figure 1. (A) An overview of the BIOTIA-ID Urine NGS Assay workflow, consisting of sample 
collection (urine specimens in standard UTT), nucleic acid extraction, library preparation and 
sequencing using the Illumina platform, BIOTIA-DX metagenomic analysis, multiple decision 
tree-based machine learning modeling and generation of a clinical report with urogenital 
pathogens detected. (B) Analytical validation including specificity, sensitivity and in silico studies 
evaluated the clinical performance characteristics of the assay. The clinical validation 
established the accuracy of urogenital pathogen detection in clinical specimens with additional 
comparator studies using qPCR and Sanger sequencing in cases where culture and NGS 
results disagreed. Furthermore, we completed an inter/intra assay reproducibility study to show 
the validity and consistency of our results.   
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Figure 2. The assay performance of specimens processed in the analytical (specificity, 
sensitivity, and reproducibility) and clinical validation (accuracy) studies was defined by 
evaluating the internal positive control (IPC) and the number of microbial reads. (A)  The IPC 
was detected in all specimens and positive controls (PC) at an expected range (1-5% 
abundance). The IPC reads represented the majority of the reads detected in negative 
extraction controls (NEC) and negative template controls (NTC). (B) Violin plots depicting the 
number of microbial reads obtained in each study and controls. As expected, the clinical and 
contrived specimens processed through the studies and the PCs generated similar microbial 
read depth (average 7.9M of microbial reads), while the NEC and NTC had microbial reads 
below 750k. Violin plots show IPC abundance and microbial read distribution for all samples and 
controls processed in each study: Specificity (light blue, n=160); Sensitivity (navy blue, n=709); 
Reproducibility (light pink, n= 267); Accuracy (gray, n= 325), PC (dark pink, n=65), NEC (light 
gray, n=130), NTC (cerulean blue, n=130) 
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Figure 3. The analytical sensitivity was assessed in the most frequently found urogenital 
pathogens (10 bacteria and 6 fungal species) by spiking reference whole organisms into 
negative urine matrix. (A) Each pathogen was spiked in triplicate per concentration (CFU/mL) 
followed by genomic DNA extraction. Experiments 1 and 2 included 6 replicates for each 
concentration of the 10-fold dilution spike ins, ranging from 10 to 1 million CFU/mL. Experiments 
3 & 4 were used to fine tune the LoD by testing 6 replicates per concentration, ranging from 
5x103 to 5x104 CFU/mL. (B) Summary of replicates detected per concentration tested for each 
urogenital pathogen. The LoD was reproducibly verified and determined based on a 100% 
positivity rate resulting in an overall LoD of <25,000 CFU/mL for bacteria and <5,000 CFU/mL 
for fungi.  Specifically, the LoDs determined for each species were 1,000 CFU/mL for C. 
glabrata, C. krusei, C. parapsilosis and C. tropicalis; 5,000 CFU/mL for C. albicans and C. auris; 
7,500 CFU/mL for E. coli, G. vaginalis, K. pneumoniae and P. mirabilis; 10,000 CFU/mL for E. 
faecalis.; 12,500 CFU/mL for Prevotella spp.;15,000 CFU/mL for A. baumanii and S. aureus; 
25,000 CFU/mL for P. aeruginosa and B.fragilis. 
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Figure 4. The BIOTIA-ID Urine NGS Assay accurately detects and classifies urogenital 
pathogens in clinical (n=167) and contrived (n=168) specimens in the accuracy study. (A) 
Heatmap depicts the relative abundance of taxa detected by NGS and is annotated with culture 
diagnosis, and agreement (green) or disagreement (purple) between BIOTIA-DX ML and 
culture. (B) Pie chart showing the distribution of the number of urogenital pathogens detected in 
clinical urine specimens tested with BIOTIA-ID. (C) Pie chart depicts the distribution of microbial 
analytes detected with culture (navy blue) and with NGS (pink). (D) Venn diagram illustrates the 
distribution and overlap of the analytes tested and detected with comparator testing for 
adjudicating the discrepancies found between NGS and SOC. Apparent false positive and false 
negative results from 19 analytes, where BIOTIA-ID differed from the original culture result 
(50.2% of clinical samples), were tested by qPCR or Sanger sequencing (n=123), and (E) 87% 
of these NGS results were found to be correct (n=107) as shown on pie chart showing the 
distribution of adjudicated results. TP: true positive (n=104, dark pink), TN: true negative (n=3, 
light pink), FP: false positive (n=12, dark blue), FN: false negative (n=4, dark gray).  
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Tables 

 
Table 1. Reference organisms and clinical isolates tested and validated on the specificity study. 
Whole organisms of urogenital pathogens detected by the assay, related organisms, and other 
organisms that can be present in urine specimens were tested by spiking microbial cells into a 
negative urine matrix (50,000 CFU/mL for bacteria and 25,000 CFU/mL for fungi). A total of 69 
microbial species (bacteria, fungi, viruses and parasites) and 154 strains were evaluated. (*) 
Indicates organisms tested with BIOTIA-ID assay but not reported as a key urogenital pathogen. 
 
 
 

 
Table 2. BIOTIA-ID clinical and analytical validation performance characteristics summary by 
analyte category (Bacteriology, Mycology, Overall).   
 

 

 

 

 

 

Gram Negative Enterobacterales Gram Negative non Enterobacterales Gram Positive Fungi
Citrobacter koseri Acinetobacter calcoeticus-baumanii-complex Other Staphylococcus spp. Candida albicans

Citrobacter freundii Acinetobacter lwolfii Anginosus group Streptococci Candida auris

Enterobacter cloacae-complex Pseudomonas aeruginosa Streptococcus agalactiae Candida dubliniensis

Escherichia coli Strenotrophomonas maltophilia Streptococcus mitis Candida glabrata

Klebsiella aerogenes Anaerobic bacteria Other Bacteria Candida guilliermondii

Klebsiella oxytoca Anaerococcus spp. Chlamydia trachomatis* Candida kefyr

Klebsiella pneumoniae-complex Bacteroides fragilis Gardnerella vaginalis Candida krusei

Klebsiella variicola Prevotella spp. Mycoplasma genitalium* Candida lusitaniae

Morganella morganii Gram Positive Mycoplasma hominis* Candida parapsilosis

Proteus mirabilis Aerococcus spp. Neisseria gonorrhoeae* Candida tropicalis

Proteus vulgaris Corynebacterium urealyticum Treponema pallidum.* Cryptococcus neoformans*

Providencia rettgeri Enterococcus faecalis Ureaplasma spp.* Rhodoturula mucilaginosa*

Providencia stuartii Enterococcus faecium Viruses Saccharomyces cerevisiae*

Raoultella ornithinolytica Staphylococcus aureus CMV* Parasites*

Salmonella Typhimurium* Staphylococcus epidermidis HPV* Cryptosporidium spp.*

Serratia marcescens Staphylococcus lugdunensis HSV1* Entoamoeba spp.*

Giardia lamblia*
Trichomonas vaginalis*

Shigella flexneri* Staphylococcus saprophyticus HSV2*

Category Method TP TN FN FP Total Sensitivity Specificity

Clinical 210 8323 7 35 8575 96.77% 99.58%

Contrived 1099 43122 0 14 44048 100.00% 99.97%

in silico 8119 272775 3 147 281044 99.96% 99.95%

Total 9431 332483 10 196 341933 99.89% 99.94%

Clinical 30 530 0 0 560 100.00% 100.00%

Contrived 925 9240 1 2 10168 99.89% 99.98%

in silico 4142 41420 0 0 45562 100.00% 100.00%

Total 5097 51190 1 2 56290 99.98% 100.00%

Clinical 240 8853 7 35 9135 97.17% 99.61%

Contrived 2024 52362 1 16 54216 99.95% 99.97%

in silico 12261 314195 3 147 326606 99.98% 99.95%

Total 14528 383673 11 198 398223 99.92% 99.95%

Bacteriology

Mycology

Overall
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Supplemental Figures 

 

Supplemental Figure 1. Genomic DNA from urine specimens with apparent false positive and 
false negative results where BIOTIA-ID differed from the original culture result (49.2% of 
analytes detected), were tested by qPCR or Sanger sequencing (n=123). 87% of NGS results 
were ultimately found to be correct by the orthogonal adjudication. Bar chart shows comparator 
adjudicated results for the urogenital pathogens tested with comparator assays. TP: true 
positive (dark pink), FP: false positive (dark blue), FN: false negative (gray), TN: true negative 
(light pink). 
 

 
 

0

5

10

15

20

25

30

Comparator Adjudication of NGS Results by Microbial Taxa 
Evaluated

TP FP

FN TN

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 7, 2024. ; https://doi.org/10.1101/2024.04.05.24305286doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.05.24305286
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Supplemental Figure 2. BIOTIA-DX ML Performance in samples processed on the training 
(dark blue), in silico (dark pink), accuracy (gray), reproducibility (light pink) and specificity (light 
blue) studies.  
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