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Abstract

Background: Accurately differentiating severe from non-severe COVID-19 clinical types is

critical for the healthcare system to optimize workflow, as severe patients require intensive care.

Current techniques lack the ability to accurately predict COVID-19 patients’ clinical type,

especially as SARS-CoV-2 continues to mutate.

Objective: In this work, we explore both predictability and interpretability of multiple

state-of-the-art machine learning (ML) techniques trained and tested under different biomedical

data types and COVID-19 variants.

Methods: Comprehensive patient-level data were collected from 362 patients (214 severe, 148

non-severe) with the original SARS-CoV-2 variant in 2020 and 1000 patients (500 severe, 500

non-severe) with the Omicron variant in 2022-2023. The data included 26 biochemical features

from blood testing and 26 clinical features from each patient’s clinical characteristics and

medical history. Different types of ML techniques, including penalized logistic regression (LR),

random forest (RF), k-nearest neighbors (kNN), and support vector machines (SVM) were

applied to build predictive models based on each data modality separately and together for each

variant set.
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Results: All ML models performed similarly under different testing scenarios. The fused

characteristic modality yielded the highest area under the curve (AUC) score achieving 0.914 on

average. The second highest AUC was 0.876 achieved by the biochemical modality alone,

followed by 0.825 achieved by clinical modality alone. All ML models were robust when

cross-tested with original and Omicron variant patient data. Upon model interpretation, our

models ranked elevated d-dimer (biochemical feature), elevated high sensitivity troponin I

(biochemical feature), and age greater than 55 years (clinical feature) as the most predictive

features of severe COVID-19.

Conclusions:We found ML to be a powerful tool for predicting severe COVID-19 based on

comprehensive individual patient-level data. Further, ML models trained on the biochemical and

clinical modalities together witness enhanced predictive power. The improved performance of

these ML models when trained and cross-tested with Omicron variant data supports the

robustness of ML as a tool for clinical decision support.
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Introduction

The COVID-19 pandemic caused by the SARS-CoV-2 virus has been impacting

healthcare systems everywhere. As of February 4th, 2024, cumulative cases have exceeded 774

million, with more than 7 million deaths worldwide according to the World Health Organization

(WHO) [18]. During these four years of the pandemic, several major SARS-CoV-2 variants and

subvariants have manifested, with the Omicron variant being the most persistent since November

2021 [24]. Machine learning (ML) have made substantial contributions to various aspects of the

pandemic, including diagnostic decision support [15], developing novel pharmaceutics [16], and

predicting trajectories of the pandemic [17], among many others.

A less addressed yet critical effect of the pandemic has been the sudden increased burden

on healthcare facilities, namely hospitals. The influx of severe COVID-19 patients overwhelms

intensive care units (ICU), which results in increased mortality [1], especially in regions in the

U.S. with less health resources (e.g., ICU and general hospital beds) across the pandemic ([14],

[18]). These challenges require solutions geared towards effectively optimizing healthcare

resources. As such, we propose precisely and accurately predicting the number of patients with

severe COVID-19 prognosis and thus require intense medical intervention. Patients with

COVID-19 are typically classified as having severe illness by features such as shortness of

breath, low oxygen saturation, and low PaO2/fraction of inspired oxygen. However, these few

features cannot sufficiently distinguish between severe and nonsevere types of patients with

COVID-19, as some severe types may lack these or any other symptoms upon admission [3].

Without suitable medical intervention these severe types may progress quickly to a critical

condition, resulting in a high risk of mortality [19]. This uncertainty motivates a predictive

method that is reliable and efficient, while also making use of alternative features. Early
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determination of patient types may enable healthcare professionals to improve their treatment

plans and optimize facility resources. This effect demonstrates a need to predict the incoming

patients' clinical COVID-19 types. Therefore, our focus lies in the differentiation of severe and

non-severe COVID-19 types to support the proper allocation of healthcare staff and space.

While ML techniques have been applied to tackle many aspects of COVID-19, few

address the critical question of predicting disease progression upon a patient’s admission to the

hospital. Some existing studies focused on laboratory/blood-chemistry test results (Gӧk et al. and

Luo et al. [20, 23]). Other studies utilized categorical and binary data extracted from individual

patient’s electronic health record systems (Hernández-Pereira et al. [22]). However, very few

studies included multiple modalities of data, for instance, combination of blood-chemistry and

computed tomography (CT) results by Xiong et al. [21], as well as both blood chemistry and

clinical data by Chen et al. [3], Jamshidi et al. [25]. Studies focusing on the later Omicron variant

included Xu et al. [26] who developed a support vector machine (SVM) classifier for CT images,

and Chen et al. [27] who used XGBoost technique based on patients’ blood chemistry and

clinical features. Other ML techniques for predicting COVID-19 clinical types included random

forest (RF) [3,4], as well as multi-algorithm ensemble techniques [4,5].

A major objective of this study is to investigate and evaluate the performances of various

ML techniques for COVID-19 severity prediction, as well as to evaluate feature (variable)

modalities that provide the most accurate and reliable results. In this study, we will train ML

models based on different techniques with patient-level biochemical and clinical feature

modalities separately and together as a fusion modality. We will implement logistic regression

(LR) with and without regularization, decision tree-based random forest (RF), k-nearest

neighbors (kNN), and support vector machines (SVM), and compare their predictive power of
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severe COVID-19. The inclusion of a variety of state-of-the-art ML techniques allows us to

measure and compare different feature modalities’ predictive power and interpretability,

especially LR and RF that are able to reveal important features to predict severe COVID-19. In

addition, we develop these ML models from data collected in both the origin and the Omicron

SARS-CoV-2 variants to investigate model robustness across different variants, and

generalizability against potential future variants. This study aims to tackle the current challenges

of lack of explicit interpretations in many ML applications, to enhance clinical decision support.

A brief overview of each of the ML techniques in this study is provided. LR is a

supervised binary classification algorithm which trains a vector of response variables of length

equal to the number of features in the data. To make a prediction on a sample, the values of each

feature are multiplied with the corresponding coefficient value in the response vector, these

products are then summed, and the result is compared to a pre-specified threshold value. If the

threshold is exceeded, the sample is given a positive class prediction, otherwise the predicted

class is negative. LR is generally sensitive to highly correlated variables, also known as

multicollinearity, making predictions less precise [9]. This technique is also rather susceptible to

overfitting, in which the model tries to fit too closely on the training set and is less capable of

generalizing to unseen prediction sets. A powerful method of reducing overfitting is through

regularization or penalization of regression. When LR is penalized (usually using l1 or l2 norms),

the multicollinearity issue could be reduced [10]. The best type of regularization employed

depends on the problem, thus considered as a hyperparameter in the ML pipeline.

RF is an ensemble learning algorithm that adapts to nonlinearities within the data [11].

Within the “forest”, individual decision trees are built on subsets of the training data where the

training data are recursively partitioned into “leaves” based on a pre-specified criterion, such as
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entropy or Gini impurity. Partitioning ends once each leaf contains samples from only one class

(either positive or negative), and the resulting decision tree is a binary classifier. As an ensemble

makes a prediction on a sample, each decision tree is making its own prediction, and a majority

vote for the predicted class represents the final classification.

kNN classifier assigns samples to their predicted classes with which they share the most

similarities, as determined by a chosen distance function [12]. This technique’s performance on

the choice of k, the number of closest “neighbors” to the sample the algorithm consults when

predicting a class. The determined distance function distinctly impacts model performance, and

can be included in the hyperparameter tuning in the ML pipeline. While kNN can also be used

for unsupervised learning tasks, we applied kNN as a supervised classifier for this study.

Lastly, SVMs are classifiers trained to create boundaries between classes in the high

dimensional feature space. SVM aims to maximize the distance between samples of different

classes. This decision boundary is referred to as a hyperplane, and its geometry allows for

application to both linear and non-linear problems. The dimensionality of the problem may be

varied based on the choice of the hyperplane; as such, it is also included as a hyperparameter in

designing the ML pipeline.

Methods

Data Source

Our study uses two distinct datasets covering different pandemic periods. The first set

includes 362 patients diagnosed with COVID-19 upon admission to Wuhan Union Hospital in

China from January to March 2020. This set is previously reported on by Chen et al. [3], and

serves as a comparison baseline in our study. Among these 362 patients, 148 were determined to
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be in severe condition according to guidelines established by the National Health Commision of

China and the American Thoracic Society [26, 27], while the remaining 214 were designated

non-severe types. Severe types were categorized by meeting at least one the following criteria:

(i) respiratory rate >30 breaths per minute; (ii) oxygen saturation <93% at rest; or (iii)

PaO/fraction of inspired oxygen <300 mm Hg (40 kPa). Considered to be the original

SARS-CoV-2 variant, this set is referred to by the shortening “original” in the rest of this study.

The second consists of 1000 patients admitted to Wuhan Union Hospital in China from

December 2022 to January 2023, in which patients were diagnosed with the SARS-CoV-2

Omicron variant. Using the same guidelines outlined earlier, 500 of these patients presented with

severe stage COVID-19, whereas the other 500 were deemed non-severe. General comparisons

of the data set are organized in Table 1. The patients with Omicron variant were age group and

gender matched with the patients infected with the original variant. All patients were confirmed

to be positive for COVID-19 by two independent quantitative reverse transcriptase-polymerase

chain reaction tests before inclusion in this study.

All patients were comprehensively evaluated before admitting to the hospitals. Their fully

deidentified, anonymous biomedical data were extracted from the electronic health record

system. All participants were informed about the study, agreed to participate, and signed written

consent. An institutional review board (IRB) application was submitted and approved by the

Wuhan Union Hospital, Tongji College of Medicine, Huazhong University of Science and

Technology (IRB approval #IEC-J-345), where the original data were collected. The

de-identified patient information comprised two main modalities of biomedical features.The first

feature modality had 26 distinct laboratory testing features obtained from blood biochemical

tests, most of which were continuous real values of the readings. The specifics of these tests are
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detailed by our prior study [3]. We refer to this feature modality as “biochemical” hereinafter.

The second is a total of 26 features of one-hot encoded binary values indicating the presence of

pre-existing conditions, comorbidities, symptoms, and other common demographic information.

This modality was referred to as “clinical features”. A complete description of the features across

these two modalities was present in the supplementary materials of our prior study [3]. Together,

features from these modalities appended into a single corpus of de-identified patient data with 52

multimodal features. This was referred to as the “fusion” set, as it fused across continuous,

real-valued biochemical features and binary clinical features. We note that the specific features

of respiratory rate, oxygen saturation, and fraction of inspired oxygen were excluded from our

predictive feature list as they were the original clinical standard to determine COVID-19

severity.

Table 1: Characteristics of COVID-19 Data Sets

Attribute Original SARS-CoV-2
Variant

Omicron Variant

Date collected January-March 2020 December 2022-January 2023

Location collected Wuhan Union Hospital, China Wuhan Union Hospital, China

Number of patients (N) 362 1000

Prevalence of severe type 148 (40.9%) 500 (50%)

ML Classification Pipeline Development

We elected to explore the performance of several competing state-of-the-art machine

learning (ML) techniques, including RF, kNN, and support vector machines. To acknowledge

LR’s popularity in the field [5, 6, 10, 21, 22, 25, 28], we included it as a benchmark classification

method in this study as well. All ML techniques were used as supervised binary classifiers.
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Utilizing a Google Colaboratory notebook hosting Python 3.10 and a variety of packages from

Sci-Kit Learn [13] (see Table 1 in Supplementary Materials for the full list), we developed

end-to-end ML frameworks for each of the four ML techniques discussed earlier to predict

COVID-19 severity types from patients’ clinical, biochemical, and fused feature modalities.

Non-severe COVID-19 types were labeled as 0 and severe types were labeled as 1, and each ML

technique was constructed to perform a binary classification (predicting 0 or 1) based on

different sets of input features. For both the original variant and Omicron data sets, we evaluated

ML performance of training and testing on each modality separately and fused. For a given set of

data, the corpus was randomly partitioned into training and hold-out testing sets by an 80% to

20% split, respectively. The data was then preprocessed by a standard scaler, in which values

were converted to their Z-scores respective of the features. The standard scaler reduces the effect

of the variety in ranges that appear in the biochemical and fusion data.

For each ML technique, a grid search method of hyperparameter tuning was utilized to

optimize the models’ performance via the GridSearchCV package. As previously discussed, the

hyperparameters of a ML technique may affect its performance. To account for this, we tuned the

following: LR’s penalization type, RF’s number of trees, tree depth, and criterion, kNN’s number

of neighbors, distance function and weighting, and SVM’s kernel. The resulting optimal

hyperparameters for each ML technique were detailed in Table 2 of Supplementary Materials.
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Upon the completion of training, the model was applied to predict on the hold-out data. This

process was repeated 10 times generating different train-test splits to add to the robustness of the

model, as well as avoid overfitting and establish an average performance.

Performance of each model based on the different ML techniques is evaluated based on

the model’s true positive rate (TPR) (1), true negative rate (TNR) (2), false positive rate (FPR)

(3), receiver operating characteristic (ROC) curve, and associated area under the ROC curve

(AUC). Models were also evaluated for their variation in performance given the 10 different

random training-testing splits. When the model made an individual prediction, it would fall into

exactly one of the following categories: a true positive (TP), a false positive (FP), a true negative

(TN), or a false negative (FN).

Many of these performance metrics were known by a variety of terms. The TPR is cited

as the sensitivity or recall of the model. In essence, this is the probability that the model would

predict a positive result (i.e., severe COVID-19 clinical type in this study), conditioned on the

patient being truly positive. The TNR was also called the specificity or selectivity of the model.

This metric described the probability of a model predicting a negative result (non-severe type)

given the patient was truly negative. The FPR is calculated as 1 minus the TNR [7].
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𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦,  𝑅𝑒𝑐𝑎𝑙𝑙:  𝑇𝑃𝑅 =  𝑇𝑃
𝑇𝑃 + 𝐹𝑁  (1)

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦,  𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦:  𝑇𝑁𝑅 =  𝑇𝑁
𝑇𝑁 + 𝐹𝑃  (2)

𝐹𝑃𝑅 =  1 −  𝑇𝑁𝑅 =  𝐹𝑃
𝐹𝑃 + 𝑇𝑁  (3)

The TPR and FPR were utilized when plotting the ROC curve with the FPRs on the

x-axis and TPRs on the y-axis. An ideal classifier, theoretically, should have a false positive rate

of 0 and a true positive rate of 1, making the “curve” appear as a right line. The associated ideal

AUC should be 1, as the axis ranges were between [0,1]. A model with no predictive power

would obtain an AUC close to 0.5, equivalent to a purely random prediction. Our choice of

model performance comparison based on AUC as opposed to F-measure or accuracy was AUC’s

proven advantage of being more reliable than the older methods [8].

Feature Importance and Model Interpretability

One of the advantages of certain ML techniques is their interpretability for more

informed clinical decision support. Of the methods tested in this investigation, we aimed to glean

insights on the data from both the LR and RF models. The resulting feature coefficient vector

begot from training LR indicated what the machine “learned” from the data, as the largest

coefficient corresponded to the highest importance predicting severe COVID-19 clinical type.

Pertaining to RF, feature importance was quantified by a feature’s Gini impurity score, which

was computed at the time of training. By averaging the feature rankings over the 10 runs, we

were able to compare feature importance identified by LR versus RF, as well as different feature

importance across the original SARS-CoV-2 variant and the Omicron variant. Feature rankings

were also analyzed and compared through the lens of each feature modality independently and

fused. These comparisons allowed us to validate our models trained on the original data set, in
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that we would cross check our results with other studies, as well as more traditional statistical

studies aimed at identifying such features. Upon validation, we offered new analyses to identify

critical features with the most predictive power of differentiating severe COVID-19 patients.

Comparison of ML Classification Performance across SARS-CoV-2 Variants, Feature

Modalities, and ML Techniques

To compare ML predictive power of COVID-19 severity on the original and Omicron

datasets with individual and fused modalities, we opted for the following design. Each data set

underwent the pipeline defined earlier, in which the set was used to train and test the model for

its predictive power that was measured by various performance measures (e.g., TPR, FPR, AUC,

etc). To then evaluate the robustness and generalizability of the developed models, we elected to

swap and cross test with the other variant’s data. In other words, a model trained on the original

COVID-19 variant was tested with both the original and Omicron variant datasets. This analysis

was mirrored for models trained on the Omicron variant data as well. For this cross testing, the

testing data was standardized according to the scaling scheme fitted from the model’s training

data. In other words, the scalar fitted to the original patient training data transformed the

Omicron patient testing data during the preprocessing step. During cross testing, the entire

corpus was used as a hold-out testing set, as the models were never trained with the other

variant’s data. The cross-set testing was evaluated for its performance using the same metrics as

the same-set testing, as we aimed to identify differences between the two variants’ data.
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Results

Model Performance

Upon running each ML model pipeline for 10 different runs, we calculate the average

sensitivity (true positive rate; TPR), specificity (true negative rate; TNR), false positive rate

(FPR), and area under curve (AUC). These performance metrics were given by each model with

each of the three modalities: biochemical, clinical, and fusion. We validated that the computed

average AUC is equivalent to the AUC of the composite or average ROC curve, hence there is

no need for their distinction. These values were tabulated according to which dataset was used

for training each ML model, with Table 2 being models trained on original SARS-Cov-2 variant

and Table 3 being models trained on the Omicron variant.

Among all ML models trained with the original variant across all three modalities (see

Table 2), SVM’s fusion model gave the highest sensitivity at 78.5%, specifically when tested

with the Omicron variant data. Few others could achieve a TPR greater than 70% with

exceptions occurring only when testing with Omicron variant data. Specificity rates ranged

between 76.3-91.0%, with maximum being achieved by the RF model using fused feature

modalities and tested with Omicron data. AUC values fell between 61.1-82.4%, where the

maximum was again achieved by the SVM model on fused modalities cross-tested with Omicron

variant data.

In general, ML models developed from original SARS-CoV-2 data performed as well or

better across all performance metrics when tested with newer Omicron data, compared to testing

on the original variant. Regarding TPR, the range of values obtained when testing with original

COVID-19 data was 41.7-66.9% while those acquired from testing with Omicron variant data

were 53.1-78.5%. Similar trend arised in the comparison of TNR where the original tested rates
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were between 76.3-87.0%, while Omicron tested rates were higher at 80.3-91.0%. Lastly, AUC

values when testing with original variant data were between 61.1-74.2%, while those from

testing with Omicron variant were again higher at 70.5-82.4%.

For the performance across three feature modalities, in most cases the most predictive

modality was fusion, i.e., fused features across biochemical and clinical modalities. Fusion

performed consistently well across all four ML techniques. With reference to both TPR and

AUC, fusion outperformed the biochemical modality in all models trained on the original

SARS-CoV-2 variant. This was also observed for most models with respect to TNR, in which the

exceptions were minute (within 4% difference). Contrasting with ML models trained on clinical

modality alone, models trained on fused features outperformed the same models trained on

clinical feature modality only in most metrics across all four ML techniques. Models trained on

fusion datasets were especially preferred in instances of testing with the Omicron variant data,

while models developed from clinical feature modality only were the best performers when

testing with original SARS-CoV-2 variant data. The only two occasions where the ML models

developed from clinical modality alone achieved higher AUC scores than the fusion models were

in the case of RF tested with original variant data, and kNN tested with original variant data.

Table 2: Mean Original Model Performance (10 runs)

Regularized Logistic Regression (LR): Trained on Original Variant

Test Set Modality TPR(%) TNR(%) FPR(%) AUC

Original Biochemical 53.5% 82.8% 17.2% 0.682

Clinical 64.6% 77.9% 22.1% 0.713

Fusion 66.9% 81.5% 18.5% 0.742

Omicron Biochemical 66.8% 80.3% 19.7% 0.735
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Clinical 70.6% 82.0% 18.0% 0.763

Fusion 75.8% 81.2% 18.8% 0.785

Random Forest (RF): Trained on Original Variant

Test Set Modality TPR TNR FPR AUC

Original Biochemical 53.0% 83.7% 16.3% 0.683

Clinical 65.9% 76.3% 23.7% 0.711

Fusion 57.3% 79.9% 20.1% 0.686

Omicron Biochemical 68.0% 90.3% 9.7% 0.791

Clinical 67.6% 81.7% 18.3% 0.747

Fusion 70.5% 91.0% 9.0% 0.808

k-Nearest Neighbors (kNN): Trained on Original Variant

Test Set Modality TPR TNR FPR AUC

Original Biochemical 41.7% 80.4% 19.6% 0.611

Clinical 55.0% 87.0% 13.0% 0.710

Fusion 56.2% 83.8% 16.2% 0.700

Omicron Biochemical 53.1% 88.0% 12.0% 0.705

Clinical 60.1% 84.2% 15.8% 0.722

Fusion 70.7% 90.2% 9.8% 0.805

Support Vector Machine (SVM): Trained on Original Variant

Test Set Modality TPR TNR FPR AUC

Original Biochemical 50.5% 86.6% 13.4% 0.685

Clinical 64.6% 79.7% 20.3% 0.721

Fusion 63.4% 82.6% 17.4% 0.730

Omicron Biochemical 63.1% 82.6% 17.4% 0.728
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Clinical 71.1% 83.6% 16.4% 0.774

Fusion 78.5% 86.3% 13.7% 0.824

Within the techniques trained with Omicron variant data (Table 3), the highest sensitivity

achieved was 92.4% by SVM fusion model when tested with Omicron variant data. Following

closely with a TPR of 92.0% was the LR fusion model tested on Omicron variant data. The

specificity rates were in the range 73.5-90.8% with the highest rate achieved by the LR fusion

model tested with Omicron variant data. Overall AUC values ranged between 66.8 and 91.4%,

where the LR fusion model was the top performer.

Similarly to what we found when analyzing the performance of ML models trained on

original variant data, models trained with Omicron variant data performed better when tested

with Omicron variant data compared to testing with the original variant across all performance

metrics (Table 3). Sensitivity ranged 76.6-92.4% when testing with Omicron variant data. When

testing with original variant data, sensitivity ranged 53.9-78.4%. Specificity showed a similar

pattern, as the Omicron-tested values were between 77.3-90.8%, while original variant tested

values were lower at 73.5-82.9%. Also following this pattern, AUC values of the Omicron tested

set were between 77.7-91.4%, whilst those from the original variant tested were 66.8-76.9%.

As for the performance across feature modalities, Table 3 also demonstrated models with

fusion features as the overall best performers. Models with fused feature modalities

outperformed models with biochemical modality alone in every performance metric among ML

models trained on Omicron variant data. Performances were similar between models with the

fusion and clinical feature modalities, with fusion achieving slightly higher values in the majority

of scenarios. We again only observed better AUC values in LR and SVM with clinical feature
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modality alone than in counterpart models with fusion features when tested on original variant

data.

Table 3: Mean Omicron Model Performance (10 runs)

Regularized Logistic Regression (LR): Trained on Omicron Variant

Test Set Modality TPR TNR FPR AUC

Omicron Biochemical 84.1% 88.3% 11.7% 0.862

Clinical 82.3% 82.7% 17.3% 0.825

Fusion 92.0% 90.8% 9.2% 0.914

Original Biochemical 58.3% 77.9% 22.1% 0.681

Clinical 77.4% 76.4% 23.6% 0.769

Fusion 71.1% 79.3% 20.7% 0.752

Random Forest (RF): Trained on Omicron Variant

Test Set Modality TPR TNR FPR AUC

Omicron Biochemical 87.5% 87.7% 12.3% 0.876

Clinical 80.3% 77.3% 22.7% 0.788

Fusion 89.5% 89.8% 10.2% 0.896

Original Biochemical 71.6% 76.1% 23.9% 0.738

Clinical 78.4% 73.5% 26.5% 0.759

Fusion 76.5% 76.9% 23.1% 0.767

k-Nearest Neighbors (kNN): Trained on Omicron Variant

Test Set Modality TPR TNR FPR AUC

Omicron Biochemical 75.7% 86.0% 14.0% 0.809

Clinical 76.6% 78.8% 21.2% 0.777

Fusion 83.2% 88.2% 11.8% 0.857

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 5, 2024. ; https://doi.org/10.1101/2024.04.04.24305295doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.04.24305295
http://creativecommons.org/licenses/by-nc/4.0/


Original Biochemical 53.9% 79.8% 20.2% 0.668

Clinical 69.1% 78.0% 22.0% 0.735

Fusion 64.5% 82.9% 17.1% 0.737

Support Vector Machine (SVM): Trained on Omicron Variant

Test Set Modality TPR TNR FPR AUC

Omicron Biochemical 82.1% 87.9% 12.1% 0.850

Clinical 80.6% 82.0% 18.0% 0.813

Fusion 92.4% 88.5% 11.5% 0.905

Original Biochemical 57.4% 77.9% 22.1% 0.677

Clinical 76.3% 76.7% 23.3% 0.765

Fusion 70.7% 78.4% 21.6% 0.746

To visualize and compare across the three feature modalities, we constructed the

following receiver operating characteristic (ROC) plots. For each of the four ML techniques,

ROC plots were generated for the same-variant and cross-variant testings with a total of 4

combinations. All 16 plots were presented in the Supplemental Materials. For brevity’s sake, we

demonstrated four graphs from LR in Figures 2(a)-(d). Each graph showed the composite ROC

obtained by averaging sensitivity (TPR) and 1-specificity (FPR) over 10 runs for each modality.

The shaded regions denote one standard deviation from the mean of the TPR. As depicted in the

legend, the red, green, and blue lines represented the performance of models with biochemical,

clinical, and fusion feature modalities, respectively.

In general, models with fusion modality performed equally well and sometimes better

than models with either a single biochemical or clinical feature modality, as shown in Tables 2-3.

This was also confirmed by the ROC curves and area under curve (AUC) values, where models
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with fusion feature modality were consistently above other models in both training and testing

combinations. In summary, these results illuminated a unique and previously unknown attribute

of ML models trained in original SARS-CoV-2 variant but tested with later Omicron variant, and

there was a significant variation in performance across 10 runs. This was not observed in three

other same and cross-variant training-testing combinations. It was also worth noting that this

pattern was also observed in RF, kNN, and SVM ML techniques, and was not unique to LR.

Figures 2(a)-(d)

2(a)
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2(b)

2(c)
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2(d)

Feature Importance Ranking for Clinical Decision Support on COVID-19 Severity

During each run of ML models, the feature coefficient vectors from the tuned LR model

and Gini impurity-based feature importances from RF were recorded for feature ranking. At the

end of the 10 runs, these weights and importances were averaged with respect to the specific

training data set and feature modality. This resulted in an overall ranking of features of each

modality separately and fused when trained on either SARS-CoV-2 variant, according to LR and

RF. LR’s associated coefficient vector would be real valued, while RF’s Gini-importance were

probabilities in [0, 1].

ML performance results showed that fusion features of both biochemical and clinical

modalities generally yielded the most reliable predictions in either original or Omicron variant
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data. Fusion across the two modalities also covered features more comprehensively. Therefore,

we focused on fusion features to demonstrate feature importance in differentiating severe and

non-severe COVID-19 types. These rankings are presented in Figures 3(a)-(d). Feature rankings

for each modality separately can be found in the Supplementary Materials. Regardless of ML

model techniques or SARS-CoV-2 variants, certain features such as DD (d-dimer; biochemical

modality), hsTNI (high sensitivity Troponin I; biochemical), and OLD (age >55 years; clinical

modality) were consistently ranked in the top five most predictive features for COVID-19

severity. Features that often appeared in the top ten most predictive features include hsCRP (high

sensitivity C-reactive protein; biochemical) and HYP (hypertension; clinical).

Comparing LR and RFs' respective feature rankings, there were a few differences to note.

Primarily, both LR models (figures 3(a),(b)) ranked CPD (chronic obstructive pulmonary

disease; clinical) the 6th most predictive feature according to the ML model trained on the

original variant; and 5th trained on the Omicron variant data. This result was not mirrored for

RF. Instead, we found that both RF models trained on original and Omicron variants (figures

3(c),(d)) identified LY (lymphocyte; biochemical), FERR (ferritin; biochemical), and IL-6

(interleukin-6; biochemical) as important features. Interestingly, the RF models trained on

different variants’ datasets agreed more on feature ranking than LR trained on different datasets.

For example, only LR trained on the original variant identified MDF (mid-grade fever; clinical),

LOF (low-grade fever; clinical), and HIF (high-grade fever; clinical) among the top 10 most

predictive features, while its counterpart trained on Omicron variant identified PCT

(procalcitonin; biochemical), NE.1 (percent of neutrophil; biochemical) and WBC (white blood

cell; biochemical) as the most predictive. Such discrepancies in feature rankings were not

observed in results from RF models trained on different variants’ datasets.
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Lastly, there were substantial differences in the range of feature importance when

comparing models trained on different variants’ datasets. LR’s feature coefficients ranged

between approximately [-0.83, 2.30] in the original variant, whereas this range was [-0.75, 4.20]

for Omicron. Gini impurities obtained from the RF model trained on the original variant dataset

were around [0, 0.09], while Gini impurities from RF models trained on Omicron dataset were

broader [0, 0.12].

Figures 3(a)-(d)

3(a)
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3(b)

3(c)
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3(d)

Discussion

Main Findings

In this study, we evaluated the predictive power of multiple ML techniques when

utilizing two different feature modalities. Not only were we able to compare the predictive

capabilities of COVID-19 severity across these modalities, we also discovered the differences of

model performance across different SARS-CoV-2 variants. Overall, we found ML to be a

powerful tool for predicting COVID-19 severity based on comprehensive individual patient-level

data. More importantly, we discovered that fusion of the biochemical and clinical modalities

enhanced the predictive power of all types of ML models evaluated in this study, including LR,

RF, kNN, and SVM . Models trained on multiple feature modalities have yielded the best
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performance in nearly every performance metrics across training and testing sets. These

multimodal features are accessible by healthcare systems especially with wide adoption of

electronic health record systems. Results can be obtained efficiently from these systems,

allowing the predictive ML model as a fast and reliable clinical decision support tool to quickly

and effectively identify patients with high risk of severe COVID-19.

The similarity of performance results between the four ML techniques evaluated in this

study suggest that the specific choice of modeling technique is less important for the task of

predicting severe COVID-19 patients. In general, LR, RF, and SVMs tied as the top performers

with their highest AUC scores being 0.914, 0.896 and 0.905, respectively. kNN is the relative

lowest, with its highest AUC being 0.857. If model interpretability is important in the clinical

decision support of these ML models, then LR and RF should be considered. LR offers the

analyst information on which features are positively and negatively associated with the risk of

severe COVID-19 However, LR is susceptible to multicollinearity between different features [9].

RF, on the other hand, is more resilient to the multicollinearity issue in the input data [11]. RF

model’s reliability and robustness is shown in the findings of this study, and further supported by

other studies, including Chen et al. [3], Xiong et al. [21], and more.

The feature rankings provided by the two ML models are important for clinical decision

making and serve as clues to COVID-19 pathology. Our study indicates that elevated biomarkers

such as D-dimer for coagulation and hsTNI and hsCRP as indicators for heart damage are

strongly associated with severe COVID-19. Other works have also shown that cardiovascular

injury due to COVID-19 is highly associated with adverse patient outcomes [29]. Higher

D-dimer is associated with higher risk of progressing to severe stage. Our findings also suggest

that patients’ clinical information such as being 55 years or older, or having pre-existing
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conditions such as hypertension and COPD, could significantly increase the risk of progressing

to severe COVID-19. Other studies also confirm age and hypertension as major risk factors for

severe COVID-19 [30, 31].

When comparing important features between patients infected by original and Omicron

variants, we have identified an increase in the feature weight vector and Gini impurity values,

which have not been reported before. This finding suggests that COVID-19 severity became

more predictable in more recent variants. We speculate that patient-level data may have higher

quality in the Omicron wave than the original variant. This might also explain the higher

variability and lower performance in models trained and tested on the original SARS-CoV-2

patient data.

Limitations

One of the hindrances to the generalizability of this framework is the lack of variation in

data samples. All patient data were taken at the individual's time of admission to one healthcare

facility, the Wuhan Union Hospital, and the majority of patients were of the Han Chinese

ethnicity group. This could result in potential sampling bias and the results should be further

validated with larger scale mutli-center studies. For this framework to be more robust,

incorporation of larger datasets across more demographic groups would be necessary.

Another limitation is that we were not able to evaluate ML model predictability for other

major SARS-CoV-2 variants, such as Alpha and Delta. Retrospective studies are needed to

comprehensively evaluate the robustness of the developed ML models across different phases of

COVID-19 with different dominant variants and subvariants.
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Future Directions

There are a plethora of directions for which this study could further investigate.

Notwithstanding improvements made on the limitations previously discussed, we acknowledge

the existence of other emerging ML techniques that could be explored and evaluated in future

work. Given the tentative promise of LR as a predictive tool for COVID-19 clinical decision

support, other regression techniques such as the Lasso or Ridge regressions may be useful.

Further explorations shed light on the predictive power of ML techniques from

individual-level data collected from patients with other respiratory illnesses. This is especially

useful to healthcare systems inundated with patients infected with influenza or respiratory

syncytial virus (RSV), to name a few. Using similar ML techniques and leveraging the power of

transfer learning, our developed ML pipeline can be further applied to other diseases with similar

underlying datasets (e.g., clinical and biochemical). Connecting back with the goal of aiding

healthcare resource optimization, a potential application of this work is to simulate burdens on

the health system of an unexpected inflow of patients, some of whom are severe patients and

therefore need intensive care.

Another future direction to this work would be the incorporation of more data modalities,

such as patient-level medical imaging (including X Ray and CT scans) and multi-omics data.

Due to the higher dimensionality of imaging modality in relation to the biochemical and clinical

modalities, more advanced ML techniques such as a deep convolutional neural network (CNN)

need to be applied to match dimensionalities across different modalities.
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