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Abstract  30 

Background: There is growing evidence that weather alters SARS-CoV-2 transmission, but it remains 31 

unclear what drives the phenomenon. One prevailing hypothesis is that people spend more time indoors 32 

in cooler weather, leading to increased spread of SARS-CoV-2 related to time spent in confined spaces 33 

and close contact with others. However, the evidence in support of that hypothesis is limited and, at 34 

times, conflicting.   35 

Objectives: We aim to evaluate the extent to which weather impacts COVID-19 via time spent away-36 

from-home in indoor spaces, as compared to a direct effect of weather on COVID-19 hospitalization, 37 

independent of mobility.  38 

Methods: We use a mediation framework, and combine daily weather, COVID-19 hospital surveillance, 39 

cellphone-based mobility data and building footprints to estimate the relationship between daily indoor 40 

and outdoor weather conditions, mobility, and COVID-19 hospitalizations. We quantify the direct health 41 

impacts of weather on COVID-19 hospitalizations and the indirect effects of weather via time spent 42 

indoors away-from-home on COVID-19 hospitalizations within five Colorado counties between March 4th 43 

2020 and January 31st 2021. 44 

Results: We found evidence that changes in 12-day lagged hospital admissions were primarily via the 45 

direct effects of weather conditions, rather than via indirect effects by which weather changes time spent 46 

indoors away-from-home. Sensitivity analyses evaluating time at home as a mediator were consistent 47 

with these conclusions.  48 

Discussion: Our findings do not support the hypothesis that weather impacted SARS-CoV-2 49 

transmission via changes in mobility patterns during the first year of the pandemic. Rather, weather 50 

appears to have impacted SARS-CoV-2 transmission primarily via mechanisms other than human 51 

movement. We recommend further analysis of this phenomenon to determine whether these findings 52 

generalize to current SARS-CoV-2 transmission dynamics and other seasonal respiratory pathogens.  53 

 54 

 55 

 56 

 57 

 58 

 59 

 60 

 61 

 62 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 28, 2024. ; https://doi.org/10.1101/2024.03.26.24304854doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.26.24304854
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

Introduction 63 

Since the earliest days of the COVID-19 pandemic, there has been speculation regarding 64 

whether SARS-CoV-2 would follow the typical seasonal pattern of respiratory viruses seen in temperate 65 

climates, where transmission tends to increase in winter and wane during the summer.1 Four years after 66 

the discovery of SARS-CoV-2, a growing body of evidence suggests that SARS-CoV-2 is impacted by 67 

weather, similar to what is observed for seasonal respiratory infections such as influenza.2-6 Literature to 68 

date suggests evidence of increased SARS-CoV-2 transmission at cooler temperatures,7  and to a slightly 69 

lesser extent, at lower humidity.8 However, it is less clear what drives these relationships.  70 

A paradox in the seasonal transmission of respiratory illnesses is that year-round the average 71 

person spends the majority of their time indoors.9 Additionally, SARS-CoV-2 transmission is primarily 72 

linked to indoor environments where crowding and lack of ventilation facilitate transmission. This begs the 73 

question: how are respiratory viruses such as SARS-CoV-2 linked to weather when people spend little 74 

time exposed to outdoor meteorological conditions and transmission primarily occurs in indoor, 75 

conditioned spaces? A common explanation is that weather alters human movement patterns, leading 76 

people to spend more or less time indoors, altering the frequency and length of time spent in close 77 

contact with others.10-13 Here the ostensible relationship is that as weather becomes more unfavorable, 78 

people spend more time indoors and in indoor, confined spaces, increasing close contact with others and 79 

the probability of respiratory virus transmission. Despite its plausibility, the evidence for these phenomena 80 

is limited and conflicting. For example, while researchers in Belgium found a significant increase in long 81 

duration (>1 hour) social contact on low temperature work days as compared to high temperature days, 82 

they also found that the total number of social contacts that a person experienced during the workday did 83 

not significantly change with temperature.13 Likewise,  surveys of American and Canadian activity 84 

patterns have demonstrated that people tend to spend more time indoors during the winter than the 85 

summer,10 but a 2019 study from the US northwest demonstrated that snowfall-related school and 86 

workplace closures led to reduced social contact and subsequent reductions in cumulative respiratory 87 

virus incidence.14  88 

There is considerable evidence that human mobility impacts SARS-CoV-2 transmission, including 89 

evidence that human mobility patterns are a stronger driver of transmission than weather. Studies 90 
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estimating the relative contribution of mobility-related indicators (e.g., mobility index, countrywide 91 

lockdown, homestay) versus various weather conditions have found that mobility indicators were stronger 92 

contributors to SARS-CoV-2 transmission and COVID-19 pandemic growth than any weather conditions 93 

on their own15-17 Similarly, two panel studies reporting the net effect of mobility and weather on SARS-94 

CoV-2 transmission within countries with high confirmed COVID-19 cases during the first six months of 95 

the pandemic highlighted the potential suppression effect of mobility,18,19 which occurs in mediation 96 

analyses when the direct and indirect (i.e., mediated) effects have opposite signs.20 That is, any 97 

reductions in SARS-CoV-2 transmission that may have resulted from the negative association between 98 

temperature (or solar radiation) and SARS-CoV-2 were ultimately counteracted by warm temperature-99 

related rises in mobility and the subsequent rises in mobility-related SARS-CoV-2 transmission.18,19  100 

 There are several plausible pathways by which weather can directly impact transmission outside 101 

of mobility. For example, studies have demonstrated that a host’s innate immune response tends to be 102 

improved at higher temperatures,21 while lower temperature and humidity have been found to impair 103 

airway tissue repair and mucous production for capturing and transporting invaders.22-25 Studies have also 104 

suggested that lower sun exposure and subsequent lower levels of Vitamin D is associated with a 105 

decrease in host immunity and increased respiratory viruses during winter months.26,27 Ambient 106 

temperature and humidity determine how quickly particles ejected by a cough or sneeze evaporate, which 107 

has the potential to affect the average distance travelled and the time that particles remain airborne.28 108 

While several factors are important to consider when it comes to the transmissibility of ejected particles – 109 

such as particle size, speed of ejection, ventilation, floor plan, etc.,– in general the effectiveness of 110 

airborne transmission is likely to increase when temperature and relative humidity are lower.28-30  111 

Furthermore, lower temperatures and humidity have been associated with greater viral viability, stability 112 

and survival.31,32 One comparison of virus survival at room temperature versus summer temperatures 113 

found much more rapid decay at summer temperatures,33 while other studies have demonstrated that the 114 

SARS-CoV-2 deactivation rate related to sunlight and solar radiation is slower during the winter 115 

season.34,35  116 

 We conducted a mediation analysis to test the hypothesis that meteorological conditions impact 117 

COVID-19 transmission via changes in human mobility patterns. We use daily COVID-19 hospital 118 
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admissions in five Colorado counties between March 2020 and January 2021, daily weather data, 119 

building footprints, and cellphone-based mobility data to distinguish time spent indoors versus outdoors, 120 

and time spent at home versus away-from-home. Using the mediation analysis framework shown in 121 

Figure 1, we evaluate the extent to which weather directly influenced COVID-19 hospitalizations during 122 

the first year of the pandemic, as compared to an indirect mediation effect in which weather impacts 123 

mobility, which subsequently influences COVID-19 transmission. Instead of using absolute measures of 124 

weather, mobility and COVID-19 hospitalizations in this analysis, we standardize our weather variables 125 

and mean-center our mediators (i.e., mobility metrics) and outcome (i.e., COVID-19 hospitalizations) by 126 

county and season, such that the results could be interpreted as change relative to the county-season 127 

mean. This approach allowed us to account for season- and location-specific variability in our definitions 128 

of meaningful changes in weather, mobility and COVID-19 transmission. Additionally, we used publicly 129 

available indoor and outdoor climate data to evaluate the relationship between indoor and outdoor 130 

weather conditions. Through this analysis we test an often cited, yet largely suppositious hypothesis, with 131 

the goal of improving our understanding of the complex interplay of weather and behavior on a respiratory 132 

pathogen. 133 

Methods 134 

Study period and population  135 

We combine daily measures of indoor and outdoor weather conditions, mobility data from mobile 136 

devices, and COVID-19 hospitalization data for five Colorado counties between March 4th 2020 and 137 

January 31st 2021. March 4th was selected as our study’s start date, as this corresponded with the first 138 

confirmed COVID-19 hospitalization in Colorado. We focus on Boulder, Denver, Douglas, El Paso and 139 

Mesa counties because of the availability of both indoor and outdoor weather and mobility data for the 140 

length of the study period. These counties all have populations above 150,000 people and are among the 141 

most populous in the state. Due to rapidly changing transmission dynamics related to increasing 142 

vaccinations, the rise of highly transmissible SARS-CoV-2 variants in the late winter of 2021, and an end 143 

to our access to the mobility data, we end the dataset on January 31, 2021. We analyze the data by 144 

season using the following definitions: Spring from March 4th to May 31st; Summer from June 1st to August 145 

31st; Fall from September 1st to November 30th; and Winter from December 1st to January 31st 146 
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Indoor vs. outdoor climate 147 

We compile data from PurpleAir monitors (https://api.purpleair.com/) to assess the relationship 148 

between indoor and outdoor weather conditions at different times of year. PurpleAir monitors report 149 

temperature, humidity and air quality readings for monitors located both inside and outside.  We 150 

generated estimates of the county-wide mean, standard deviation, 10th and 90th percentile values for 151 

indoor and outdoor temperature and humidity conditions each day using 10-minute interval readings from 152 

1) all indoor monitors located in each county, and 2) all outdoor monitors located in each county. All 153 

monitors have two sensors that enable users to gauge the reliability of the readings. We omitted data 154 

when the two sensors were not within 10 units (degrees F and percent relative humidity) of each other or 155 

when the air quality reading of one sensor was at least three times greater than the other.  We also omit 156 

all data from a single monitor if greater than 20% of its readings are outside of a plausible range, defined 157 

as greater than 100% or less than 0% for relative humidity, and temperatures higher or lower than the 158 

record high and low temperatures observed in Colorado for a given month. Notably, heat generated by 159 

the WiFi module of PurpleAir monitors causes them to be on average 8°F higher than the ambient 160 

temperature, and 4% lower than the ambient relative humidity.36 161 

Climate data 162 

We use gridMET data 37 to supplement daily outdoor weather conditions across each county 163 

because it is more accurate and reliable than the purple air sensors. GridMET is a gridded reanalysis 164 

dataset estimating daily surface meteorological conditions across the continental US at high spatial 165 

resolution (~4-km, 1/24th degree) that spans our study period.37  We collect daily estimates of shortwave 166 

solar radiation (W/m2), and the minimum and maximum temperature (°F), relative humidity (%) and 167 

absolute humidity (g/m3), as these are the weather variables that have been the most consistently 168 

associated with COVID-19 to date.7,8,38  Additionally, we also evaluated daily precipitation (mm) and daily 169 

average windspeed (m/s), as some studies have highlighted these meteorological factors as being 170 

potentially associated with COVID-19, albeit with more variable findings than what’s been found to date 171 

for solar radiation, temperature and humidity.39-46 We calculate the average value of each weather metric 172 

on each day within a county to produce a county-day dataset. 173 
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 As we were interested in relative (as opposed to absolute) changes in weather for a given 174 

location and season, each meteorological variable was standardized by county and season. To do this, 175 

the mean and standard deviation for each county-season was estimated. The county-season mean was 176 

then subtracted from each observation from a given county and season, and the resulting value was 177 

divided by the county-season standard deviation.  Mean-centering by county and season allowed us to 178 

focus on location-specific variability in weather within each season, and facilitated a simple and uniform 179 

standard deviation-based definition of the “treatment” level of each weather variable for mediation 180 

analyses. 181 

Behavioral determinants data 182 

We use mobile device data from X-mode (https://aws.amazon.com/marketplace/seller-183 

profile?id=4e8835bd-89dc-4ae7-818d-52c22fedcbb9) consisting of timestamped geolocated points (i.e., 184 

device breadcrumbs). X-mode is one of many mobile device location data providers whose data have 185 

been used to study mobility patterns during the COVID-19 pandemic.47 We use the mobile device data to 186 

estimate the average daily percentage of time that county residents spent indoors away-from-home. We 187 

use this measure as our primary description of transmission-relevant behavior because SARS-CoV-2 188 

overwhelmingly occurs indoors,48,49 and, while the home environment is a key source of SARS-CoV-2 189 

transmission, contacts outside of the home are necessary for introduction of the virus into the home.50 190 

Additionally, we conducted a sensitivity analysis using time at home as an alternate measure of 191 

transmission-relevant behavior, due to concern over potential misclassification that could arise when 192 

differentiating between time spent indoors versus outdoors.  193 

Mobile device location was divided into five categories: indoors at home; outdoors at home; 194 

indoors not-at-home; outdoors not-at-home; and in transit. To determine if a mobile device was indoors or 195 

outdoors, we used a database of Colorado building footprints from Microsoft 196 

(https://github.com/microsoft/USBuildingFootprints). We classified the device as indoors if it met the 197 

following conditions: 1) the device remained within an 80-meter radius for at least 2 minutes; and 2) The 198 

geometric median of the pings within that radius rested within 1-meter of a building footprint. When a 199 

device was moving at a speed greater than 10 miles per hour, we classified that device as “in transit”. We 200 

classified all other device activity – static, not within 1-meter of a building footprint, or moving less than 10 201 
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miles per hour – as outdoors. To determine when the device was away-from-home, we assigned two 202 

“home locations” per day per device: the “primary home” – the most common nighttime location for the 203 

device over the past 6 weeks – and the “current home” – the device’s primary location from the prior 204 

night. We considered a device to be away-from-home if it was observed more than 60-meters from both 205 

its primary and current home. 206 

To generate daily estimates of where time was spent for each device, we expressed time spent in 207 

each of our five device location categories as a percentage, using the total amount of time a device was 208 

observed each day as the denominator. We then calculate a county-wide average of the percent of time 209 

spent in each of the five location categories for each study county. Finally, to facilitate comparisons 210 

across counties and seasons that account for intra- county and season variability in what constitutes 211 

“typical” mobility behaviors, we mean-centered each of our “percent of time spent” variables such that a 212 

value of “0” represented the county and season average percent of time spent in a given location, while a 213 

negative/positive number indicated lower/higher than average percent of time spent in that location, given 214 

the county and season.  215 

COVID-19 hospitalization data 216 

We used reported case data from the Colorado Electronic Disease Reporting System (CEDRS) 217 

provided by the Colorado Department of Public Health and the Environment (CDPHE) to calculate the 218 

daily number of people admitted to the hospital with SARS-CoV-2 in each county. We used COVID-19 219 

hospitalizations as our outcome instead of reported cases because we suspect cases reflect a variable 220 

proportion of infections over time due to changes in access to testing and test-seeking behaviors across 221 

our study period. To approximate a normal distribution and to facilitate interpretation across counties and 222 

seasons that account for intra- county and season variability in COVID-19 hospitalizations, we mean-223 

centered hospitalizations for each county and season such that a value of “0” represented the average 224 

number of hospitalizations for a given county and season, while a negative/positive number indicated the 225 

degree to which daily hospitalizations were below/above the county and season average.  226 

We hypothesized that meteorological conditions impact behavior immediately, leading to SARS-227 

CoV-2 transmission events. COVID-19 hospitalizations, however, occur days after such transmission 228 

events. We lag hospitalizations by 12-days. This 12-day lag is the sum of a literature-based estimate of 229 
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the average incubation period for SARS-CoV-2 of 4-days,51,52 plus  our data-based average of 8-days 230 

between reported symptom onset and hospitalization for our study population and period, based on an 231 

analysis of the CEDRS data.53  232 

Statistical analysis 233 

Indoor vs. outdoor weather. First, to evaluate the relationship between indoor and outdoor 234 

weather conditions, we calculated Pearson’s correlation coefficients between daily estimates of indoor 235 

and outdoor mean temperature, relative humidity and absolute humidity for each 3-month season derived 236 

from the Purple Air sensors, using the benchmark values outlined by Schober et al., (2018) to indicate 237 

strong (0.70 – 0.89) and very strong (0.90 – 1.00) correlation.54 Scatter plots were also used to visualize 238 

the relationship between indoor and outdoor conditions across the study period.  239 

Mediation screening. We then conducted a mediation analysis to evaluate evidence that 240 

meteorological variables impact COVID-19 hospitalizations directly or via changes in human mobility. 241 

Mediation analysis is recommended only when there is evidence of an association between the exposure 242 

and mediator, the exposure and outcome, and the mediator and outcome. We first screen each weather 243 

variable for evidence of an association with the mediator and with the outcome, using an approach that 244 

allowed us to consider a wide range of candidate weather variables, as described in the sections below.  245 

Nonlinear effects of weather. Recognizing that the relationship between weather and behavior, 246 

and weather and COVID-19 may be non-linear, we converted each of our standardized meteorological 247 

variables into 3-category versions to capture “high”, “middle” and “low” values across their distributions. 248 

This allowed us to avoid assumptions of linearity and to generate data-informed definitions of our 249 

treatment variables for the mediation analyses. Lowess plots were used to examine the shape of the 250 

relationship between weather and human mobility, as well as weather and COVID-19 hospitalizations.55 251 

As the default, we used ± 1 SD as cut points for generating 3-category weather variables (i.e., <-1 SD, -1 252 

– 1 SD, >1 SD), though in some instances, alternative cut points were selected based on the relationships 253 

indicated via the Lowess plots.   254 

Weather vs. human mobility. Once we determined the cut points to use for each categorical 255 

weather variable, we assessed its independent relationship with human mobility (i.e., time spent indoors, 256 

away-from-home) using linear regression models. For each linear regression model, we used Beta 257 
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coefficients (β), a 95% confidence interval (CI) and a probability value (p-value) of <0.05 to indicate 258 

whether above (e.g., > 1 SD) or below average (e.g., < -1 SD) weather conditions (relative to the mid-259 

range values of -1 to +1 SD) were significantly associated with county-season averaged percent of time 260 

spent indoors away-from-home.  261 

Each of our linear regression models used time spent indoors away-from-home (mean-centered 262 

by county-season) as the outcome, included a single meteorological variable (to avoid issues with 263 

multicollinearity), an auto-correlation term (i.e., yesterday’s value for time-spent indoors, away-from 264 

home) as well as three variables hypothesized to be sources of confounding: day type, stay-at-home 265 

orders, and rising Colorado hospitalizations last week. Day type was a binary variable generated to 266 

account for potential changes in behavior associated with different days of the week/month, indicating 267 

whether a given day was a weekday (Monday – Friday) versus a weekend (Saturday/Sunday) or a 268 

common 2020 US holiday (New Years Day, MLK, President’s Day, Memorial Day, Independence Day, 269 

Labor Day, Columbus Day, Veteran’s Day, Thanksgiving Day, Black Friday, Christmas Eve, Christmas 270 

Day, New Year’s Eve). To account for potential shifts in behavior and hospitalizations during the early 271 

stage of the pandemic when COVID-19 lockdown mandates were in place in Colorado counties, we used 272 

a binary indicator of whether each county was under a stay-at-home order for a given day (March 26th – 273 

April 26th for Douglas, El Paso and Mesa counties; March 26th – May 8th for Boulder and Denver counties). 274 

Finally, to account for potential behavioral changes in response to perceived risk of COVID-19 during 275 

times of rising transmission, we compiled hospitalization census data (indicating total COVID-19 276 

hospitalizations each day) to calculate an average weekly number of hospitalizations (avhosp) across the 277 

entire state of Colorado. This was used to generate a binary indicator of whether Colorado 278 

hospitalizations were increasing last week (hospgrowth), as compared to the week prior, calculated as 279 

follows:  280 

�������� � 1 �� 
������_����� � ������_������

������_�����
� 0, ���� �������� � 0 

Recognizing that the direction and shape of the relationship between human mobility and weather 281 

could vary by season, we evaluated the evidence for seasonal effect modification by comparing the 282 

results of all-season (using season as a covariate) to season-stratified linear regression models. We 283 
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considered there to be evidence of effect modification when the stratum specific coefficient estimates 284 

from our regression models changed directions, or shifted by more than ± 25% between any two stratum.   285 

Weather vs. COVID-19 hospitalizations. We again used linear regression to evaluate evidence 286 

of an association between the same set of weather variables and COVID-19 hospital admissions. Here 287 

we modeled COVID-19 hospital admissions (mean-centered by county-season to approximate a normal 288 

distribution) as the outcome and included a single 3-category meteorological variable as the 289 

treatment/exposure variable, an auto-correlation term (i.e., yesterday’s value for COVID-19 hospital 290 

admissions), as well as the aforementioned potential confounders: day type, stay-at-home orders, and 291 

rising Colorado hospitalizations in the previous week. For each linear regression model, we used β-292 

coefficients (β), a 95% CI and a p-value of <0.05 to indicate whether above (e.g., > 1 SD) or below 293 

average (e.g., < -1 SD) weather conditions (as compared to mid-range values of -1 to +1 SD) were 294 

significantly associated with county-season averaged COVID-19 hospital admissions. Again, we 295 

evaluated the evidence of seasonal effect modification by comparing the results of all-season (using 296 

season as a covariate) to season-stratified linear regression models. 297 

Mediation analysis. The results from the aforementioned linear regression models between 298 

weather and human behavior, and between weather and COVID-19 hospital admissions were used as a 299 

2-step screening tool to determine which weather variables and “treatment” definitions to assess in the 300 

mediation analysis. We included only those weather variables whose comparison of “treatment” vs 301 

“control” (either high vs. middle, low vs. middle, or both) was significantly associated (p-value<0.05) with 302 

both time spent indoors away-from-home and COVID-19 hospital admissions in the mediation analysis. In 303 

the event that our regression models suggested a significant association at only one treatment level (e.g., 304 

high vs. middle, but not low vs. middle), only that treatment level was assessed in the mediation model.   305 

For those weather variables that passed the 2-step screening, we then applied a mediation framework to 306 

determine the degree to which the total effect on COVID-19 hospital admissions was attributable to 307 

indirect effects (i.e., via time spent indoors away-from-home), versus via direct effects (i.e., via the 308 

weather variable). For each mediation model, we used the “mediate” command available in Stata 18.56 309 

We defined the “treatment” weather group as either the “low” or “high” category (depending on which 310 

category was highlighted as being significantly different from the “middle” category in our regression 311 
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models), while our default control group was always the “middle” category. Each mediation model also 312 

included the auto-correlation terms and the three control variables from our linear regression models 313 

(weekend/holiday, stay- at-home order, perceived risk), as well as an additional interaction term to 314 

account for interaction between the mediator and the treatment variable in each model. The latter 315 

decision is based on the guidelines laid out by VanderWeele (2015), wherein researchers are advised to 316 

include the interaction term by default, removing it only if its inclusion does not substantially change effect 317 

estimates. 57  318 

Sensitivity analyses. We included three sensitivity analyses in this assessment. First, we 319 

assessed percent of time spent at home (both indoors and outdoors) as the mediator and compared 320 

these results to that of the results from the primary assessment of time spent indoors away-from-home as 321 

the mediator. Second, we assessed each of our meteorological variables as continuous (instead of 322 

categorical) exposure/treatment variables (using ± 1 SD as the “treatment” group in the mediation 323 

analysis, and 0 as the “control” group), and compared the results with those from the primary 324 

assessment. Third, we also reran our mediation models to exclude the “hospgrowth” variable and 325 

compared the results with those models that included them to determine whether its inclusion resulted in 326 

any substantial changes in our results. Stata 18 was used for all analyses.  327 

Results  328 

 Between March 4th 2020 and January 31st 2021, there were a total of 8,827 COVID-19 hospital 329 

admissions within our five Colorado study counties (Table 1). The number of daily COVID-19 hospital 330 

admissions reported by each county was highest in the winter (Mean = 9.0, Standard Deviation (SD) = 331 

7.6), and lowest in the summer (Mean = 1.7, SD = 2.2). A plot of COVID-19 hospitalizations within each 332 

county during our study period is available in Figure 2.  333 

On average, people spent the most time away-from-home in indoor spaces during the fall (mean 334 

= 5.6%, SD = 1.2), and the most time at home during the spring (mean = 77.1%, SD = 5.0). Notably, the 335 

spring season corresponded with the executive “stay-at-home” order, which lasted from March 26th– April 336 

26th 2020 for all Colorado counties and was extended by Denver and Boulder counties through May 8th.  337 

The weather within our five study counties was characteristic of temperate and dry climate types 338 

across the study period (Table 1).  The mean maximum daily temperature was highest in the summer 339 
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(mean maximum temperature = 85.2, SD = 6.9) and lowest in the winter (mean maximum temperature = 340 

41.7, SD = 10.1), with the largest variance experienced during the spring (mean maximum temperature = 341 

61.4, SD = 13.5) and fall (mean maximum temperature = 63.9, SD = 16.8). Relative humidity tended to be 342 

lowest during the summer (mean minimum relative humidity = 16.0, SD = 8.5; mean maximum relative 343 

humidity = 57.8, SD = 17.2) and highest during the winter (mean minimum relative humidity = 34.1, SD = 344 

17.6; mean maximum relative humidity = 74.9, SD = 18.9), while absolute humidity was highest during the 345 

summer (mean minimum absolute humidity = 1.7, SD = 0.9; mean maximum absolute humidity = 17.0, 346 

SD = 4.7) and lowest during the winter (mean minimum absolute humidity = 0.9, SD = 0.4; mean 347 

maximum absolute humidity = 5.2, SD = 1.6).  348 

Comparing indoor and outdoor weather conditions  349 

 A comparison of indoor and outdoor environmental conditions indicated that indoor conditions 350 

overlapped most with outdoor conditions between late spring and mid-fall (Figure 3). Indoor temperature 351 

and relative humidity were relatively stable across the year, though indoor temperature deviated from 352 

outdoor temperature between late fall and early spring (Figure 3, Panels A and B). Indoor absolute 353 

humidity showed greater variability and was closely correlated with outdoor absolute humidity (Figure 3, 354 

Panel C). 355 

In Figure 4, correlation matrices comparing indoor and outdoor PurpleAir data demonstrate that 356 

the indoor and outdoor measures for mean temperature and absolute humidity were more strongly 357 

correlated than relative humidity across our study period. Correlation between indoor and outdoor 358 

temperature, relative humidity and absolute humidity was lowest during the winter season.  359 

Weather vs. Mobility and Weather vs. COVID-19 hospitalizations 360 

 The results of our linear regression models suggested that both above and below average 361 

weather conditions were frequently associated with the county-season average amount of time spent 362 

indoors away-from-home, but less frequently associated with 12-day lagged hospital admissions (Table 363 

2). For example, when compared to mid-ranged minimum temperature, lower than average minimum 364 

temperature (< -1 SD) was significantly associated with an increase in the county-season mean percent 365 

of time spent indoors away-from-home in the all-season model (β =  0.09, 95% CI: 0.01, 0.17) and the 366 

spring model (β = 0.30, 95% CI: 0.11, 0.48), and a significant decrease in time spent indoors away-from-367 
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home in the winter model (β = -0.32, 95 CI: -0.47, -0.17) and the summer model (β = -0.08, 95% CI: -0.16, 368 

-0.00). Meanwhile, lower than average minimum temperature was not significantly associated with 12-day 369 

lagged COVID-19 hospital admissions in any of the season-stratified or all-season linear regression 370 

models.   371 

Only four weather conditions were associated with both time spent indoors away-from-home and 372 

12-day lagged COVID-19 hospital admissions in one or more season: high minimum temperature (all-373 

season), low maximum temperature (spring), low minimum absolute humidity (winter), and high solar 374 

radiation (all-season & winter), which are highlighted in gray in Table 2. As our ultimate interests in the 375 

linear regression models were to 1) identify candidate weather variables (and their associated seasons) 376 

that were appropriately suited to a mediation analysis (i.e., those that were associated with both time 377 

spent indoors away-from-home and 12-day lagged COVID-19 hospital admissions), and 2) to determine 378 

the anticipated direction of association for those that met the conditions of mediation analysis. Table 2 379 

includes only those regression results pertaining to the subset of weather variables that met those 380 

conditions. For further details on the association between time spent indoors away-from-home or COVID-381 

19 hospital admissions and other weather variables (e.g., relative humidity, precipitation, wind speed) or 382 

the control variables, see Supplemental Table S1.  383 

Mediation analysis 384 

In our all-season mediation models, change in the county-season average 12-day lagged COVID-385 

19 hospital admissions was largely due to mechanisms other than the indirect route of time spent indoors 386 

away-from-home (Table 3). When minimum temperature was above average (> 0.5 SD) in the all-season 387 

model, there was a small, but statistically non-significant increase in the average COVID-19 hospital 388 

admissions that was attributable to the indirect route of weather via time spent indoors away-from-home 389 

(β = 0.02, 95% CI: -0.01, 0.04). By contrast, the estimated direct effect of above average minimum 390 

temperature on average COVID-19 hospital admissions by county-season was an average decrease of 391 

0.46 COVID-19 hospital admissions (95% CI: -0.82, -0.11). Thus, the resulting total effect of higher-than-392 

average minimum temperature and time spent indoors away-from-home in the all-season model was an 393 

average decrease of 0.45 hospital admissions (95% CI: -0.80, 0.10) by county-season. In other words, 394 

there was a suppression effect, meaning the estimated impact of temperature-associated changes in 395 
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mobility on COVID-19 hospitalizations was in the opposite direction of the estimated direct effect of 396 

temperature on COVID-19 hospitalizations. In a similar vein, when compared to mid-range solar radiation 397 

(-1.5 SD – 0 SD) in the all-season model, above average solar radiation (>0 SD) was associated with a 398 

small but statistically non-significant increase in COVID-19 hospital admissions via the indirect route of 399 

the associated changes in the average time spent indoors away-from-home (β=0.03, 95% CI: -0.00, 400 

0.07), but a significant decrease in COVID-19 hospital admissions via the direct route of higher than 401 

average solar radiation (β= -0.88, 95% CI: -1.23, -0.53).  402 

Similar to the estimates from the all-season models, our season-stratified spring model suggested 403 

opposing effects of low maximum temperature and time spent indoors away-from-home: we found a non-404 

significant increase in hospital admissions via the indirect route of time spent indoors away-from-home, 405 

but a statistically significant decrease in county-season average COVID-19 hospital admissions due to 406 

other mechanisms associated with lower than average maximum temperatures in the spring. In our two 407 

season-stratified winter models of the effects of low minimum absolute humidity and high solar radiation, 408 

we found that both the indirect effects and direct effects of these weather conditions each had a negative 409 

effect (albeit statistically non-significant for all but the direct effects of high solar radiation) on county-410 

season averaged COVID-19 hospital admissions. 411 

In several instances, our indirect effect estimates yielded results that ran counter to the 412 

hypothesis that the indirect effect of spending more time indoors away-from-home would be an increase 413 

in COVID-19 hospital admissions (and vice versa). For example, in the case of higher-than-average 414 

minimum temperature in our all-season models, the linear regression models (Table 2) suggested that 415 

above average minimum temperature (>0.5 SD) was associated with a significant decrease in the county-416 

season average percent of time spent indoors away-from-home (β = -0.09, 95 CI: -0.16, -0.01). By 417 

contrast, our mediation model highlighted a small increase (albeit statistically non-significant) in average 418 

COVID-19 hospitalizations attributed to temperature-induced changes in time spent indoors away-from-419 

home, demonstrating a direct conflict with our hypothesis that a decrease in time spent indoors away-420 

from-home would result in decreased risk of COVID-19 hospitalization. 421 

Sensitivity analyses  422 
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In a sensitivity analysis, we re-ran the analysis using time at home (either indoors or outdoors) as 423 

the mediator, hypothesizing that seasonal weather conditions would influence the amount of time spent at 424 

home, and that any time spent at home would be protective against COVID-19. Compared to the linear 425 

regression results from the primary analysis, the results from this sensitivity analysis suggested that 426 

seasonal weather conditions were more strongly associated with time spent at home than with time spent 427 

indoors away-from-home (Supplemental Table S2). The mediation analysis showed similar results to that 428 

of our primary mediation analysis, demonstrating that changes in the county-season average 12-day 429 

lagged COVID-19 hospital admissions were primarily a result of mechanisms other than changes in time 430 

spent at home (Supplemental Table S3).  431 

In an additional sensitivity analysis, we re-ran our linear regression models using continuous 432 

versions of weather variables. In our assessments concerning time indoors away-from-home, none of the 433 

continuous weather variables in the season-stratified models were statistically significantly associated 434 

with both the county-average percent of time spent indoors away-from-home and 12-day lagged COVID-435 

19 hospital admissions (Supplemental Table S4). Among the all-season models, only minimum 436 

temperature was statistically significantly associated with both the county-average percent of time spent 437 

indoors away-from-home and 12-day lagged COVID-19 hospital admissions. The mediation analysis 438 

assessing the direct effects of continuous maximum temperature and the indirect effect of continuous 439 

maximum temperature via time spent indoors away-from-home yielded nearly identical results to that of 440 

the primary analysis (Supplemental Table S5). Similarly, when we repeated this analysis using 441 

continuous versions of the weather variables on time at home and COVID-19 hospital admissions, we 442 

again found that only the all-season minimum temperature was statistically significantly associated with 443 

both the county-average percent of time at home and 12-day lagged COVID-19 hospital admissions 444 

(Supplemental Table S6, Supplemental Table S7).  445 

In a final sensitivity analysis, we compared two sets of mediation models: those that included the 446 

“hospgrowth” variable to account for potential behavioral changes in response to perceived risk of 447 

COVID-19 during times of rising transmission, and those that excluded it. The results did not change 448 

substantially with the exclusion of the hospitalization growth variable for either the time spent indoors 449 
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away-from-home (Supplemental Table S8) or time spent at home (Supplemental Table S9) mediation 450 

models.  451 

Discussion 452 

In our analysis, we did not find evidence that weather impacted COVID-19 hospital admissions 453 

via changes in time spent indoors, away-from-home during the first year of the pandemic. Using a 454 

mediation framework, we found instead that the direct effects of weather on hospital admissions were far 455 

more influential than the indirect route whereby weather changes mobility behaviors. This has important 456 

implications, as it runs counter to the popular belief that seasonality in winter-dominant respiratory viruses 457 

is primarily a result of increased time spent indoors. We found minimal variability in time spent indoors 458 

away-from-home across seasons. Within and across seasons, we found that changes in time spent 459 

indoors away-from-home associated with weather had little to no effect on county-season averaged 460 

COVID-19 hospital admissions. By contrast, we found that relative changes in weather – specifically, 461 

above average minimum temperature and solar radiation across all seasons, below average maximum 462 

temperature in the spring, and above average solar radiation in the winter –were each directly associated 463 

with a decrease in county-season averaged COVID-19 hospital admissions.   464 

This study has implications for the potential mechanisms by which weather impacts respiratory 465 

infections, and how we build models of respiratory disease systems. In mathematical models of infectious 466 

disease transmission, the spread of infections from infected to susceptible individuals is defined as the 467 

product of the contact rate between susceptible and infected individuals, and the transmission probability 468 

if there is a contact. The common theory that weather impacts respiratory illnesses through changes in 469 

human behavior implies that weather alters contact rates. Our analysis suggests that, in the first year of 470 

the COVID-19 pandemic, weather instead impacted the spread of SARS-CoV-2 by altering transmission 471 

probabilities. Below, we discuss the plausibility of this finding, as well as some caveats in the 472 

interpretation of this analysis. 473 

One of the paradoxes in explaining the direct impacts of weather on transmission is explaining 474 

how outdoor temperatures directly impact the probability of transmission of a pathogen that is primarily 475 

spread in indoor environments. There is a body of evidence linking SARS-CoV-2 survival to ambient 476 

conditions, particularly evidence that SARS-CoV-2 survives longer at cooler temperatures and in drier 477 
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conditions and that UV radiation accelerates virus decay.6,7,58 However, we know that people spend most 478 

of their time indoors and that SARS-CoV-2 spreads most effectively in poorly ventilated indoor 479 

environments. Our comparison of indoor and outdoor weather conditions showed both indoor temperature 480 

and absolute humidity were strongly correlated with outdoor temperature and absolute humidity in all but 481 

the winter season (Figure 4). These patterns are consistent with Colorado weather, which typically require 482 

internal climate controls during the cold winter season and may also reflect people’s willingness to open 483 

windows and/or limit indoor climate controls when the outside weather is comfortable. This high degree of 484 

correlation between indoor and outdoor weather conditions for much of the year may help to explain the 485 

stronger than anticipated direct effects of weather in our mediation analyses. For example, our all-season 486 

regression models indicated that high minimum temperature was associated with a decrease in 12-day 487 

lagged COVID-19 hospitalizations, which align with the existing body of evidence on the temperature-488 

dependence of SARS-CoV-2 and the negative impacts that higher temperatures can have on virus 489 

survival and transmission.7,33 By contrast, we also found that when absolute humidity was low during the 490 

winter season, there was a significant decrease in COVID-19 hospitalizations. This runs counter to the 491 

findings of other studies which have suggested that cold, dry conditions are likely to promote COVID-19 492 

transmission, particularly in winter and in drier climates.59 Given the low levels of correlation between 493 

indoor and outdoor absolute humidity during the winter in our study (see Figures 3 and 4), our findings 494 

may suggest a mitigating effect of indoor climate controls. 495 

Our analysis, and the work of others, has found evidence that weather may impact mobility 496 

patterns in ways that act counter to observed relationships between weather and SARS-CoV-2 497 

transmission. For example, we found the direct effects of high minimum temperature and high solar 498 

radiation was a significant reduction in 12-day lagged COVID-19 hospitalizations, whereas their indirect 499 

effects via time spent indoors away-from-home was a small increase in 12-day lagged COVID-19 500 

hospitalizations. This aligns with the findings of similar studies conducted early in the pandemic, which 501 

reported a negative association between temperature/solar radiation and COVID-19, but a positive 502 

association between temperature/solar radiation and human mobility concluding, like our study, that the 503 

impact of weather-driven mobility on COVID-19 may be counter to the direct effects of weather on 504 

mobility.18,19,60 However, whereas these prior studies indicated that the strength of the indirect effects may 505 
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be enough to offset any direct effects of weather, we found that the strength of the direct effects of 506 

weather far outweighed any suppression effects via human mobility. Another notable difference in our 507 

study was that our linear regression models also suggested that higher temperatures/solar radiation were 508 

associated with a significant decrease in time spent indoors away-from-home. This suggest that the effect 509 

of high minimum temperature/solar radiation was a reduction in time spent indoors away-from-home, and 510 

a subsequent increase in lagged COVID-19 hospitalizations, which runs counter to our hypothesis that 511 

reducing time spent indoors away-from-home would be protective against COVID-19 hospitalization risk. 512 

An alternative explanation for our findings is that our measure of time spent indoors away-from-513 

home did not accurately capture time spent indoors versus out, leading to misclassification. We relied on 514 

Colorado building footprints from Microsoft (https://github.com/microsoft/USBuildingFootprints) to classify 515 

an individual as indoors or outdoors. The majority of the imagery used to build footprints for our study 516 

area was from 2019 – 2020, though footprints were also generated from older images when 2019 – 2020 517 

data was not available,61 creating the possibility of misclassification bias, particularly in areas that have 518 

undergone rapid development in recent years. A comparison of our data to that of the United States’ 519 

National Human Activity Pattern Survey (NHAPS) highlights that our study population spent significantly 520 

less time indoors during our study period than the average American in the 1990s: in our study we 521 

estimated that people spent 53.8% of their time indoors, whereas NHAPS estimated that Americans 522 

spent 87% of time spent in enclosed buildings.9 While some of this difference is likely related to COVID-523 

related stay-at-home mandates, we expected to see a larger uptick in time spent indoors away-from-524 

home between spring and fall of 2020 – which shifted from 4.3% in the spring, to 5.6% in the fall – as 525 

schools and workplaces began resuming pre-pandemic operations. 526 

To address this potential limitation, we reran the mediation analysis with time at home as the 527 

primary mediator. This measure was estimated based on the most common nighttime location and did not 528 

rely on building footprints, eliminating this potential source of misclassification. Our findings were 529 

consistent with the primary analysis, highlighting a strong direct effect of weather on COVID-19 530 

hospitalizations, and a minor, if any, indirect effect of weather via changes in time at home. This suggests 531 

that our results are robust to our measure of mobility.  532 
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A key limitation of our study is the generalizability of our findings to transmission of SARS-CoV-2 533 

today. We ended our study on January 31, 2021 because our access to the mobility data ended, and 534 

because of concerns about changing transmission dynamics due to the growing availability of 535 

vaccinations and the rise of highly transmissible SARS-CoV-2 variants in the late winter of 2021. During 536 

the first year of the pandemic, population immunity was very low and there were large alterations in 537 

human contact patterns due to widespread use of non-pharmaceutical interventions. This provided a 538 

unique opportunity to evaluate the mechanisms by which weather impacts an emerging pathogen. More 539 

research is needed to understand how these findings apply to more recent transmission dynamics of 540 

SARS-CoV-2 and other respiratory pathogens, as population immunity and contact patterns are distinct 541 

from our period of study. Nevertheless, the fact that the any direct weather or indirect mobility effects 542 

were discernible in this analysis in spite of the upheaval of mobility patterns suggests there is reason to 543 

investigate the generalizability of our findings to later phases of SAR-CoV-2 transmission.  544 

Additional limitations include the ecological nature of our study. It is possible that individuals that 545 

were most likely to alter their weather-related mobility patterns were also those that had a lower risk of 546 

COVID-19 hospitalization, a phenomenon we were unable to investigate with our data. However, our 547 

results suggest that weather-related mobility changes – whether they are the result of more or less time 548 

indoors, outdoors, at home or away – had a small impact on COVID-19 hospitalizations, and were 549 

ultimately less influential than the direct impacts of weather. Given the relatively short study period, our 550 

analysis may have been underpowered to detect effect modification by season. Notably, only our all-551 

season mediation models showed marginally statistically significant (p-value < 0.2) indirect effects, which 552 

may be a reflection of limited power for our season-stratified models.  553 

In this study, we set out to evaluate the extent to which weather impacts SARS-CoV-2 554 

transmission via changes in mobility patterns, as measured using cell-phone data and building footprints. 555 

We found evidence that weather, including temperature, absolute humidity and solar radiation directly 556 

impacted COVID-19 hospitalizations during the first year of the pandemic, and that the indirect mediation 557 

effect in which weather impacts mobility, and subsequently influences the likelihood of infection and 558 

hospitalization was either modest or null, in contrast to the direct effect. While other recent analyses have 559 

also highlighted similar direct effects of weather on SARS-CoV-2 and evidence of a suppression effect of 560 
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weather via human mobility,18,19,60 our results indicated that the strength of the direct effects of weather on 561 

COVID-19 hospitalizations far outweighed any suppression effects. This has important implications, as it 562 

suggests weather may impact SARS-CoV-2 by altering transmission probabilities rather than contact 563 

patterns, and therefore measures that reduce the probability of transmission, via, for example vaccination 564 

or improved ventilation may be needed to reduce weather-driven changes in the spread of SARS-CoV-2. 565 

We recommend further analysis of this phenomenon to determine whether these findings generalize to 566 

current SARS-CoV-2 transmission dynamics wherein population immunity is high and human socialization 567 

and mobility patterns have largely returned to pre-pandemic levels. 568 
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Table 1. Summary of hospitalizations, behavior and weather for five Colorado counties between 806 

March 4th 2020 and January 31st 2021.  807 

 All-season  Spring Summer Fall Winter  

Five county data summary N N N N N  

Total observations (county-days) 1670 445 460 455 310  

Total COVID-19 hospital admissions 8827 1956 775 3307 2789  

       

Hospitalizations Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)  

Average daily hospital admissions, by county 5.3 (7.3) 4.4 (6.7) 1.7 (2.2) 7.3 (9.1) 9.0 (7.6)  

       

Mobility  Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)  

Mean percent of time indoors, away-from-home (%) 5.2 (1.6) 4.3 (2.2) 5.4 (0.9) 5.6 (1.2) 5.3 (1.1)  

Mean percent of time outdoors, away-from-home (%)  7.9 (1.5) 7.1 (1.8) 9.1 (0.6) 8.2 (1.2)  7.1 (0.9)  

Mean percent of time indoors, at home (%) 48.6 (3.0) 50.0 (3.9) 47.9 (2.2) 48.3 (2.7) 48.3 (2.2)  

Mean percent of time outdoors, at home (%) 25.5 (2.4) 27.1 (2.7) 23.9 (1.5) 24.8 (1.7) 26.3 (1.8)  

Mean percent of time spent in transit (%) 6.8 (1.4) 5.7 (1.5) 7.9 (0.7) 6.9 (1.1) 6.5 (0.7)  

Outdoor weather Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)  
Minimum daily temperature (°F) 36.8 (15.5) 34.2 (9.8) 54.4 (5.5) 34.4 (12.3) 17.8 (6.4)  

Maximum daily temperature (°F) 65.0 (19.3) 61.4 (13.5) 85.2 (6.9) 63.9 (16.8) 41.7 (10.1)  

Minimum daily relative humidity (%) 22.8 (15.9) 25.3 (15.1) 16.0 (8.5) 19.8 (16.6) 34.1 (17.6)  

Maximum daily relative humidity (%) 65.0 (19.4) 69.0 (17.3) 57.8 (17.2) 61.4 (20.0) 74.9 (18.9)  

Minimum daily absolute humidity (g/m3) 1.2 (0.7) 1.3 (0.6) 1.7 (0.9) 0.9 (0.6) 0.9 (0.4)  

Maximum daily absolute humidity (g/m3) 10.8 (5.6) 9.9 (4.1) 17.0 (4.7) 9.3 (3.8) 5.2 (1.6)  

Mean downward shortwave radiation (W/m2) 207.5 (78.6) 242.5 (52.7) 284.9 (30.4) 168.3 (47.6) 100.1 (13.8)  

Mean wind velocity (m/s)  8.3 (3.1) 8.5 (2.5) 7.7 (2.8) 8.5 (3.5) 8.8 (3.8)  

Total daily precipitation (mm) 0.9 (2.7) 1.3 (3.9) 1.0 (2.1) 0.6 (2.3) 0.5 (1.2)  

 808 

N = Number 809 

SD = Standard Deviation 810 
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Table 2. Relationship between meteorological variables and time spent indoors, away-from-home 824 

and COVID-19 hospital admissions estimated using linear regression.  825 

Categorical weather conditions a 
Daily county-mean percent of time 

spent indoors, away-from-home 
12-day lagged hospitalization admissions 

(mean-centered by county-season) 
   
 β 95 % CI p-value β 95 % CI p-value 
Minimum temperature        
All-season b       

<-0.5 vs. mid 0.09 0.01 – 0.17 0.028* 0.14 -0.25 – 0.53 0.490 
>0.5 vs. mid -0.09 -0.16 - -0.01 0.020* c -0.41 -0.78 - -0.03 0.034* c 

Spring       
<-0.5 vs. mid 0.30 0.11 – 0.48 0.002* -0.18 -0.78 – 0.42 0.557 
>0.5 vs. mid -0.19 -0.41 – 0.04 0.099 -0.23 -0.96 – 0.49 0.526 

Summer       
<-0.5 vs. mid -0.08 -0.16 - -0.00 0.039* -0.35 -0.77 – 0.07 0.102 
>0.5 vs. mid -0.09 -0.16 - -0.03 0.004* -0.14 -0.47 – 0.19 0.394 

Fall       
<-1 vs. mid -0.05 -0.18 – 0.08 0.452 0.61 -0.56 – 1.78 0.306 
>1 vs. mid -0.08 -0.20 – 0.04 0.210 -0.03 -1.12 – 1.06 0.959 

Winter       
<-1 vs. mid -0.32 -0.47 – -0.17 <0.001* 0.26 -0.69 – 1.21 0.589 
>1 vs. mid 0.04 -0.13 – 0.22 0.640 1.19 -0.01 – 2.40 0.053 

Maximum temperature        
All-season b       

<-1 vs. mid 0.08 -0.00 – 0.17 0.060 -0.19 -0.62 – 0.23 0.374 
>1 vs. mid -0.11 -0.20 – 0.01 0.024* -0.28 -0.74 – 0.19 0.241 

Spring       
<-1 vs mid 0.23 0.03 – 0.44 0.028* c -0.73 -1.41 - -0.04 0.037* c 
>1 vs mid -0.12 -0.42 – 0.18 0.448 -0.62  -1.58 – 0.33 0.201 

Summer       
<-1 vs. mid -0.05 -0.14 – 0.04 0.303 -0.48 -0.94 - -0.02 0.039* 
>1 vs. mid -0.08 -0.16 – -0.00 0.954 -0.18 -0.59 – 0.23 0.390 

Fall       
<-1 vs. mid -0.09 -0.21 – 0.03 0.145 0.32 -0.78 – 1.41 0.567 
>1 vs. mid -0.13 -0.26 - -0.01 0.041* -0.28 -1.42 – 0.86 0.632 

Winter       
<-1 vs. mid -0.23 -0.37 - -0.08 0.003* 0.40 -0.59 – 1.39 0.431 
>1 vs. mid 0.13 -0.03 – 0.30 0.120 0.23 -0.91 – 1.37 0.691 

Minimum absolute humidity        
All-season b       

<-1 vs. mid 0.14 0.05 – 0.24 0.004* 0.08 -0.40 – 0.56 0.740 
>1 vs. mid -0.09 -0.18 – 0.00 0.053* -0.31 -0.77 – 0.15 0.183 

Spring       
<-1 vs mid -0.03 -0.26 – 0.20 0.813 0.45 -0.33 – 1.22 0.259 
>1 vs mid -0.38 -0.63 - -0.13 0.003* 0.07 -0.76 – 0.90 0.865 

Summer       
<-1 vs. mid 0.07 -0.02 – 0.15 0.133 -0.03 -0.48 – 0.41 0.892 
>1 vs. mid -0.10 -0.17 - -0.02 0.011* -0.16 -0.55 – 0.22 0.401 

Fall       
<-1 vs. mid 0.18 0.04 – 0.33 0.014* 0.68 -0.66 – 2.01 0.320 
>1 vs. mid 0.07 -0.07 – 0.20 0.349 0.07 -1.14 – 1.29 0.910 

Winter       
<-1 vs. mid 0.22 0.03 – 0.40  0.017* c -1.28 -2.50 - -0.07 0.039* c 
>1 vs. mid -0.12 -0.32 – 0.07 0.209 -0.43 -1.70 – 0.84 0.509 

Solar Radiation       
All-season b       

<-1.5 vs. mid 0.02 -0.11 – 0.14 0.798 -0.77 -1.41 - -0.14 0.017* 
>0 vs. mid -0.12 -0.19 - -0.05 0.001* c -0.74 -1.09 - -0.39 <0.001* c 

Spring       
<-0.5 vs mid 0.39 0.16 – 0.62 0.001* -0.49 -1.20 – 0.23 0.183 
>0.5 vs mid -0.37 -0.62 - -0.11 0.004* -0.26 -1.09 – 0.58 0.544 

Summer       
<-1 vs. mid -0.07 -0.16 – 0.02 0.129 0.03 -0.47 – 0.54 0.903 
>1 vs. mid -0.21 -0.27 - -0.14 <0.001* -0.14 -0.48 – 0.19 0.396 

Fall       
<-1.5 vs. mid 0.03 -0.16 – 0.21 0.793 -1.24 -2.92 – 0.43 0.146 

>0 vs. mid -0.01 -0.10 – 0.08 0.795 -1.49 -2.39 - -0.61 0.001* 
Winter       
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<-1.5 vs. mid -0.11 -0.31 – 0.10 0.317 -0.78 -2.18 – 0.62 0.276 
>0 vs. mid 0.26 0.13 – 0.39 <0.001* c -1.07 -1.94 - -0.20 0.016* c 

β = Beta coefficient 826 

CI = Confident Interval 827 

* p-value < 0.05 828 
a  The beta coefficient, 95% confidence interval and p-value presented for each independent weather variable correspond with the 829 
adjusted models assessing the impact of each treatment variable on the mean percent of time indoors away-from-home (left) and 830 
12-day lagged COVID-19 hospital admissions (right), controlling for holidays and weekends, the stay-at-home order, increasing 831 
Colorado hospitalizations, as well as an auto-correlation term indicating yesterday’s response variable’s value 832 
b Models that were not stratified by season instead included season as a covariate to account for season as a confounder 833 
c Weather variables that were associated with both mean percent of time spent indoors away-from-home and 12-day lagged 834 

hospitalizations are highlighted in gray, as these criteria was used to determine which variables to assess in the mediation analysis 835 
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Table 3. Models assessing time indoors away-from-home as mediators between weather 865 

conditions and COVID-19 hospital admissions. 866 

   

Estimate of the mediating effects of time 
indoors, away-from-home on 12-day 

lagged COVID-19 hospital admissions 
    
 Treatment level a Effect  β 95% CI P-Value 
All-seasons      

 High minimum 
temperature 

>0.5 SD vs. -0.5 – 0.5 SD Natural Indirect Effect 0.02 -0.01 – 0.04 0.144 
>0.5 SD vs. -0.5 – 0.5 SD Natural Direct Effect -0.46 -0.82 – -0.11 0.011 
>0.5 SD vs. -0.5 – 0.5 SD Total Effect -0.45 -0.80 – -0.10 0.013 

      
High solar radiation >0 SD vs. -1.5 – 0 SD Natural Indirect Effect 0.03 -0.00 – 0.07 0.054 

>0 SD vs. -1.5 – 0 SD Natural Direct Effect -0.88 -1.23 - -0.53 <0.001 
>0 SD vs. -1.5 – 0 SD Total Effect -0.85 -1.19 - -0.51 <0.001 

Spring      
Low maximum 

temperature 
<-1 SD vs. -1 – 1 SD Natural Indirect Effect 0.01 -0.03 – 0.05 0.542 
<-1 SD vs. -1 – 1 SD Natural Direct Effect -0.78 -1.42 - -0.13 0.018 
<-1 SD vs. -1 – 1 SD Total Effect -0.76 -1.39 - -0.14 0.017 

      
Winter      

Low minimum 
absolute humidity 

<-1 SD vs. -1 – 1 SD Natural Indirect Effect -0.10 -0.35 – 0.16 0.462 
<-1 SD vs. -1 – 1 SD Natural Direct Effect -1.19 -2.44 – 0.06 0.063 
<-1 SD vs. -1 – 1 SD Total Effect -1.29 -2.59 – 0.01 0.052 

      
High solar radiation >0 SD vs. -1.5 – 0 SD Natural Indirect Effect -0.09 -0.26 – 0.08 0.300 

 >0 SD vs. -1.5 – 0 SD Natural Direct Effect -0.95 -1.82 - -0.09 0.030 
 >0 SD vs. -1.5 – 0 SD Total Effect -1.04 -1.87 - -0.21 0.014 

 867 

β = Beta Coefficient 868 

CI = Confident Interval 869 
a Seasonal weather conditions were categorized into three groups by examining Lowess plots between the weather variable and 870 
both the mediator (time indoors away-from-home) and outcome (12-day lagged hospital admissions) in this analysis. Linear 871 

regression analyses compared the association of “high” and “low” weather categories (versus the mid-range) on both the mediator 872 
and outcome. Those seasonal weather conditions were significantly associated with both are included in this table 873 
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Figure Captions 893 

 894 

Figure 1 Caption: The hypothesized mechanisms by which outdoor weather can impact SARS-CoV-2. 895 

The indirect effect hypothesis is that weather changes human mobility patterns, specifically time spent in 896 

indoor spaces away from home where the virus can spread, leading to an increase in infections. An 897 

alternative, direct effect hypothesis is that weather directly impacts the spread of the virus by altering virus 898 

survival and transmission probability.  899 

 900 

Figure 2 Caption: Comparison of daily COVID-19 hospitalization admissions between five Colorado 901 

counties between March 4th 2020 and January 31st 2021.  902 

 903 

Figure 3 Caption: Scatter plots comparing indoor environmental conditions (blue circle) to outdoor 904 

environmental conditions (red triangle) between March 4th 2020 and January 31st, 2021 in five Colorado 905 

counties obtained from Purple Air. Vertical dotted lines indicate where one season ends and the next 906 

begins.  907 

 908 

Figure 4 Caption: Correlation matrices showing Pearson’s correlation coefficients and the strength of 909 

correlation between indoor and outdoor weather conditions between March 4th 2020 – January 31st 2021, 910 

and by season for five Colorado counties. Stronger correlation between outdoor and indoor measures are 911 

shown with darker tones. 912 
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Figure 1 Caption: The hypothesized mechanisms by which outdoor weather can impact SARS-CoV-2. 

The indirect effect hypothesis is that weather changes human mobility patterns, specifically time spent in 

indoor spaces away from home where the virus can spread, leading to an increase in infections. An 

alternative, direct effect hypothesis is that weather directly impacts the spread of the virus by altering virus 

survival and transmission probability.  
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Figure 2 Caption: Comparison of daily COVID-19 hospitalization admissions between five Colorado 

counties between March 4th 2020 and January 31st 2021.  
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Figure 3 Caption: Scatter plots comparing indoor environmental conditions (blue circle) to outdoor 

environmental conditions (red triangle) between March 4th 2020 and January 31st, 2021 in five Colorado 

counties obtained from Purple Air. Vertical dotted lines indicate where one season ends and the next 

begins.  
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Figure 4. 

 All-seasons Winter Spring Summer Fall 

Mean Temperature      

All county 0.7497 0.2512 0.4387 0.2113 0.6610 

Boulder 0.8973 0.7252 0.3848 0.8460 0.9133 

Denver 0.9282 0.2347 0.8318 0.5562 0.9117 

Douglas 0.9067 0.0179 0.8312 0.5504 0.8448 

El Paso 0.7899 0.6901 0.7991 0.7358 0.8086 

Mesa 0.8541 0.1507 0.9449 0.7877 0.8769 

      

Mean Relative Humidity      

All county 0.0821 0.0743 0.2898 0.2172 0.1561 

Boulder 0.5109 0.3276 0.4041 0.9111 0.6474 

Denver 0.1808 0.4456 0.5431 0.6728 0.0844 

Douglas 0.5263 0.2441 0.5023 0.6679 0.5238 

El Paso -0.0021 -0.0267 0.1494 0.6678 -0.0207 

Mesa -0.0976 0.2133 0.8493 0.6985 0.1470 

      

Mean Absolute Humidity      

All county 0.7889 -0.0185 0.7679 0.5265 0.7292 

Boulder 0.9369 0.2296 0.9259 0.9676 0.8413 

Denver 0.8652 0.4299 0.8667 0.8320 0.9395 

Douglas 0.8056 0.0771 0.4791 0.8059 0.6464 

El Paso 0.8307 0.2377 0.8759 0.7578 0.7849 

Mesa 0.8823 0.5470 0.9276 0.8528 0.8532 

Interpretation key 

0.00 – 0.10 Negligible correlation 

0.10 – 0.39 Weak correlation 

0.40 – 0.69 Moderate correlation 

0.70 – 0.89 Strong correlation 

0.90 – 1.00 Very strong correlation 

 

Figure 4 Caption: Correlation matrices showing Pearson’s correlation coefficients and the strength of 

correlation between indoor and outdoor weather conditions between March 4th 2020 – January 31st 2021, 

and by season for five Colorado counties. Stronger correlation between outdoor and indoor measures are 

shown with darker tones. 
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