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One Sentence Summary :
OnSIDES is a large, comprehensive database of adverse drug events extracted from drug labels using
natural language processing methods.
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Abstract :
Adverse drug events (ADEs) are the fourth leading cause of death in the US and cost billions of
dollars annually in increased healthcare costs. However, few machine-readable databases of ADEs
exist, limiting the opportunity to study drug safety on a broader, systematic scale. Recent advances in
Natural Language Processing methods, such as BERT models, present an opportunity to accurately
extract relevant information from unstructured biomedical text. As such, we fine-tuned a
PubMedBERT model to extract ADE terms from descriptive text in FDA Structured Product Labels
for prescription drugs. With this model, we achieve an F1 score of 0.90, AUROC of 0.92, and AUPR
of 0.95 at extracting ADEs from the labels’ “Adverse Reactions”. We further utilize this method to
extract serious ADEs from labels’ “Boxed Warnings”, and ADEs specifically noted for pediatric
patients. Here, we present OnSIDES (ON-label SIDE effectS resource), a compiled, computable
database of drug-ADE pairs generated with this method. OnSIDES contains more than 3.6 million
drug-ADE pairs for 3,233 unique drug ingredient combinations extracted from 47,211 labels.
Additionally, we expand this method to extract ADEs from drug labels of other major nations/regions
- Japan, the UK, and the EU - to build a complementary OnSIDES-INTL database. To present
potential applications, we used OnSIDES to predict novel drug targets and indications, analyze
enrichment of ADEs across drug classes, and predict novel ADEs from chemical compound
structures. We conclude that OnSIDES can be utilized as a comprehensive resource to study and
enhance drug safety.
(250 words)

Introduction:

Adverse Drug Events (ADEs)

Adverse Drug Events (ADEs) are broadly defined as unintended, harmful events related to the usage
of medication (1), and are the fifth leading cause of death internationally (2). ADEs are a cause of
significant avoidable additional healthcare costs, with approximately ½ of ADEs known to be
preventable, and the annual cost of prescription drug-related morbidity and mortality in the US was
estimated to be $528.4 billion in 2016 alone (3-4). While many drug safety studies and clinical trials
have been conducted on specific medications, far fewer studies have studied the occurrence of ADEs
more broadly, due to the heterogeneity and complexity of the phenomenon itself, and the lack of
standardized data available (5-6). The comprehensive study of ADEs requires high-quality,
machine-readable databases encompassing the breadth of drugs currently used in healthcare.

ADE Databases

There are a number of ADE databases currently available for public usage, which are constructed by
extracting, stratifying or detecting signals from a variety of sources, including drug labels, electronic
health records, academic literature, social media, and adverse event reporting systems (7-11). In
particular, drug labels remain the gold standard primary resource for ADE information that both
physicians and patients reference, with many international regulatory agencies such as the US FDA
(Food and Drug Administration) and the EMA (European Medicines Agency) maintaining publicly
accessible repositories of drug labels (12). However, these drug label repositories are not necessarily
standardized or optimized for machine readability, but rather a collection of individual files
constituting the raw or formatted drug label text. Furthermore, as they are not limited to ADEs,
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containing all mandated drug information, it is not readily usable for the analysis of ADEs. One of the
most widely utilized ADE databases derived from drug label data is SIDER, most recently updated in
2015 (13). It was constructed using a dictionary-based named entity recognition (NER) method to
extract the adverse event terms from FDA Structured Product Labeling (SPLs) drug labels. However,
no currently up-to-date, computable databases exist for on-label ADEs.

Deep Learning Methods for Unstructured Biomedical Data

In recent years, significant advancements have been made in NLP (Natural Language Processing)
methods, including the introduction and development of BERT (  Bidirectional Encoder
Representations from Transformers) models (14). By leveraging transformer architectures to learn text
representations and contextual dependencies, BERT models have greatly improved performance in
conducting language tasks such as sentiment analysis, keyword classification, and machine
translation. In a biomedical context, numerous BERT models, such as BioBERT, MedBERT, and
BiomedBERT, have been developed by training models on different relevant text corpora, such as
EHR data and biomedical academic literature. (15-17). These models have been used for different
tasks, such as biomedical named entity recognition, relations/association extraction, and answering
questions. There have also been prior efforts to specifically leverage these methodological
advancements in studying ADEs. Of note, the “Adverse Drug Reaction Extraction from Drug Labels”
task of the Text Analysis Conference (TAC) 2017 was presented to encourage the development of
computational methods to recognize mentions of ADEs from drug labels and their relationships. As
part of this task, the organizers published a manually annotated, gold-standard reference dataset for
extracting adverse drug events from 200 FDA SPLs (18-19). Building upon the TAC2017 task, a
number of deep learning and NLP methods have been developed to extract ADE terms from drug
label text (20-21). While these research efforts have presented promising results of high accuracy in
extracting true ADE mentions, indicating the possibility of using NLP methods for this task, further
challenges lie in leveraging these methods to systematically construct a comprehensive and readily
accessible database.

OnSIDES Database for ADEs

Leveraging advancements in NLP term extraction methods and building upon the methods proposed
for the TAC2017 task, we fine-tuned a PubMedBERT, a BERT model pre-trained on biomedical
research article abstracts and full-text articles from PubMed, to predict whether a given term in drug
label text is an ADE related term (22). To do so, we first extract candidate ADE-related terms from
the drug label using standard MedDRA vocabulary terms as a reference dictionary and then use the
PubMedBERT model trained on a manually annotated set of drug labels to predict whether the
possible term is an ADE for the given drug. We applied this method to all publicly available FDA
SPLs to construct the OnSIDES (ON label SIDE effectS) database of both adverse reactions and
boxed warnings. We plan for this database to be updated quarterly for SPL updates to incorporate all
updated drug labels and new drugs to reflect all of the medications currently available. Furthermore,
we adapted this method to extract data for specific populations such as pediatric patients, and
additionally ADE data from international (EU, UK, and Japan) drug labels to build additional,
complementary databases. To the best of our knowledge, this is the only current, up-to-date,
multinational ADE database extracted from drug labels.
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Results :

Fine-Tuning a BERT-model to Accurately Evaluate ADE Terms

To utilize a language model for this task, we first need to identify a broad list of possible ADE terms
from the drug label text. A model would then predict if each of these terms is a true ADE term. As
such, we systematically compiled a set of possible ADE terms extracted from each individual drug
label as described in the “Extracting Potential ADE Terms from Drug Labels” section, using a
combination of exact string matching against the MedDRA vocabulary dictionary and terms predicted
by DeepCADRME, a neural network model trained for ADE term extraction (20).

Once the potential ADE terms have been identified, we next train a language model to evaluate the
likelihood of a given potential ADE term being a true ADE for a drug. We used the 200 SPL labels
provided by Demner-Fushman et al. to train, validate, and test this model. For this task, we considered
two BERT-based language models - ClinicalBERT, a model trained on electronic health record notes,
and PubMedBERT, a model trained on PubMed research article abstracts (16,22).

Next, we optimized the performance of these language models for this task by fine-tuning the text
input we provide for each candidate ADE term. (23) A detailed description of the parameters we
evaluated is provided in the “Optimizing Language Model Input String” section. We concluded that an
input string of 125 words, with 87.5% of the words coming after the candidate term was optimal, and
identified that substituting the candidate term with a common token “EVENT” and prepending the
term and section source to the input label additionally increased the performance of the models.

Finally, we ran comparisons between the best performing ClinicalBERT and PubMedBERT models to
determine the model to utilize in constructing the OnSIDES database. We evaluated the performance
of both models on the validation/test sets from the Demner-Fushman et al. annotated labels that were
not used in the training of the models, and on the official TAC 2017 evaluation script that was used to
benchmark models submitted to the ADR extraction task track of the workshop. Additionally, we
further benchmark the performance of these models against the models proposed for the TAC 2017
workshop task. (18)

OnSIDES : A Comprehensive, Computational Resource of ADEs

To construct the OnSIDES database, we first extracted a set of candidate ADE terms from all of the
available drug labels in SPL format for the fine-tuned PubMedBERT model to evaluate. After we
have predicted the ADEs for each drug label, to construct the database, we mapped the drugs and
predicted ADEs to standardized vocabularies, RxNorm and MedDRA Preferred Terms (PT),
respectively. As of the February 2024 release, the OnSIDES database includes 3,610,120 ADEs and
114,322 Boxed Warning ADEs from 47,211 drug labels, which includes 3,233 unique drug ingredient
combinations (1,873 single-ingredient drugs, 1,360 multi-ingredient drugs) and 4,510 unique ADEs.
To the best of our knowledge, OnSIDES is the only up-to-date and multi-national database of
drug-label ADEs. It is also the only database that incorporates multi-ingredient drugs. The latest
version of OnSIDES is publicly available online at https://github.com/tatonetti-lab/onsides. As new
drugs are approved and drug labels are revised constantly, we have developed a computational
pipeline to continually maintain and update the database quarterly and reflect the latest up-to-date
knowledge available on ADEs, also available in the repository.
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OnSIDES-PED : Supplementary Resource of Pediatric ADEs

In the OnSIDES database, we compile ADEs listed on drug labels for the general population.
However, there are specific populations that are known to be at higher risk for ADEs when taking
certain medications. While the risk of serious ADEs is greater for pediatric patients, our knowledge is
limited, with few RCTs being conducted on these populations given the restricted population and
ethical concerns (24). Our lab’s previous efforts in constructing a database for pediatric ADEs,
KidSIDES, focused on extracting ADE signals from spontaneous reporter databases whilst
considering developmental stages (11). Intended as a database to be used alongside both the OnSIDES
and KidSIDES databases, we constructed a database of drug label-extracted ADEs specific to
pediatric patients.

To construct this database, we follow the same steps we describe for OnSIDES with slight
modifications in the preprocessing steps. First, we identify the drug labels with any potential
pediatric-specific ADE mentions in the “Specific Populations” section by extracting the subsections in
these sections that mention the words “pediatric” / “child”. With this filtering, we extract 25,453 drug
labels that include potential pediatric-specific ADE mentions in either of these two sections.

Here, as there exists no reference dataset of annotated drug labels, we manually annotate 200
randomly sampled drug labels to fine-tune and evaluate the fine-tuned PubMedBERT model. The
steps taken to conduct the manual annotation is described in the “Manual Annotation of Drug Labels”
section. Then, we follow the same input string construction methods and apply the BERT model
fine-tuned for OnSIDES, but we optimize the model by re-computing the prediction cutoff for the
pediatric ADE mentions. Here, we find that the adapted model achieves an overall accuracy of 0.64,
precision of 0.61, and AUROC of 0.66 in extracting pediatric-specific ADE terms from the
aforementioned sections, suggesting the flexibility of adapting this method to specific conditions. We
use this modified method to construct a large pediatric-specific ADE database of 359,213 drug
label-ADE pairs from 1,161 unique drug ingredient combinations, 1,526 unique ADEs, and 20,014
drug labels derived from the drug labels’ special populations section.

OnSIDES-INTL : Supplementary Resource of ADEs Extracted from International Drug Labels

We have additionally generated OnSIDES-INTL, a complementary resource to OnSIDES, which has
been extracted and compiled from European, British, and Japanese drug labels. The EU, UK, and
Japan represent some of the largest pharmaceutical markets in the world outside of the US, with each
having individual drug regulatory processes independent to that of the US (25-26).

To generate these databases, we adapt the OnSIDES method to best fit the respective drug label
formats. We first download the raw drug label data, parse the labels’ text, and extract the ADE
relevant sections. There are two main categories in which the ADEs are presented - free text and in
tables. For the free text, we utilize the PubMedBERT model fine-tuned on the FDA drug labels. For
the structured or tabulated ADE text, we extract exact matched strings from the tables. As the
Japanese drug labels are not in English, we use the MedDRA-J (the Japanese MedDRA vocabulary) to
extract terms from the tabulated data, and machine translate the free text using GPT-4 into English to
run the OnSIDES model on.

Similarly to OnSIDES-PED, as there exists no reference dataset of annotated drug labels, we
manually annotate 200 randomly sampled drug labels to fine-tune and evaluate the method. The
procedure is described in the “Manual Annotation of Drug Labels” section. To fine-tune the model,
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we randomly selected 100 of these annotated drug labels to compute the optimal prediction cutoff for
the model output for each section type, and used the remaining 100 drug labels to evaluate the model’s
performance. For the tabulated data, we include all of the extracted exact matches, as the extracted
terms are not assigned an ADE term likelihood probability.

After this evaluation, we run this process for all of the drug labels publicly available for each
nation/region. By doing so, we construct additional databases with 108,958, 705,917, and 237,827
unique drug-ADE pairs from 1,048, 9,003, and 6,541 drug labels, with 929, 1,889, and 1,441 unique
drug ingredient combinations and 3,570, 4,848, and 3,296 unique ADEs from European, British, and
Japanese drug labels, respectively. Furthermore, by using international drug labels, we incorporate
ADE data for an additional 1,777 unique drug ingredient combinations not found in OnSIDES. The
database is presented in a format mirroring the OnSIDES database, and will be regularly updated
simultaneously as part of the data repository.

Interpreting the OnSIDES Prediction Model

Given the complex architecture of BERT models, it is often difficult to interpret the results they
output. However, understanding the predictions that a given model makes is important in validating
the model’s usability. We applied the SHapley Additive exPlanations (SHAP) method across each of
the individual MedDRA System Organ Classes (SOCs), and computed local and global SHAP
explanations for the ADEs within each class. Each explanation contains drug label text with overlaid
importance weights as well as a dendrogram-fitted bar chart with the most important clusters of
tokens, with red presenting positive influence and blue presenting negative influence.

We present examples of this method, the first of which is the explanation for a positively-labeled drug
label for the ADE “thrombocytopenia”, in which the prepended token of the ADE name is the most
significant predictor, lending support to the hypothesis that its inclusion improves predictive
performance. (Figure 2A) The token “EVENT”, which is substituted for the ADE name throughout
the text, also consistently acts as a strong positive predictor. Of note, this effect is influenced by the
“EVENT” token being surrounded by numerical tokens, which is indicative of a tabular structure in
the original drug label. Furthermore, an additional example shows an explanation for a
negatively-labeled drug label for the ADE “tic” (Figure 2B). “Tic” refers to a neurological condition
characterized by repetitive muscle movements, but its short name means that it can be erroneously
identified in a drug label string. This is the case in this example, where the ADE name appears in the
term “urTICaria”. SHAP negatively weights the prepended term and appears to propose an alternative
hypothesis of what the drug label’s ADE can be by negatively weighting tokens related to “rash”.
Examples of global explanations for MedDRA SOC categories have been added to (Supplemental
Material 1).

Multi-National Comparison of ADEs in Drug Labels

To stratify inter-national differences in ADEs listed on drug labels, we conducted a qualitative
comparison of the OnSIDES and OnSIDES-INTL databases. To do so, we standardized the data
across the databases by mapping the drug RxNorm identifiers to ATC 1st level (ATC1) terms and the
ADE MedDRA PT identifiers to MedDRA SOCs, and conducted an analysis of the drugs and ADEs
across each data source.

First, we compared the number of unique ADEs listed for drugs within each ATC 1st level drug class
by each data source (Figure 3A). While we observed similar distributions in the number of ADEs
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across drug classes for all three data sources, we found that the EU had the fewest number of unique
ADEs across all drug classes. Additionally, we found that drugs in the “antineoplastics and
immunomodulators” class had the largest number of listed ADEs while the “antiparasitics and
insecticides” class drugs had the fewest consistently across all data sources.

Second, we summarized the distribution of ADEs across the various SOC groups. For each SOC, we
identified all ADEs within the group, then counted the number of unique drugs which list any of those
ADEs (Figure 3B). Again, we observed a similar distribution of unique drugs across all SOCs.
However, the EU dataset had the fewest number of drugs with an ADE listed within an SOC in most
cases. Overall, the SOCs listed on the fewest number of drug labels were “product issues”,
“pregnancy and related conditions”, and “congenital, familial, and genetic disorders” while “general
disorders and administration site conditions”, “gastrointestinal”, “skin and subcutaneous tissue”,
“nervous system disorders”, and “vascular disorders” were present in the largest number of drug
labels.

Additionally, we evaluated the extent to which the three data sources contain the same drug-ADE
pairs. For each data source, we grouped both the drugs and ADEs by high-level terms and calculated
the Jaccard index (number of shared drug-ADE pairs divided by the total number of drug-ADE pairs)
as a measure of the overlap between drug-ADE pairs between datasets (Figure 3C). Overall, we found
that the majority of the drug-ADE pairs were not exactly shared between sources. However, there was
some notable overlap in sensory organ drugs between the US and UK, and also antineoplastic and
immunomodulating agent drugs among the US, UK, EU and Japan. Generally, the ADEs within the
SOC for social circumstances and surgical/medical procedures had the least common drug-ADE pairs
across the databases. This varying degree of overlap provides insight into the cross-comparability
between data sources for different drug classes and ADEs.

Finally, we compared the number of ADEs (MedDRA PT) listed for each drug between different data
sources to determine if the different data sources differ systematically. For each drug, we counted the
number of unique listed ADEs within each data source (Figure 3D). These results show that US drug
labels tend to have more listed ADEs than that of other nations, although considerable variation exists
between drugs. Drugs tend to have the highest degree (number of ADEs) in the US data, followed by
the UK data, while the Japanese data tends to assign the lowest degree. Despite apparent bias and
variation between drugs, the number of listed ADEs per drug is clearly correlated between different
data sources. Overall, while considerable variation exists, these results also show considerable
similarity between different data sources.

Enrichment of Pediatric-Specific ADEs in Drug Labels

In addition to understanding inter-national differences in drug label descriptions of ADEs, we
conducted enrichment analysis of pediatric-specific ADEs extracted in OnSIDES-PED compared to
the general OnSIDES database, and the KidSIDES dataset, which constructed a database of
pediatric-specific ADEs mined from a spontaneous reporter, to identify if there were any distinct
characteristics in each of these sources. To conduct a comparison between the KidSIDES,
OnSIDES-PED, and OnSIDES databases, we standardized and grouped the drugs and ADEs across
the databases by mapping the drug RxNorm identifiers to ATC1 terms and ADE MedDRA PT
identifiers to MedDRA SOCs.
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First, we conducted a comparison between the number of ADEs found for drugs in each ATC1 class
for each dataset (Figure 4A). As expected by the spontaneous-reporter derived nature of KidSIDES,
we found that there were significantly more ADEs in each ATC class of drugs when compared to
OnSIDES/OnSIDES-PED. Next, we conducted a comparison between the number of drugs that have
ADEs within each MedDRA SOC class. [Figure 4B] Again, KidSIDES had many more drugs in each
category, highlighting the limited description of pediatric-specific ADEs in drug label text.

Additionally, we conducted an enrichment analysis to identify any drug classes enriched with a certain
adverse event type in the pediatric datasets by statistically testing for the number of mapped MedDRA
PT terms for each drug class compared to all of the possible PT terms in each SOC. We compared
OnSIDES and OnSIDES-PED [Figure 4C], and OnSIDES-PED and KidSIDES [Figure 4D]. In the
comparison between OnSIDES and OnSIDES-PED, we observe an enrichment of a large number of
“Skin and Subcutaneous Tissue” and “Gastrointestinal” ADEs, and very few “Social Circumstances”
and “Pregnancy, Puerperium and Perinatal Conditions” ADEs enriched. Between OnSIDES-PED and
KidSIDES, we observe an enrichment of ADEs in the “Nervous System” and “General and
Administration Site Conditions” MedDRA SOC classes, and a relative lack of ADEs reported in the
“Ear and Labyrinth” and “Social Circumstances” classes in KidSIDES.

This analysis recapitulates general trends in the enriched occurrence of specific classes of ADEs
suggested by prior research efforts in this domain (11,27). Of note, we found specific occurrences of
ADE descriptions in the pediatric drug labels related to the delayed elimination of amoxicillin due to
the incompletely developed renal function in neonates and young infants, and the increased
susceptibility to suicidal ideation and behaviour for adolescents when taking antidepressants.
Additionally, this analysis allows for further insight into broadly identifying, classifying, and
validating novel or poorly understood ADEs that pediatric patients are at higher risk for.

Predicting Drug Targets and Indications from Pairwise Drug-ADE Similarity Scores

The work of Campillios et al. suggested the similarity of two drugs’ side effect profiles is positively
correlated with the probability that these drugs share a common target. (28) Furthermore, Yang and
Agarwal showed side-effect profile similarities can also predict shared indications. (29) By applying a
simplified version of these methodologies, we computed pairwise Tanimoto Coefficient scores, a
metric of the drugs’ side effect profile similarities for 1,485 OnSIDES single-ingredient drugs. The
scores were then z-score normalized. Drug target and indication data for these drugs were mapped
from DrugBank and MEDI respectively, and we computed how many, if at all, targets and indications
every drug pair shared. Then, we used the normalized Tanimoto coefficient scores to predict the
shared drug targets and indications using logistic regression models. We repeated these steps for the
1,430 drugs in the SIDER database to benchmark the predictive quality of the OnSIDES data.

We found that there is a logistic relationship between both the proportion of shared drug indications
and shared targets and the shared side-effect profiles of drug pairs (Figure 5A). Additionally, we
found that an OnSIDES-trained linear regression model performs moderately well in predicting
whether a given drug has a specific drug target based on its side-effect profile, (AUROC = 0.667) and
outperforms a model trained on SIDER (AUROC = 0.590). (Figure 5B) This suggests that the
similarities between side-effect profiles found in drugs in the OnSIDES database may be used to
predict novel drug targets of a given drug.
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Next, we evaluated whether the OnSIDES and SIDER datasets could be used to predict the drug
indications from DrugBank, MEDI, or the indications listed in both of the databases. We found that
the OnSIDES-trained model was able to predict drug indications from each database, and also
outperformed SIDER (Figure 5C). We further found that the OnSIDES dataset performed best in
terms of predicting the existing therapeutic indications that were found in both DrugBank and MEDI
(AUROC = 0.77) and better than SIDER in these predictions also (AUROC = 0.715), suggesting that
these models perform well in predicting indications of high confidence (Figure 5D). This suggests that
OnSIDES could be used as a potential resource for drug repurposing applications, identifying existing
drugs that may be used for novel therapeutic indications, and to identify potential drug off-targets.

Training ChemBERT Models on OnSIDES to Predict Population-Level ADEs

Significant advances in chemoinformatics and the application of Artificial Intelligence to drug
discovery and drug repurposing tasks have increased the potential for successful in-silico driven
development of new, effective medications for a variety of indications (30). The identification of
potential toxicities that novel compounds may cause to patients is of particular importance, and may
allow for safer and more effective clinical trials. As such, an in-silico model to predict ADEs directly
from chemical compound structures, such as SMILES string texts, may contribute significantly to
these efforts. Here, we trained and compared a number of chemoinformatics BERT models on
OnSIDES to predict ADEs directly from chemical compound SMILES strings.

1,143 single-ingredient drugs from OnSIDES were converted to SMILES strings. We predicted
whether these drugs are known to cause any of the 10 severe ADEs selected, which were mapped
(Supplementary Table 3) to MedDRA HLTs (High-Level Terms). Using this data, we fine-tuned
Chemprop, a graphical neural network, and 2 versions of ChemBERTa, a transformer model
pre-trained on PubChem. (31-33) Additionally, we compared both random and scaffold based
train/test split stratification.

Across these models, we achieve a test-set AUROC of 0.620-0.745 per ADE (Figure 6). We find that
neither Chemprop nor ChemBERTa perform consistently better across all 10 ADEs.
Scaffold-stratifying reduced performance, resulting in a best model test-set AUROC of 0.548-0.719
per ADR. In particular, ADEs 4 and 6 in particular drop significantly when scaffold stratification is
applied, suggesting that their initial performance with random-split was confounded by train/test
information leakage. Additionally, we hypothesize this dataset may not be large enough to achieve
optimal performance in training deep learning models for this task. The incorporation of additional
data, such as simulated data, may improve performance. We found that our OnSIDES-based HLT
prediction models achieved performance on-par with previous work predicting less-granular SOC.

Materials and Methods :

Extracting Potential ADE Terms from Drug Labels

In order to train and develop the model to construct the OnSIDES database, we downloaded a total of
46,686 FDA SPL drug labels from the NIH NLM DailyMed website
(https://dailymed.nlm.nih.gov/dailymed/spl-resources-all-drug-labels.cfm). The SPLs are publicly
available as individual XML files which are collated as a zipped file, and the resource is updated
periodically (daily, weekly, or monthly). We further used a set of 200 SPL labels manually annotated
for ADEs to train and validate the model (19). These labels are publicly available at
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(https://bionlp.nlm.nih.gov/tac2017adversereactions/), and are provided as XML files, along with an
additional 2208 unannotated drug labels.

The SPL format of drug labels is a document markup format approved by the XML-based HL7
clinical and administrative data standard utilized by the FDA to present relevant pharmaceutical
information text in a standardized manner (34). All entities such as pharmaceutical companies that
submit drug approval applications to the FDA are required to submit documentation in this format,
thereby allowing the FDA to receive and provide information to healthcare professionals and patients
in a consistent manner (35). The SPL format incorporates a broad range of sections including the
drug’s indications, clinical pharmacology, contraindications, warnings, and ADEs (36). In the FDA
SPL drug labels, the information related to ADEs is primarily located in the “Adverse Reactions”
(AR), “Boxed Warnings” (BW), and “Warnings and Precautions” (WP) sections of the labels. We
primarily utilized the AR and WP sections, and further extracted serious warnings from the BW
section as a separate model / table.

We evaluated the candidate ADE term identification performance between two different term
extraction methods - exact string matching and combining exact string matches and extraction using
DeepCADRME, a neural network model trained for ADE term extraction (20). Exact string matching
was conducted using the MedDRA vocabulary dictionary as reference, and extracting any strings that
were identical to any MedDRA PT and LLT terms. DeepCADRME is trained on the
Demner-Fushman et al. annotated label dataset that we also utilize in the model training, and uses text
sequences to build N-level contextualized embeddings to annotate ADE terms. The exact string
matching-only extraction achieved a F1 score of 0.890 and an AUROC of 0.880, while the combined
method of extraction achieved a F1 score of 0.891 and an AUROC of 0.900 when tested on a test
dataset of 100 labels using a PubMedBERT model. Further statistics are available in (Supplementary
Figure 1). As such, while there was only a marginal improvement in performance, we conducted
extraction using both to construct the OnSIDES database. In addition, this suggests that if a user does
not have results extracted from DeepCADRME available, the performance of the model is not
hindered significantly.

Optimizing Language Model Input String

In order to improve the performance of the language models we have selected for this task, we
evaluated different methods of input string construction to determine the optimal input string to
extract from a drug label section to predict the likelihood of a candidate ADE term we identified in the
previous step being a true ADE for a given drug.

First, hypothesizing that the model could learn ADE context generally, we examined whether
replacing the potential ADE term with a common term “EVENT” would improve the performance of
the language models. We compared this to a nonsense, unmapping term as a control. Additionally, we
tested whether prepending the potential ADE term or the name of the drug label’s section it was
extracted from to the example string would improve the performance of the models. We iterated over
the combinations of these parameters, and found that substituting the term with the common token and
prepending the term and section source to the input label resulted in the best performance for both the
ClinicalBERT and PubMedBERT models. With this combination of parameters, we achieved F1
Scores of 0.861 and 0.874, and AUROC Scores of 0.896 and 0.899, respectively for the ClinicalBERT
and PubMedBERT models. The detailed performance metrics for the various combinations of
parameters is described further in (Supplementary Figures 2). We found that prepending the source
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term most significantly improved the performance of the model compared to the baseline input, but
the combination of all parameters described above performed the best.

Furthermore, we hypothesized that more context may lead to better performance and that context that
comes before the ADE mention may have different value than context that comes after. We conducted
experiments to examine whether the performance of the models would vary depending on the length
of the input string that was extracted from the drug labels, or the proportion of the extracted string
before and after the ADE term in question. We adjusted the length of the input string between 30 and
250 words, which was our maximum in using the language models. We found that the 125 word input
string performed best, closely followed by the 60 word input string (Supplementary Figure 3A). This
suggests that a considerable amount of context aids performance, but too long of an input string may
dilute the important context with unrelated noise. Additionally, the proportion of string before and
after the potential ADE term with which the model achieved peak performance was when 87.5% of
words came after the term, followed by 75% after the term (Supplementary Figure 3B).

Comparing PubMedBERT and ClinicalBERT

To determine the final model to be used to construct the OnSIDES resource, we compared the best
performing models between PubMedBERT and ClinicalBERT. Both share similar architectures,
broadly leveraging a large corpus dataset of relevant text to build a pre-trained model, which can be
adapted more specifically to undertake downstream biomedical and clinical NLP tasks. These models
were chosen as they are trained on biomedical language similar to that found on drug labels, and were
demonstrated to perform well on a variety of relevant NLP tasks (37). We evaluated the performance
of both models on the Demner-Fushman et al. annotated label set, with both a standard
train/validation/test 80/10/10 split used to train the model, and the TAC 2017 evaluation script. The
PubMedBERT-based model achieved a modest performance improvement over the
ClinicalBERT-based model, and notably it performed more consistently across the two different
evaluations. The detailed performance metrics for each model and evaluation set are detailed in
(Supplementary Figure 4A). Furthermore, we benchmark the performance of the PubMedBERT
model to all of the computational models proposed for the TAC 2017 workshop, and the ADE terms
listed in the SIDER database. We find that our model outperforms all TAC 2017 models and the
SIDER database as presented in (Supplementary Figure 4B).

Applying the Model to International Drug Labels

In addition to constructing an OnSIDES database from FDA drug labels, we leverage the method to
expand the database to incorporate ADE data found in drug labels of other nations/regions. As such,
we adapted our method to extract ADEs from drug labels from the EU, UK, and Japan to generate
additional computable resources to comprehensively study ADEs. In each country/region, the EMA
(European Medicines Agency), MHRA (Medicines and Healthcare products Regulatory Agency), and
PMDA (Pharmaceuticals and Medical Devices Agency) are the respective regulatory bodies
overseeing pharmaceutical product approval (38-40).

We obtained the corresponding drug label data from the following: (i) the EU’s 1,736 SmPC
(summary of product characteristics) files (38); (ii) 9,334 drug SmPC files from the UK’s EMC
(electronic medicines compendium) (41) ; and (iii) 24,802 Japanese drug labels from KEGG
MEDICUS (42). All of these files are in a standardized format by country/region, and contain similar
information as in the FDA SPL drug labels, including drug composition, contraindications,
indications, ADEs, and warnings for specific populations. They are all publicly available, regularly
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updated sources, and the EU files are in PDF format while the UK and Japan drug data were
constructed from their individual drug webpages as HTML files. We have processed these drug label
files into individual standardized, structured files for public use in further model training / methods
development. Data availability is described below.

To develop this international database, we utilized a combination of rule-based extraction and
PubMedBERT-based NLP extraction methods. While the FDA SPL drug labels primarily list the
ADEs in a free text format, drug labels from other regulatory agencies format the ADE section in
structured lists, tables, or a combination of the three formats. As such, we adapted our extraction
method to optimize for and accurately reflect the label sections we were extracting from (43). The rule
based extraction, which was used for extracting ADEs written in a structured list or tabular format,
consisted of extracting System Organ Class (SOC) - ADE - ADE Frequency triplets systematically
from the lists or tables using exact term matching using MedDRA LLT (Lowest Level Terms)/PT and
SNOMED CT condition terms, which were standardized to MedDRA PT codes. For the free text
sections, we used the method we developed to evaluate the ADEs in FDA drug labels. While the EU
and UK drug labels are in English, the Japanese drug labels are not. To overcome this issue, we
utilized rule based extraction using MedDRA-J, a standardized translated MedDRA vocabulary, and
machine translated the free text sections to apply the OnSIDES method to. Finally, in order to validate
the performance of the developed extraction method, we manually reviewed and annotated 200
randomly sampled drug labels each from the EU, UK, and Japan.

Manual Annotation of Drug Labels

To conduct validation on the non-FDA drug labels and the pediatric sections of the FDA drug labels,
we conducted manual annotation of general ADE mentions in the UK, EU, Japan drug labels and the
pediatric sections in the US drug labels following a similar approach to (19). First, we randomly
sampled 200 labels for each drug label type. Next, we extract the relevant section of the drug label,
and verify that the section we have extracted contains relevant ADE mentions. While general ADE
descriptions were found to be standardized across drug labels / label types, pediatric ADE descriptions
were often found nested in the general ADE sections, or did not exist anywhere in the label text due to
the lack of information. Additionally, some pediatric ADE descriptions consisted only of a statement
similar to “this medication has not been assessed for safety in pediatric patients”. To construct a
relevant, evaluable dataset, we drop all labels with no relevant information available, and resample to
create datasets of 200 labels with relevant information. We then manually review and annotate each
drug label section text for all ADE mentions using doccano, a open-source text annotation tool (44).
After annotation, we map all ADE mentions to standardized MedDRA terms. We use this manually
annotated dataset to evaluate the accuracy of our model in the generated datasets. This data is also
available in this project’s repository, further described in the “Data Availability” section.

Explainability of fine-tuned PubMedBERT model

In order to better understand how the PubMedBERT model we have trained is determining whether a
given term is an ADE, we utilize the SHapley Additive exPlanations (SHAP) method (45). The SHAP
method is a game theory-based approach that explains model predictions by assigning individual
features an importance value for a specific prediction, allowing for a better understanding of how
individual features impact model decisions. The importance values for predictions can be computed in
both local, single-sample contexts and global, whole set contexts. Here, we applied the SHAP method
on OnSIDES predictions of ADEs from the drug labels in the test set to understand which string
tokens contribute to positive and negative predictions. We grouped the ADEs by the 24 MedDRA
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System Organ Classes (SOC), and then computed local and global SHAP explanations for the ADEs
within the class.

Overview and Multi-National Comparison of ADEs using OnSIDES and OnSIDES-INTL

Previous studies have suggested that there is a significant inter-national difference in ADE listed on
drug labels depending on the ADE in question and therapeutic area given the differences in drug
safety regulation and drug approvals (46). As such, we sought to provide a qualitative overview of the
OnSIDES database through a comparative analysis against the OnSIDES-INTL database. We first
mapped the OnSIDES data from lower-level terms to higher-level terms to evaluate patterns in the
different data sources. Low-level terms were coded as MedDRA PT for ADEs and RxNorm
ingredients for drugs. Then, we mapped the drug ingredient RxNorm identifiers to Anatomical
Therapeutic Chemical (ATC) 5th level (ATC5) and then mapped ADEs to the high-level MedDRA
System Organ Class (SOC) and drugs to drug classes, coded as ATC 1st level (ATC1).

Firstly, we compared the number of unique ADEs listed for the drugs within each ATC1 drug class for
each individual database. Next, we observed the distribution of ADEs across each MedDRA SOC
group for each database. Then, we computed the Jaccard index for the drug-ADE pairs grouped by the
high-level terms for each database to compare the overlap of drug-ADEs between each individual
database. Finally, we compared the number of most granular (MedDRA PT) ADE terms listed for
each drug ingredient terms between each database to determine if the databases differ systematically.
Through this analysis, we identified drug and ADE classes with significant variation and similarity
across databases.

Applying OnSIDES : Prediction of Protein Targets and Drug Indications using Drug-ADEs
similarities

As an example of the computational applicability of the OnSIDES database, we used the
OnSIDES-derived pairwise side-effect similarity score dataset to build logistic-regression models
using these scores as a predictor for the proportion and absolute number of shared targets and shared
drug indications. Then, to benchmark the predictions, we compared it to the predictive performances
of models built from the SIDER database-derived predictions.

To conduct this analysis, we mapped the drugs and ADEs between the OnSIDES and SIDER datasets
using standardized vocabulary using OHDSI Athena mappings (47), and extracted datasets of drugs
and conditions that were in both the OnSIDES and SIDER datasets. OnSIDES contains 1,485 unique
single-ingredient drugs and 4,345 unique side effects, and SIDER contains 1,430 unique drugs and
4,251 unique side effects. Of these drugs and side effects, there are 1,026 common drugs and 3,181
side effects as mapped to standardized vocabularies. Then, we obtained drug target information from
DrugBank, and drug indication information from DrugBank and MEDI, and mapped the OnSIDES
and SIDER ADE datasets to the respective datasets (48-49). DrugBank primarily contains drug
indications extracted from drug labels, while MEDI utilizes public internet sources to drug
indications, and is a well utilized resource of drug indications. There are 1,474 and 1,347 drugs with
indications listed in DrugBank, and 1,257 and 1,155 drugs with indications listed in MEDI for
OnSIDES and SIDER respectively. Further mapping statistics provided in (Supplementary Material
3).

Finally, we used the constructed dataset to build logistic regression models, using the z-score
normalized Tanimoto coefficient metrics for the drug pairs to predict the shared drug targets and
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indications of a given pair of drugs. The Tanimoto Coefficient is a metric to measure the similarity of
two sets of features by computing the ratio of the number of common elements to the total number of
elements (50). After computing these metrics, we applied a z-score normalization across each dataset
by normalizing on the mean of each drug’s similarity scores to remove the bias of drugs having a
higher similarity score on average.

Applying OnSIDES : Comparison Chemoinformatics Methods for the Prediction of
Population-Level ADEs from SMILES Strings

Additionally, to explore other potential applications of the OnSIDES database, we fine-tuned and
compared chemoinformatics BERT models on OnSIDES to predict ADEs directly from chemical
compound SMILES strings. This is an area of active interest, with different methods being proposed
in recent years, given its potential utility in identifying chemical compounds with/without severe
toxicity to humans during preclinical/clinical development. (33, 51)

To develop the SMILES-ADE prediction models, we first constructed the training/testing datasets
from the OnSIDES database. 1,143 single-ingredient drugs from OnSIDES were converted to
SMILES strings using PubChemAPI. We converted 10 severe ADEs (Supplementary Table 3) to
MedDRA HLTs (High-Level Terms), which are more granular than the MedDRA SOC
(System-Organ Class) terms predicted in the most relevant previous research study in this field.
Additionally, we identified three different models of relevance, Chemprop, ChemBERTa, and
ChemBERTa-10M-MTR, and fine-tuned each of these models to compare their performance.
ChemBERTa is a transformer-based model of RoBERTa architecture (52) that takes SMILES strings
as input and can be fine-tuned to predict various chemical and physical targets, while Chemprop is a
graphical neural network. Ahmad et al. (32) found that Chemprop performed better than ChemBERTa
for ClinTox classification, a drug-toxicity classification task. However, ChemBERTa was found to
perform better than Chemprop on a number of other MoleculeNet benchmark tasks (51), suggesting
that either model could be utilized. Additionally, we compared these models with random and scaffold
based train/test split stratification.

Discussion :

OnSIDES : Enabling large-scale, broad studies of ADEs

ADEs are a significant cause of morbidity, mortality and unnecessary additional medical treatment
worldwide. Drug label information provided by regulatory agencies continues to be the gold standard
of adverse drug event information available for individual drugs. Furthermore, the advancement of
pharmacology-related computational methods has the potential to revolutionize drug discovery,
clinical treatment and precision medicine, and enable accurate prediction of novel drug interactions,
side effects, and therapeutic potentials. To realize this, the field requires high quality, standardized,
and comprehensive datasets to train computational models on. However, no actively maintained
comprehensive ADE databases exist, making it difficult to leverage computational tools to study
ADEs broadly. As such, we present OnSIDES, a large-scale, machine-readable ADE database built by
fine-tuning a NLP model, PubMedBERT, to accurately extract ADE terms from drug labels. Through
the drug repurposing and chemoinformatics example projects presented here, we additionally show
that OnSIDES can be used in a wide variety of pharmacovigilance and related applications. We
believe that OnSIDES is a valuable resource that can be utilized to comprehensively study ADEs, and
be further applied to different avenues of research to aid the advancement of precision pharmacology.
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In generating OnSIDES, we present a method to fine-tune a large NLP model that has been
pre-trained on general biomedical text for the specific task of classifying ADE-related terms given
relevant context. To achieve optimal performance, we compared the performance of two pretrained
NLP models, PubMedBERT trained on biomedical abstracts and article text and ClinicalBERT trained
on a large corpus of electronic health record text. We fine-tuned both models by comparing different
extraction methods, standard vocabulary-based exact string matching and neural network-based
extraction, replacing the potential ADE term with different tokens, testing different input string
lengths and different proportions of string before and after the ADE term, and adjusting the learning
rates. We found that there was marginal improvement when we introduced neural network based
extraction and that substituting the potential ADE term with the common token “EVENT” and
prepending the term and section source to the input label improved both models’ performance further.
Finally, we utilized a relatively long input string of 125 words split with 87.5% of the input string’s
words coming after the term, suggesting that in this context a large amount of post-term context aids
performance of the NLP model. While both models performed similarly well, we decided to use the
fine-tuned PubMedBERT model as it achieved greater consistency in the multiple evaluations we
conducted.

The final model trained for the OnSIDES database may be able to achieve strong performance of
ADE term extraction from other types of text, and this approach of fine-tuning a large pre-trained
language model for specific tasks can be adapted to be used for the extraction and classification of a
specific class of biomedical terms from any relevant text.

Limitations of OnSIDES

The OnSIDES database is constructed using computational extraction methods, with some side effects
not extracted accurately, and some predicted adverse events being incorrect. We expect further
methodological advances, both in potential ADE term identification and ADE term prediction, will
improve ADE term extraction accuracy. Additionally, as we have exclusively extracted information
from drug labels, there may be known ADEs that are not yet reflected on drug labels that may appear
in other sources, such as adverse event reporting systems. Furthermore, as we use the MedDRA
vocabulary as our starting point, we are unable to identify ADEs that are described in non-standard
terms, which is a key component that hinders extraction accuracy. While we have strived to optimize
the accuracy of drug-ADE pairs in the database, when conducting studies on specific drugs / adverse
events, the most up-to-date drug labels should be referenced to verify information in OnSIDES.

Our additional databases, OnSIDES-PED and OnSIDES-INTL also face their own limitations in
addition to those described above. OnSIDES-PED is currently compiled from ADE mentions in the
BW, SP, and WP sections. As such, this does not include any general ADEs that pediatric patients may
be affected by, that may be listed in the AR section alongside the adult ADEs. This is predominantly
due to the fact that the pediatric mentions in this section are difficult to stratify systematically, and
cause inaccuracies in the data. Additionally, it includes any information extracted from text describing
pre-clinical trials, such as ADEs identified through in-vivo experiments conducted in juvenile rats,
that may not directly occur in a human pediatric patient. Furthermore, the limited accuracy of the
model may be improved by further adapted curation of the input format, rule-based filtering of
unrelated matched terms, and the training of a model on the pediatric-specific mentions. For the
OnSIDES-INTL database, we are limited to the currently active drug labels, as any previous versions
of drug labels are unavailable in the public domain to the best of our knowledge. As we periodically
update the database, we will be able to accumulate more data across all data sources and provide a
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more comprehensive picture incorporating more drug labels. Another limitation factor for this method
is the machine translation accuracy of the OnSIDES-JPN labels. We hope to accumulate further
annotated data to train/fine-tune specific models to optimize performance for each OnSIDES-INTL
data table, and for non-English language texts.

Furthermore, we additionally maintain the OFFSIDES and TWOSIDES databases, which extract
ADEs and drug-drug interactions respectively from the spontaneous ADE reporting system FAERS
(FDA Adverse Event Reporting System). These are additional complementary resources that are
available to be used alongside OnSIDES to comprehensively study adverse drug events at a large
scale (Tatonetti, 2012).

Future Directions

Here, we show that we are able to extract pharmacovigilance information with good accuracy from
drug label data structured in a variety of different text formats using Natural Language Processing
models. However, there is more pharmacologically relevant information nested in drug labels such as
concomitant drugs, clinical trial results relevant to ADEs, pharmacogenomics, pharmacodynamics and
pharmacokinetics information, and different ADEs noted for special populations of particular interest,
that would be of great utility if standardized. Additionally, given the rapid development of NLP
methods with the advent of Large Language Models, we expect extraction of information from free
text to improve further, for example, ADEs for specific patient populations that are nested within
general ADE-relevant text. We hope to further extend this work to extract and compile different data
points by further adapting and developing this approach.
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Figure 1 : Graphical Representation of the OnSIDES Database Generation Process
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Figure 2 : Explanation of OnSIDES Model Predictions using SHAP Values.  A. SHAP explanations for a drug label positively indicated for the adverse 
effect thrombocytopenia.  The top visualization shows the label text with contributions to the BERT model's prediction indicated through SHAP values. 
Tokens shaded in red contribute to a higher prediction of adverse drug events, while those in blue suggest the opposite. Directly below this, a bar plot 
showcases the top features from that sample. Tokens are grouped based on their SHAP values with a clustering cutoff set at 0.5 to determine prominent 
clusters. The initial adverse event term thrombocytopenia and the substituted EVENT term are strongly positive features. The EVENT term appears 
between several numbers indicating that it is embedded with a tabular structure. B. Similar visualizations for a drug label negatively indicated for the 
adverse effect tic. The token tic inaccurately matches the middle of the word "uriTICaria", which refers to a non-related condition. Many negatively 
contributing SHAP tokens seem to be related to rash, suggesting an alternative adverse effect of the drug than the one predicted.
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Figure 2 : Overview of OnSIDES with a Comparison against OnSIDES-INTL (EU, Japan, UK) datasets 
A. Number of ADEs for drugs within each ATC Level 1 group, split by data source. Each bar represents the count of all unique ADEs (MedDRA PT) 
within the high-level group (ATC Level 1). 
B. Number of drugs having ADEs within each MedDRA SOC. Each bar represents the count of all unique drugs (ATC5) that have labeled ADEs 
(MedDRA PT) which belong to the ADE group (MedDRA SOC). 
C. Overlap in drug-ADE pairs between OnSIDES and OnSIDES-INTL. For each high-level group (ATC Level 1 and MedDRA SOC), we identified all 
unique drug-ADE pairs coming from each source, and the bin color represents the Jaccard index of the drug-ADE pairs between the two sources. 
D. Comparison of the per-drug number of ADEs (MedDRA PT) between OnSIDES and OnSIDES-INTL.
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Figure 3 : Comparison between OnSIDES, OnSIDES-PED, and KidSIDES
A. Number of ADEs for drugs within each ATC Level 1 group, split by data source. Each bar represents the count of all unique ADEs (MedDRA PT) 
within the high-level group (ATC Level 1). 
B. Number of drugs having ADEs within each MedDRA SOC. Each bar represents the count of all unique drugs that have labeled ADEs (MedDRA PT) 
which belong to the ADE group (MedDRA SOC). 
C/D. A Manhattan Plot of the Enrichment of the Number of MedDRA PT Adverse Events for all Drug Classes (at the ATC Level 4) . In C, we visualize 
the enrichment of OnSIDES-PED vs. OnSIDES. In D, we visualize the enrichment of OnSIDES-PED vs. KidSIDES. The markers are colored by 
MedDRA SOC.
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Figure 4 : Predicting the shared drug targets and drug indications from drug pairs’ z-score corrected Tanimoto coefficient side effect similarity scores. A. 
The proportion of drug targets shared is correlated with the z-score corrected Tanimoto coefficient side effect similarity score. B. The OnSIDES-trained 
model outperformed the SIDER-trained model in predicting drug targets shared between pairs of drugs. C. Models trained on the OnSIDES-INTL (UK, 
EU, and Japan) databases also perform moderately well in predicting shared drug targets. D. The proportion of drug indications shared is correlated with 
the side effect similarity score. E. The OnSIDES-trained model outperforms the SIDER-trained model in predicting shared on-label (DrugBank) / 
off-label (MEDI) indications. Additionally, the predictions were more accurate when we took the indications listed in both DrugBank and MEDI. F. 
Models trained on the OnSIDES-INTL (UK, EU, and Japan) databases also perform moderately well in predicting shared on/off-label drug indications.
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Figure 5

Figure 5 : Overview of the SMILES-ADE Prediction Model Training and Testing. A. The models are trained using the SMILES strings of OnSIDES drugs 
and a binary vector indicating the presence of a particular serious ADE for that drug. B. The trained models are used to predict whether a testing set drug 
has the ADE listed on the drug label. C. The models achieve test-set AUROC of 0.620-0.745 per ADE, with no particular model demonstrably 
outperforming the others.

A

B

C

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 24, 2024. ; https://doi.org/10.1101/2024.03.22.24304724doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.22.24304724
http://creativecommons.org/licenses/by-nc/4.0/

