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Abstract 

COVID-19 has been a significant public health concern for the last four years; however, little is 
known about the mechanisms that lead to severe COVID-associated kidney injury. In this 
multicenter study, we combined quantitative deep urinary proteomics and machine learning to 
predict severe acute outcomes in hospitalized COVID-19 patients. Using a 10-fold cross-
validated random forest algorithm, we identified a set of urinary proteins that demonstrated 
predictive power for both discovery and validation set with 87% and 79% accuracy, respectively. 
These predictive urinary biomarkers were recapitulated in non-COVID acute kidney injury 
revealing overlapping injury mechanisms. We further combined orthogonal multiomics datasets 
to understand the mechanisms that drive severe COVID-associated kidney injury. Functional 
overlap and network analysis of urinary proteomics, plasma proteomics and urine sediment 
single-cell RNA sequencing showed that extracellular matrix and autophagy-associated 
pathways were uniquely impacted in severe COVID-19. Differentially abundant proteins 
associated with these pathways exhibited high expression in cells in the juxtamedullary nephron, 
endothelial cells, and podocytes, indicating that these kidney cell types could be potential 
targets. Further, single-cell transcriptomic analysis of kidney organoids infected with SARS-CoV-
2 revealed dysregulation of extracellular matrix organization in multiple nephron segments, 
recapitulating the clinically observed fibrotic response across multiomics datasets. Ligand-
receptor interaction analysis of the podocyte and tubule organoid clusters showed significant 
reduction and loss of interaction between integrins and basement membrane receptors in the 
infected kidney organoids. Collectively, these data suggest that extracellular matrix degradation 
and adhesion-associated mechanisms could be a main driver of COVID-associated kidney injury 
and severe outcomes. 

 

Keywords: machine learning, COVID-19, urine proteomics, multiomics, kidney organoids  
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Introduction 

As of March 2024, the World Health Organization has reported over 774 million COVID-
19 cases and 7 million deaths worldwide attributed to COVID-19 1. Although COVID-19 is a 
respiratory illness with a major impact on the lungs, studies have shown that peripheral organs 
such as the kidneys are also affected 2-4. While direct infection of the kidney is still ambiguous 5-

7, kidney function is highly affected due to COVID-19 infection as evidenced by a higher 
incidence of acute kidney injury (AKI) and decline in estimated glomerular filtration rate (eGFR) 
in patients hospitalized with COVID-19 8, 9. More recently, clinical data have shown that post-
acute sequelae of COVID (PASC) increases the risk of chronic kidney disease (CKD) in patients 
recovered from COVID-19 10, 11. 

In the last few years, several studies have employed biospecimens such as urine 9, 12-15, 
plasma 16-18, and serum 19, 20 to predict severity, measure levels of AKI biomarkers, and better 
understand the pathophysiology of COVID-associated kidney injury. SARS-CoV-2 uses entry 
receptors such as ACE2 and TMPRSS2 during infection and these markers are expressed in 
the tubules, podocytes, and glomerular parietal epithelial cells (PEC) in the kidney 21. Studies 
employing induced pluripotent stem cell (iPSC)-derived kidney organoids as an in vitro model 
for SARS-CoV-2 infection have demonstrated direct infection of kidney cell-types through 
interaction with these receptors 22-24. These studies have identified several mechanisms such as 
tubulointerstitial fibrosis, disrupted renal absorption, and cytokine-induced JAK/STAT/APOL1 
signaling to be driving COVID-associated kidney injury. However, there is limited understanding 
of the impact of COVID-19 on specific kidney cell-types and injury mechanisms associated with 
these cell types.  

In this multicenter study, we leverage urine’s accessibility as a biospecimen and utility in 
surveying kidney function in combination with machine learning (ML) and quantitative tandem-
mass-tag (TMT) urinary proteomics to predict severe outcomes in hospitalized COVID-19 
patients. We further integrate urine sediment single-cell RNA sequencing (scRNA-seq) from a 
subset of samples in the urinary dataset along with a larger independent plasma proteomics 
dataset to identify complementary dysregulated mechanisms. We hypothesize that integrating 
single-cell transcriptomics with proteomics will uncover pathophysiological mechanisms that can 
be assigned to specific cell types. We further incorporate scRNA-seq data from kidney organoids 
infected with SARS-CoV-2 as a physiologically relevant in vitro platform to validate the 
mechanistic signatures observed in the integrated molecular analytics of clinical biospecimens.  

 

Methods 

Cohort description 

We collected urine samples from 130 COVID-19 PCR-positive hospitalized participants 
between April 2020 and April 2021 and 26 non-COVID AKI patients between May 2021 and 
August 2021 from two sites, namely Mount Sinai Hospital in New York, NY and University of 
Michigan in Ann Arbor, MI, and 13 healthy participants from the Mount Sinai Hospital. Inclusion 
criteria for sample collection was age > 18 years, hospitalization, adult without capacity if a 
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legally authorized representative (LAR) is available, provided they comply with institutional 
policy. Patients with Stage 5 CKD or end-stage kidney disease (ESKD) were excluded. Most of 
the COVID-19 patients were male and Caucasian with a median age of 58 ± 15 years. 

This study was approved by the Icahn School of Medicine at Mount Sinai Program 
Institutional Review Board (IRB) under the study number 20-00523 and the University of 
Michigan Medical School Institutional Review Boards approval under HUM00004729. Detailed 
methods can be found in the Supplementary Materials. 

 

Results 

Isobaric urinary proteomic signature of severe COVID-19 

We identified 34,474 unique peptides representing 6,196 unique urinary proteins using 
quantitative TMT-16 plex mass spectrometry (MS) analysis on 130 COVID-19 urine samples 
collected at two medical centers. The number of unique proteins identified across thirteen TMT-
16 plex batches were found to be consistent (Figure S1). COVID-19 samples across multiple 
TMT-16 plex batches clustered together while displaying a significant separation from the 
instrument controls (Figure S2). Therefore, the samples from both collection sites were pooled 
for downstream analysis.  For constructing a predictive algorithm, COVID-19 samples collected 
less than eighteen days after hospitalization (n=122, median = 3d, interquartile range (IQR) = 2-
5d) were stratified into severe (major adverse events), and mild (no major adverse events) 
composite outcomes as shown (Figure 1A). The samples were then randomly allocated at a 2:1 
ratio between the discovery (n=81) and validation (n=41) cohort while maintaining equivalent 
demographic (race, sex, age) distribution between the two groups (Table 1, Table S1). While 
COVID-19 samples clustered separately from the healthy samples, there was no clear 
separation based on the whole proteome between severe and mild COVID-19 samples (Figure 
1B). Differential testing using limma 25 on the discovery set revealed differentially abundant 
proteins (DAPs) between the severe and mild outcome cohort indicating that there may be 
dysregulated pathways leading to severe COVID-19 (Figure 1C). Unsupervised clustering of all 
samples in the discovery set (n=81) using the top 50 DAPs showed very subtle separation of 
mild and severe outcome cases, however, almost 70% of the severe outcome cases clustered 
towards the right side of the heatmap (Figure 1D). 

Gene ontology biological process (GOBP) enrichment analysis using the DAVID 
database 26 of the top 150 DAPs ranked by absolute value of log2fold-change (log2FC) in 
COVID-19 versus healthy participants consistently showed significant downregulation of 
proteolytic and metabolic processes and upregulation of immune processes (Figure S3). 
Enrichment analysis using Enrichr 27-29 of DAPs in severe versus mild COVID-19 showed 
significant upregulation of extracellular matrix (ECM) disassembly, reactive oxygen species and 
apoptosis associated processes and downregulation of cell adhesion associated processes 
(Figure 1E, F, S4). Downregulated DAPs were associated strongly with kidney cells such as 
podocytes and mesangial cells in addition to endothelial cells (EC) (Figure 1G). Upregulated 
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DAPs were associated with kidney proximal tubular (PT), mesangial cells in addition to 
hepatocytes and pulmonary alveolar cells (Figure 1H).  

 

Machine learning model predicts major adverse outcomes in COVID-19 patients 

To construct the ML model to predict COVID-19 severity, we identified features from the 
top DAPs obtained from limma comparisons using the Boruta feature selection method 30. A set 
of 12 features (i.e., proteins) was identified as predictors of severity, encoded by the following 
transcripts: ADGRL1, PROM1, PLS3, NECTIN1, EPHB2, SCGB1A1, PLXDC2, LCN1, 
PDCD1LG2, CILP2, FAM151A and PTPRJ (Figure 2A, Table S2). These features were used 
for random forest model construction within the discovery set with 10-fold cross-validation. The 
generated receiver operating characteristic (ROC) curves show that the algorithm demonstrated 
good predictive power for both discovery and validation set with Area Under the Curve (AUC) of 
87% and 76% respectively (Figure 2B-C). By setting one-cutoff according to ROC curve in 
discovery set, the model achieved Negative Predictive Power (NPV) of 89% and 83% in the 
discovery and validation set respectively (Table 2). Our model was also able to accurately 
predict 78% of all severe-outcome patients (True Positive Rate, TPR) (Figure 2D). Further, we 
derived a tertile cutoff to estimate prediction accuracy, achieving a Positive Predictive Power 
(PPV) of 85% and 75% at a high cutoff (0.653), an NPV of 97% and 88% at the low cutoff (0.247) 
in the discovery and validation sets, respectively (Figure 2E, Table 3).  While over 80% of the 
samples in this study were collected less than 5 days after hospitalization, we did not observe 
any significant correlation between prediction accuracy and the number of days between 
hospitalization and sample collection (Figure S5A). While prediction accuracy for individual 
outcomes were about 70%, 100% of samples with AKI as an outcome were accurately predicted 
demonstrating a potential in predicting kidney-specific adverse events (Figure S5B). 

 

Severe COVID-19 ML features recapitulate injury mechanisms of non-COVID AKI 

GOBP enrichment analysis showed that the top ML features identified were associated 
with pathophysiological mechanisms such as cell adhesion and cell component organization 
(Figure S6). ADGRL1, EPHB2, CILP2 and NECTIN1 have been previously reported to have 
functions in cell-cell adhesion and cell communication 31-35. Similarly, PLXDC2 and PTPRJ have 
been shown to be associated with angiogenesis-associated pathways in tumors 36-38. Some of 
these features such as PLS3, 39 NECTIN1, 40 PLXDC2, 41 and PTPRJ 42 have also been 
previously found to be differentially regulated in COVID-19.  The publicly available Kidney 
Precision Medicine Project (KPMP) scRNA-seq database showed that many of these features 
are highly expressed in glomerular cells such as ECs, podocytes, and parietal epithelial cells 
(PECs) (Figure S7). 

Previous studies have reported a decline in eGFR in severe COVID-19 and COVID-
associated AKI within 30 days post-acute infection 43, 44. The eGFR of the severe acute COVID-
19 cohort in our dataset was found to be significantly lower than that of the mild cohort (Figure 
S8). Since it was recently reported that AKI in severe COVID-19 shared mechanistic similarities 
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with sepsis-associated AKI 45, 46, we sought to look at the mechanistic similarities between the 
severe COVID-19 and the non-COVID AKI urinary proteome. While the separation between non-
COVID AKI and COVID-19 samples was not extensive, we observed a clear distinction between 
disease and healthy samples (Figure S9A). An unbiased unsupervised k-means clustering 
projected over the PCA plot clearly showed that a substantial proportion of severe COVID-19 
and non-COVID AKI samples cluster together (Figure S9B-C). The top 150 DAPs ranked by 
absolute log2FC and p-value<0.05 in non-COVID AKI vs healthy participants showed a 
significant overlap of downregulated enrichments associated with cell adhesion and proteolysis 
pathways observed in severe COVID-19 (Figure S10). Urinary albumin abundance was 
significantly higher in severe and mild COVID-19 and non-COVID AKI patients compared to 
healthy participants, indicating altered kidney function in diseased patients (Figure S11A). 
Cystatin C, CST3, a commonly used kidney injury biomarker was also slightly, but not 
significantly elevated in severe COVID-19 and non-COVID AKI urine samples (Figure S11B) 47, 

48. Abundance of ten out of twelve ML features were similarly downregulated in non-COVID AKI 
and severe COVID-19 urine samples (Figure 3). Taken together, these indicate that 
mechanisms associated with COVID-19 severity may have strong overlap with the kidney injury 
mechanisms involved in the progression of AKI. Further, validation of the features in an external 
AKI cohort from the KPMP database showed that 5 (NECTIN1, EPHB2, PLXDC2, PDCD1LG2, 
PTPRJ) out of the 9 features identified in both datasets were similarly recapitulated (Figure 
S12). 

 

Integrated multiomic analysis of clinical datasets show adhesion-associated processes 
highly impacted in severe COVID-19 

In addition to predicting COVID-19 severity, urinary biomarkers identified here uncovered 
overlapping mechanisms in severe COVID-19 and non-COVID AKI. We recently showed that 
the plasma proteome can be used to characterize AKI and eGFR decline in COVID-19 
hospitalized patients 17. We hypothesized that integrating DAPs from the plasma and the urine 
proteome will uncover cohesive mechanisms of kidney injury in these two independent datasets. 
The top 150 urine and 450 plasma proteomics DAPs ranked by absolute log2FC and p-
value<0.05 were analyzed using the standard enrichment program in the Molecular Biology of 
the Cell Ontology (MBCO) database (Figure 4A, Figure S13). ECM homeostasis and 
coagulation-associated pathways were common between both proteomic datasets in addition to 
multiple pathways within the top 25% interactions. The Humanbase kidney-specific functional 
network discovery analysis resulted in five distinct gene clusters with more than 43 genes in 
each cluster (Figure S14). HumanBase integrates public genomic datasets into a tissue-specific 
functional module where individual gene clusters share a local network neighborhood. We found 
significant associations between genes within multiple clusters associated with terms such as 
autophagy, cell-matrix adhesion, regulation of proteolysis, and receptor-mediated endocytosis. 
We further used the publicly available KPMP scRNA-seq database to identify the kidney cell 
type specificity of the top 50 DAPs from the urine and plasma proteomics datasets. While the 
plasma proteins showed high specificity to immune and interstitial cells, urinary proteins were 
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highly specific to kidney cell types such as ECs, podocytes, PT, and distal tubules (DCT) (Figure 
4B). 

Since obtaining kidney biopsy samples from these patients would have been invasive and 
challenging, we adopted urine sediment scRNA-seq to identify cell-type specific transcriptomic 
changes due to severe COVID-19. Urine sediment scRNA-seq has been shown to be a powerful 
tool for investigating the differential transcriptomic signature of the injured kidney cells in the 
context of AKI as well as COVID-AKI 49-51. We obtained urine sediment scRNA-seq data from a 
subset of urine samples (n=40) analyzed using proteomics. Sixteen distinct cell clusters 
consisting of kidney cells, immune cells and cells from the urinary tract were identified (Figure 
4C). Clusters containing reproductive cells and unidentified cells were removed before further 
analysis. Podocytes were excluded from the differentially expressed genes (DEG) analysis due 
to the insufficient number of cells obtained. We identified five kidney cell-type clusters such as 
PT cells, intercalated cells (IC), proliferating cells, stressed renal cells and a hybrid cluster 
containing loop of Henle, DCT, connecting tubule and principal cells (LOH/DCT/CNT/PC). We 
also identified four immune cell clusters such as T, macrophages, and dendritic cells (MAC/DC), 
monocytes (MON), and mononuclear (MON/N cells) and three clusters of urinary tract cells such 
as umbrella, urothelial and urogenital cells. The top 150 DAPs from urine, 450 DAPs from plasma 
proteomics and top 150 DEGs from individual cell type clusters of the urine sediment scRNA-
seq were analyzed using functional overlap analysis (Figure 4D). Functional enrichment showed 
significant overlap between several pathways such as cell adhesion, migration, proliferation, 
ECM organization, regulation of proteolysis, response to oxidative stress (ROS), and 
inflammatory response among others between urinary and plasma proteomics. The 
LOH/DCT/CNT/PC cluster and MAC/DC cluster from the urine sediment scRNA-seq showed 
significant overlap with urine and plasma proteome within these pathways. KPMP analysis 
showed that genes within the adhesion and migration pathways were highly specific to immune 
clusters followed by EC and podocytes (Figure S15A-B). Several genes associated with ROS 
pathway showed a highly specific expression in the PT cluster, suggesting that there is an 
increase in stress response in the PT due to severe SARS-CoV-2 infection (Figure S15C). 

We further built a protein-protein interaction (PPI) network for the top 50 DEGs from 
individual cell types in the urine sediment scRNA-seq and the top 50 DAPs from the urine and 
plasma datasets PPI interaction information in STRING database. Permuted network scores 
based on interactions found in the STRING database showed a highly significant original 
network interaction score for LOH/DCT/CNT/PC cluster (Figure 4E, S16), followed by MAC/DC 
and umbrella cells (Figure 4F). Heatmap of enrichments associated with the top DEGs within 
the LOH/DCT/CNT/PC cluster showed associations with metal ion homeostasis, apoptotic 
processes, and ROS, among others (Figure S17). Humanbase kidney-specific functional 
module discovery and the MBCO standard enrichment analysis of top features in 
LOH/DCT/CNT/PC cluster and the urine and plasma proteomics datasets showed significant 
overlapping interactions between multiple pathways such as ECM homeostasis and intracellular 
degradation pathways (Figure S18-S19). The PPI network of the LOH/DCT/CNT/PC cluster and 
the urine and plasma proteomics datasets revealed highly interacting proteins among which we 
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identified five proteins that were identified in all the three datasets: CST3, YWHAG, IGFBP7, 
LGALS3BP and HSP90AA1 (Figure 4G). Three out of these five proteins (CST3, LGALS3BP 
and IGFBP7), all cluster in the same module of the Humanbase functional module analysis 
demonstrating a shared function in ECM organization (Figure S20). Cystatin C (CST3) has been 
previously also shown to be a predictive biomarker for COVID-19 severity 47, 48. IGFBP7, a 
glycoprotein expressed in ECs and renal epithelial cells, has been extensively shown as a 
prognostic biomarker for early AKI along with TIMP2 52, 53. LGALS3BP, an ECM associated 
glycoprotein, was shown to be differentially regulated in COVID-19 samples19, 54. The data from 
the multiomic integrative overlap and PPI network analysis show that ECM and degradation-
associated pathways are highly impacted due to severe COVID-19, and that the tubules of the 
juxtamedullary nephron are likely the most susceptible cell types impacted due to these 
pathways leading to major adverse kidney events. 

 

iPSC-derived kidney organoids recapitulate mechanisms of injury observed in clinical 
datasets 

Next, we sought to validate the proteomic and transcriptomic signature observed in the 
clinical datasets due to COVID-19 infection by adopting iPSC-derived kidney organoids as an in 
vitro disease model. While the urine sediment scRNA-seq data demonstrated the transcriptomic 
changes in the injured cell types shed in urine, a kidney organoid model would allow us to study 
transcriptional changes in a physiologically relevant context in vitro. Previous studies have 
established that SARS-CoV-2 directly infects kidney organoids and drives fibrosis within the 
organoids 22, 23. Kidney organoids expressed tubular and glomerular markers 18 days after 
differentiation (Figure 5A-B). After 25 days of differentiation, kidney organoids infected with 
SARS-CoV-2 showed sustained viral titer levels up to 6 days post infection (Figure S21). 
Immunofluorescence staining showed presence of SARS-CoV-2 nucleocapsid (SARS NP) 
protein in the LTL+ tubular cells, suggesting that they may be the main target of SARS-CoV-2 
infection in the organoids (Figure 5C).  

The scRNA-seq analysis identified 18 cell clusters consisting of kidney cell types such as 
NPHS1+ and NPHS2+ podocytes and LRP2+ tubules in addition to PDGFRB+ mesenchymal 
cells, MKI67+ proliferating cells, and off-target populations such as neuron-like and neuronal 
progenitor cells (NPC) (Figure S22A). Unsupervised clustering showed that SARS-CoV-2 
infected cells cluster separately (Figure S22B). Upon removal of COVID genes, SARS-CoV-2 
infected cells redistributed to PT, podocytes, and mesenchymal cell clusters (Figure 5D,). 
Heatmap of the top 150 DEGs ranked by absolute log2FC and p-value <0.05 in the infected vs 
WT kidney organoids showed ECM-associated processes were highly enriched (Figure S23). 
Differential transcriptomic signatures and KEGG pathway analysis of the podocyte and tubule 
clusters demonstrated a strong overlap in dysregulated pathways observed in the urine and 
plasma proteomic datasets (Figure 5E-F). We further performed MBCO standard enrichment 
analysis and Humanbase kidney-specific functional module discovery of top 150 DEGs in kidney 
organoids and the top 150 urine and 450 plasma DAPs (Figure 5G, Figure S24-25). Both 
analyses showed a significant overlap between ECM homeostasis and cellular communication 
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pathways consistent with prior observations. Functional overlap analysis of the two proteomic 
(urine and plasma) and the two transcriptomic (urine sediment and kidney organoid) datasets 
showed overlap of ECM as well as proteolysis and peptidase-associated pathways indicating a 
potential maladaptive reorganization of the ECM through the activity of peptidases (Figure 5H). 
These data corroborate the fibrotic response observed in previously published kidney organoid 
models of SARS-CoV-2 infection 23. Ligand-receptor interaction analysis of the tubule and 
podocyte clusters showed significant reduction and loss of crosstalk and signaling between ECM 
components such as collagen and laminin and their integrin receptors (Figure 5I). Within the 
podocyte cluster, loss of interaction between LAMB2 and DAG1 as well as THBS1 and 
ITGA3/ITGB1 indicated a potential impact on podocyte attachment to the basement membrane. 
Within the tubular cluster, we observed a greater impact on several integrin receptors and loss 
of communication between integrin and collagen or laminin. To identify whether these 
interactions are recapitulated in the clinical dataset, we investigated urine-derived ligands and 
organoid-derived receptors and found a significant loss of integrin and ECM interactions 
specifically within the tubular cluster of the kidney organoids.  

 

Discussion 

In this multicenter study, we combined ML and multiomics datasets to predict COVID-19 
severity and further identify kidney pathophysiological mechanisms underlying severe COVID-
19. Our dataset from 130 COVID-19 patients represents one of the most extensive and deepest 
human urinary proteomic sets published to date. For severe outcome stratification, general 
clinical metrics such as ICU, MV, LOS, and death were used in addition to kidney specific 
outcome such as AKI after hospitalization. Renal replacement therapies such as dialysis were 
observed in a subset of COVID-AKI patients in our cohort and did not increase predictive power. 
Using a 10-fold cross validated random forest model, we demonstrated accurate prediction of 
severe outcomes within five days of hospitalization in over 80% of participants; we note that for 
the Mount Sinai cohort, majority of severe adverse events were observed 5-12 days after 
hospitalization. In addition to prediction of COVID-19 severity, 10 out of 12 biomarkers identified 
in our ML analysis revealed intersecting mechanisms of kidney injury in severe COVID-19 and 
non-COVID AKI. This was further validated in an independent external AKI dataset within the 
KPMP database where 5 out of 9 predictive urinary proteins were similarly recapitulated. Two of 
the 12 features, SCGB1A1 and LCN1, were upregulated in severe COVID-19 patients in the 
urine proteomics dataset. LCN1 was also significantly elevated in the plasma proteomics 
dataset. However, there was no significant difference in non-COVID AKI versus mild COVID-19 
samples. SCGB1A1 and LCN1 are secreted proteins that have been shown to be dysregulated 
in infection related pathways, 55-57 and may not be relevant to mechanisms involved in other 
types of AKI.  

Given the kidney-specific signature of the biomarkers, we investigated the presence of 
viral proteins in the urine. However, we only identified SARS-CoV-2 spike protein in 6 out of 130 
COVID-19 samples. While we did not observe a significant difference in ACE2 expression in 
control, severe, and mild urine samples, TMPRSS2 was significantly downregulated in severe 
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compared to mild COVID-19 and healthy urine samples indicating active SARS-CoV-2 infection 
58 (Figure S26). Similarly, kidney injury marker-1 (KIM-1) expression was found in a significantly 
higher proportion of severe (27%) and non-COVID AKI (50%) samples compared to mild (16%) 
samples. The top DAPs between severe and mild COVID-19 showed significant enrichment of 
cell adhesion-associated pathways along with vascular function and angiogenesis. The 
enrichment of these pathways indicates potential endothelial dysfunction-mechanisms driving 
COVID-19 severity. From the KPMP cell type specificity analysis, we found that 10% of the top 
100 DAPs from our urine and plasma datasets showed high expression in the ECs further 
confirming that vascular function may be highly impacted due to severe COVID-19.  

To investigate the impact of COVID-19 infection on kidney specific cell targets, we 
integrated transcriptomic datasets from urine sediments and kidney organoids along with urine 
and plasma proteomic datasets. While previous studies have shown that PT cells are the main 
target of COVID-19 associated kidney injury 59, 60, in this study we further identify that the cells 
in the juxtamedullary nephron such as LOH, DCT, CNT and PC may also be significantly 
impacted early due to infection. Functional overlap analysis showed that ECM homeostasis, 
coagulation, and degradation pathways were highly dysregulated across all four datasets. 
Cohesive dysregulation of ECM-associated pathways suggests a profibrotic response due to 
severe COVID-19 infection as reported previously 22, 23, with a significant fibrotic response from 
the kidney organoid dataset. In addition to this, we also found an elevated expression of 
metallothionein genes in the hybrid LOH/DCT/CNT/PC cluster. In addition to maintaining metal 
ion homeostasis, metallothionein genes regulate autophagy and are upregulated in response to 
oxidative stress 61. Based on these data, it is possible that there is metallothionein-induced 
autophagy response from tubular cells in the medullary nephron in response to the infection. 

This study has several limitations. The effect of comorbidities on severe outcomes in the 
sample population was not accounted for during the construction of the prediction model. It has 
been previously shown that patients with high-risk alleles of APOL1 are more prone to COVID-
associated AKI 62, 63. However, the APOL1 status of participants in our cohort is unknown. Due 
to differences in sample collection times between the two centers, predictive power of the ML 
model was lower when the Sinai cohort was used as the discovery set and the Michigan cohort 
was used as the validation set (Figure S27, Table S3); however, our data showed that the time 
of sample collection after hospitalization did not impact prediction accuracy. Further, GOBP 
enrichments associated with ML features from this analysis also indicated similar mechanisms 
were dysregulated indicating that our conclusions would remain unchanged (Figure S28). While 
the proteomic datasets showed high expression of endothelial proteins, given the difficulty of 
capturing ECs in either specimen used in transcriptomic analysis, we were unable to validate 
the signature associated with COVID-induced vascular dysfunction. We acknowledge that 
kidney organoids in their current state do not represent mature compartments such as immune 
cells and vasculature and contain off-target cell populations. However, our results suggest that 
the SARS-CoV-2 induced dysfunction of adhesive processes is a general cell biological 
phenomenon and that organoids were able to sufficiently recapitulate the cohesive responses 
observed in the clinical datasets in vitro. Finally, we note that while our sample size may be 
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limited compared to some of the larger targeted biomarker studies, we note that our mass 
spectrometry-based approach not only represents the most extensive urinary mass 
spectrometry data, but it also includes post-translational modification and peptide localization 
information, which could provide useful for future biomarker discovery and development. 

In conclusion, we use multiple omics datasets and an integrative approach to uncover 
cohesive dysregulation of ECM and adhesion-associated pathways within multiple kidney cell 
types due to acute COVID-19 infection. Using orthogonal assays such as urinary proteomics 
and urine sediment scRNA-seq, we were able to filter out systemic response from the immune 
system and delineate kidney cell type-specific pathways that are impacted by severe COVID-
19. While predictive urinary biomarkers identified in this study may not be extensively utilized for 
acute COVID-19 given the low hospitalization rates, as functional biomarkers, they may be 
useful for monitoring progression of long-COVID-associated kidney dysfunction. The validation 
of these biomarkers in an independent external AKI cohort also demonstrates their utility in 
kidney diseases beyond COVID-19 associated kidney injury.   
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Tables 

Table 1: Urine proteomics sample demographics 

    Discovery Set Validation Set 

 
Number of samples 81 41 

Site 
Mount Sinai Hospital 60 (74%) 30 (72%) 

University of Michigan 21 (26%) 11 (28%) 

Sex 
Male 48 (59%) 25 (64%) 

Female 33 (41%) 14 (36%) 

Race 

Asian 6 (7.4%) 1 (2.4%) 

Black 22 (27.1%) 12 (29.2%) 

Hispanic 1 (1.2%) 0 (0%) 

White 30 (37%) 19 (46.3%) 

Other 17 (20.9%) 8 (19.5%) 

Unknown 5 (6.1%) 1 (2.4%) 

Age, years, mean ± SD 57 ± 15 58 ± 15 

Composite 
Outcomes 

Mild 54 (66.67%) 27 (65.8%) 

Severe 27 (33.33%) 14 (34.14%) 

 

Table 2: Predictive accuracy of the ML model 

Set TPR FPR PPV NPV 

Discovery 0.815 0.222 0.647 0.893 

Validation 0.714 0.259 0.588 0.833 

Cutoff 0.392    

 

Table 3: Predictive accuracy of the two-cutoff tiered ML model 

Set PPV NPV 

Discovery 0.846 0.972 

Validation 0.75 0.875 

Cutoffs 0.653 0.247 
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Figure Captions: 

Figure 1: Urinary proteomics reveal differentially abundant proteins (DAPs) between severe and 
mild COVID-19. (A) Schematic representation of stratification of severe and mild outcomes for 
machine learning (ML) analysis, (B) Uniform Manifold Approximation and Projection (UMAP) 
shows that samples from COVID-19 patients cluster separately from samples from healthy 
participants, (C) Volcano plot of DAPs in severe vs mild outcome groups; (D) Unsupervised 
clustering heatmap of the top 50 DAPs from all the samples in the discovery cohort showing 
distribution of composite and individual outcomes; Gene ontology biological processes (GOBP) 
enrichment analysis of (E) downregulated and (F) upregulated DAPs in severe COVID-19; Cell 
types associated with (G) downregulated and (H) upregulated enrichment according to the 
PanglaoDB database. 

Figure 2: Cross-validated random forest model reliably predicts COVID-19 severity. (A) Top-12 
features selected using Boruta feature selection method; Receiver Operating Characteristics 
(ROC) curves of the (B) discovery and (C) validation sets; (D) Expression levels of the top-12 
features in individual samples correlated with severe composite outcomes and prediction 
accuracy. (E) A two-tiered cutoff model, where scores < 0.653 or > 0.247 are used for accuracy 
calculation, further improved prediction accuracy. 

Figure 3: Abundances of top machine learning (ML) features are recapitulated in non-COVID 
AKI. (A) Unsupervised clustering heatmap and (B-M) individual box plots of abundance levels 
of the top-12 features in healthy, mild, severe COVID-19 and non-COVID AKI urine samples. 

Figure 4: Integrative multiomic analysis reveals overlapping dysregulated pathways associated 
with COVID-19 severity. (A) Interaction of the top Urine proteomics differentially abundant 
proteins (DAPs) and the top-450 plasma proteomics DAPs analyzed using the Molecular-
Biology-of-the-Cell-Ontology (MBCO) standard enrichment. Pathways among the top 25% 
interaction were connected by a dashed line. (B) Supervised clustering of Kidney Precision 
Medicine Project (KPMP) single cell RNA sequencing (scRNA-seq) data of the top 50 DAPs from 
urine and plasma proteomics datasets across different kidney cell types. (C) UMAP of urine 
sediment scRNA-seq showing diverse population of kidney, urinary and immune cell types. (D) 
Functional overlap analysis of top 150 DAPs from urine proteomics, top 450 DAPs from plasma 
proteomics and top-150 differentially expressed genes (DEGs) from individual cell type cluster 
from urine sediment scRNA-seq. (E) Histogram of the mean values of the permuted network 
scores along with original interaction score (red) of top 50 DEGs in LOH/DCT/CNT/PC cluster 
and top 50 DAPs from urine and plasma. (F) Bar plot of –log10(pvalue) showing the significance 
of interaction of top 50 DEGs from individual cell types in urine sediment scRNA-seq dataset 
with top 50 DAPs in urine and plasma proteomics datasets. (G) Protein-protein interaction (PPI) 
network of top 50 DEGs in urine scRNA-seq LOH/DCT/CNT/PC cluster and top 50 DAPs in urine 
and plasma proteomics. Proteins identified in all 3 datasets is highlighted in bold. Cell type 
abbreviations: Endothelial cell (EC), Podocytes (POD), Parietal epithelial cells (PEC), Proximal 
tubular cells (PT), loop of Henle (LOH), descending thin limb (DTL), ascending thin limb (ATL), 
thick ascending limb (TAL), distal convoluted tubule (DCT), connecting tubule (CNT), principal 
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cell (PC), intercalated cells (IC), macrophages (MAC), dendritic cells (DC), monocytes (MON), 
mononuclear cells (MON_N). 

Figure 5: Kidney organoids infected with SARS-CoV-2 recapitulate mechanisms of kidney injury 
observed in clinical datasets. (A) Immunofluorescence confocal images of iPSC-derived kidney 
organoids expressing tubular markers such as lotus tetragonolobus lectin (LTL, proximal tubule, 
green), E-cadherin (CDH1, distal tubule, gray), uromodulin (UMOD, loop of Henle, orange) and 
(B) podocyte markers such as synaptopodin (SYNPO, yellow) and podocalyxin (PODXL, red). 
(C) SARS-CoV-2 infected LTL (green) positive cells express SARS-CoV-2 nucleocapsid protein 
(NP, magenta) and angiotensin converting enzyme 2 (ACE2, cyan). (D) tSNE plot of scRNA 
sequencing of kidney organoids.  KEGG pathway analysis of top differentially expressed genes 
(DEGs) in (E) podocyte and (F) tubular clusters upon SARS-CoV-2 infection. (G) Interaction of 
top 150 kidney organoid DEGs, top 150 urine proteomics DAPs and top 450 plasma proteomics 
DAPs analyzed using MBCO standard enrichment. Shown here are SCPs among the top 25% 
interactions connected by a dashed line. (H) Functional overlap analysis of urine, plasma, 
organoid datasets along with LOH/DCT/CNT/PC and MAC/DC clusters from urine sediment 
scRNA-seq datasets. (I) Ligand-receptor interaction analysis within podocyte and tubule clusters 
in the organoids as well as in the urine proteomics dataset. 
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Data Availability Statement 

All proteomics raw data will be made available on the ProteomeXchange PRIDE 
repository (https://www.ebi.ac.uk/pride/). The results here are in part based upon data generated 
by KPMP: the urinary SomaScan proteomics (6696930a-f707-430d-a964-110aefa93c62_Urine 
Biomarker Data-SomaScan-2022\Urine Biomarker Data-SomaScan-2022\Data\SS-
2342467_2023-11-30_Urine.ANMLNormalized.xlsx) and the fully annotated scRNA-seq data 
(KidneyTissueAtlas/521c5b34-3dd0-4871-8064-
61d3e3f1775a_PREMIERE_Alldatasets_08132021.h5Seurat) downloaded from 
https://atlas.kpmp.org/. 

 

Acknowledgements 

We gratefully acknowledge the Mount Sinai Hospital and University of Michigan 
Emergency Department nurses and physicians for their assistance with biospecimen collections. 
We also thank the fellows in the Department of Medicine, particularly Meghana Eswarappa, and 
Chip Bowman-Zamora for their assistance with biospecimen collections. We thank Dr. Alecia 
Muwonge for assistance with consenting patients for the Pred-MAKER study. We thank Randy 
Albrecht for support with the BSL3 facility and procedures at the Icahn School of Medicine at 
Mount Sinai (ISMMS). We acknowledge the Genomics Core facility and the Microscopy and 
Advanced Bioimaging CoRE facility at the Icahn School of Medicine at Mount Sinai for 
assistance with QC analysis of cDNA and confocal microscopy and analytics, respectively. The 
scRNA-seq analysis of kidney organoids was performed at the Genomics Resources Core 
Facility (GRCF) at Weill Cornell Medicine. 

We acknowledge funding from NIH R01DK118222 and DoD W81XWH -20-1-0837 (EUA). 
EUA is partially supported by Kidney Precision Medicine Project (KPMP), which maintains the 
Kidney Tissue Atlas of publicly available urine somascan and human transcriptomic data that 
were used in this study. The KPMP is funded by the following grants from the NIDDK: 
U01DK133081, U01DK133091, U01DK133092, U01DK133093, U01DK133095, 
U01DK133097, U01DK114866, U01DK114908, U01DK133090, U01DK133113, 
U01DK133766, U01DK133768, U01DK114907, U01DK114920, U01DK114923, 
U01DK114933, U24DK114886, UH3DK114926, UH3DK114861, UH3DK114915, 
UH3DK114937. LC is supported in part by a grant from the NIH/NIDDK (K23DK124645 and 
U01DK137259). The mass spectrometry data were obtained from an Orbitrap mass 
spectrometer funded in part by the NIH grant 1S10OD025047-01, for the support of proteomics 
research at Rutgers Newark campus. This work was partially supported by CRIPT (Center for 
Research on Influenza Pathogenesis and Transmission), a NIAID funded Center of Excellence 
for Influenza Research and Response (CEIRR, contract # 75N93021C00014), and by NIAID 
grants U19AI142733, U19AI135972 and U19AI168631 to A.G-S., by the JPB and OPP 
foundations and an anonymous philanthropic donor to A.G-S. J. Haydak was supported by NIH 
T32HD075735 NICHD-Interdisciplinary Training in Systems and Developmental Biology and 
Birth Defects; A. Mendoza was supported by NIH R01DK131047 Diversity Supplement. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 19, 2024. ; https://doi.org/10.1101/2024.03.18.24304401doi: medRxiv preprint 

https://www.ebi.ac.uk/pride/
https://atlas.kpmp.org/
https://doi.org/10.1101/2024.03.18.24304401


16 
 

 

Author Contributions 

EUA, LC, SGC, GNN and JCH designed the study; EUA, LC, GNN and AWC obtained IRB  
approvals; NA, AS, SD, GM, AM, SL, HHW and JAS enrolled participants and collected patient 
urine samples; NA, SD and AM processed the urine samples for proteomics; TL and QS 
performed the LC-MS/MS analysis; ZY performed the ML analysis; ZY and YD validated the ML 
analysis; NA and SD cultured the iPSC-derived kidney organoids and performed the IF and 
imaging experiments; LM and TK performed the organoid SARS-CoV-2 infection experiments; 
LM, TK, JF and NA processed the organoids for scRNA-seq; ZS analyzed the organoid scRNA-
seq data; SE, RM, BG, and EAO analyzed the urine single-cell data; ZS performed the functional 
overlap and ligand-receptor interaction analysis; ZY and PJ performed the network analysis; JH 
performed the KPMP analysis; NA performed the HumanBase and MBCO analysis; SGC and 
LC provided clinical input; EUA and WZ provided input for scientific interpretation of results; NA 
compiled the figures and wrote the manuscript; NA, JH, ZY, ZS, MK, WZ and EUA revised and 
edited the manuscript. All the authors approved the final manuscript. 

 

Disclosures 

The A.G.-S. laboratory has received research support from GSK, Pfizer, Senhwa Biosciences, 
Kenall Manufacturing, Blade Therapeutics, Avimex, Johnson & Johnson, Dynavax, 7Hills 
Pharma, Pharmamar, ImmunityBio, Accurius, Nanocomposix, Hexamer, N-fold LLC, Model 
Medicines, Atea Pharma, Applied Biological Laboratories and Merck, outside of the reported 
work. A.G.-S. has consulting agreements for the following companies involving cash and/or 
stock: Castlevax, Amovir, Vivaldi Biosciences, Contrafect, 7Hills Pharma, Avimex, Pagoda, 
Accurius, Esperovax, Applied Biological Laboratories, Pharmamar, CureLab Oncology, CureLab 
Veterinary, Synairgen, Paratus, Pfizer and Prosetta, outside of the reported work. A.G.-S. has 
been an invited speaker in meeting events organized by Seqirus, Janssen, Abbott, Astrazeneca 
and Novavax. A.G.-S. is inventor on patents and patent applications on the use of antivirals and 
vaccines for the treatment and prevention of virus infections and cancer, owned by the Icahn 
School of Medicine at Mount Sinai, New York, outside of the reported work. 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 19, 2024. ; https://doi.org/10.1101/2024.03.18.24304401doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.18.24304401


A

B

C

E F

G H

D

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 19, 2024. ; https://doi.org/10.1101/2024.03.18.24304401doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.18.24304401


A

B

C

D

E

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 19, 2024. ; https://doi.org/10.1101/2024.03.18.24304401doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.18.24304401


All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 19, 2024. ; https://doi.org/10.1101/2024.03.18.24304401doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.18.24304401


A

B C

D

E

G

F

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 19, 2024. ; https://doi.org/10.1101/2024.03.18.24304401doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.18.24304401


FE

H I

SYNPO
Nuclei
PODXL

LTL
Nuclei

ACE2

SARS NP

B

C

A

UMOD
Nuclei
CDH1
LTL

G

D

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 19, 2024. ; https://doi.org/10.1101/2024.03.18.24304401doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.18.24304401


17 
 

References: 
1. WHO. WHO COVID-19 dashboard. 
https://data.who.int/dashboards/covid19/cases?m49=001&n=c 
2. Nie X, Qian L, Sun R, et al. Multi-organ proteomic landscape of COVID-19 autopsies. 
Cell. Feb 4 2021;184(3):775-791 e14. doi:10.1016/j.cell.2021.01.004 
3. Zaim S, Chong JH, Sankaranarayanan V, Harky A. COVID-19 and Multiorgan Response. 
Curr Probl Cardiol. Aug 2020;45(8):100618. doi:10.1016/j.cpcardiol.2020.100618 
4. Puelles VG, Lutgehetmann M, Lindenmeyer MT, et al. Multiorgan and Renal Tropism of 
SARS-CoV-2. N Engl J Med. Aug 6 2020;383(6):590-592. doi:10.1056/NEJMc2011400 
5. Hassler L, Reyes F, Sparks MA, Welling P, Batlle D. Evidence For and Against Direct 
Kidney Infection by SARS-CoV-2 in Patients with COVID-19. Clin J Am Soc Nephrol. Nov 
2021;16(11):1755-1765. doi:10.2215/CJN.04560421 
6. Nicosia RF. Kidney Disease and Viral Infection in COVID-19: Why Are Kidney Organoid 
and Biopsy Studies Not in Agreement? Nephron. 2023;147(8):458-464. doi:10.1159/000528460 
7. Braun F, Lutgehetmann M, Pfefferle S, et al. SARS-CoV-2 renal tropism associates with 
acute kidney injury. Lancet. Aug 29 2020;396(10251):597-598. doi:10.1016/S0140-
6736(20)31759-1 
8. Chan L, Chaudhary K, Saha A, et al. AKI in Hospitalized Patients with COVID-19. J Am 
Soc Nephrol. Jan 2021;32(1):151-160. doi:10.1681/ASN.2020050615 
9. Ye Y, Swensen AC, Wang Y, et al. A Pilot Study of Urine Proteomics in COVID-19-
Associated Acute Kidney Injury. Kidney Int Rep. Dec 2021;6(12):3064-3069. 
doi:10.1016/j.ekir.2021.09.010 
10. Schiffl H, Lang SM. Long-term interplay between COVID-19 and chronic kidney disease. 
Int Urol Nephrol. Feb 24 2023:1-8. doi:10.1007/s11255-023-03528-x 
11. Ramamoorthy R, Hussain H, Ravelo N, et al. Kidney Damage in Long COVID: Studies in 
Experimental Mice. Biology (Basel). Jul 30 2023;12(8)doi:10.3390/biology12081070 
12. Chavan S, Mangalaparthi KK, Singh S, et al. Mass Spectrometric Analysis of Urine from 
COVID-19 Patients for Detection of SARS-CoV-2 Viral Antigen and to Study Host Response. J 
Proteome Res. Jul 2 2021;20(7):3404-3413. doi:10.1021/acs.jproteome.1c00391 
13. Bi X, Liu W, Ding X, et al. Proteomic and metabolomic profiling of urine uncovers immune 
responses in patients with COVID-19. Cell Rep. Jan 18 2022;38(3):110271. 
doi:10.1016/j.celrep.2021.110271 
14. Li Y, Wang Y, Liu H, et al. Urine proteome of COVID-19 patients. Urine (Amst). 2020;2:1-
8. doi:10.1016/j.urine.2021.02.001 
15. Batra R, Uni R, Akchurin OM, et al. Urine-based multi-omic comparative analysis of 
COVID-19 and bacterial sepsis-induced ARDS. Mol Med. Jan 26 2023;29(1):13. 
doi:10.1186/s10020-023-00609-6 
16. Richard VR, Gaither C, Popp R, et al. Early Prediction of COVID-19 Patient Survival by 
Targeted Plasma Multi-Omics and Machine Learning. Mol Cell Proteomics. Oct 
2022;21(10):100277. doi:10.1016/j.mcpro.2022.100277 
17. Paranjpe I, Jayaraman P, Su CY, et al. Proteomic characterization of acute kidney injury 
in patients hospitalized with SARS-CoV2 infection. Commun Med (Lond). Jun 12 2023;3(1):81. 
doi:10.1038/s43856-023-00307-8 
18. Demichev V, Tober-Lau P, Lemke O, et al. A time-resolved proteomic and prognostic 
map of COVID-19. Cell Syst. Aug 18 2021;12(8):780-794 e7. doi:10.1016/j.cels.2021.05.005 
19. Geyer PE, Arend FM, Doll S, et al. High-resolution serum proteome trajectories in COVID-
19 reveal patient-specific seroconversion. EMBO Mol Med. Aug 9 2021;13(8):e14167. 
doi:10.15252/emmm.202114167 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 19, 2024. ; https://doi.org/10.1101/2024.03.18.24304401doi: medRxiv preprint 

https://data.who.int/dashboards/covid19/cases?m49=001&n=c
https://doi.org/10.1101/2024.03.18.24304401


18 
 

20. Vollmy F, van den Toorn H, Zenezini Chiozzi R, et al. A serum proteome signature to 
predict mortality in severe COVID-19 patients. Life Sci Alliance. Sep 
2021;4(9)doi:10.26508/lsa.202101099 
21. He Q, Mok TN, Yun L, He C, Li J, Pan J. Single-cell RNA sequencing analysis of human 
kidney reveals the presence of ACE2 receptor: A potential pathway of COVID-19 infection. Mol 
Genet Genomic Med. Oct 2020;8(10):e1442. doi:10.1002/mgg3.1442 
22. Helms L, Marchiano S, Stanaway IB, et al. Cross-validation of SARS-CoV-2 responses 
in kidney organoids and clinical populations. JCI Insight. Dec 22 
2021;6(24)doi:10.1172/jci.insight.154882 
23. Jansen J, Reimer KC, Nagai JS, et al. SARS-CoV-2 infects the human kidney and drives 
fibrosis in kidney organoids. Cell Stem Cell. Feb 3 2022;29(2):217-231 e8. 
doi:10.1016/j.stem.2021.12.010 
24. Siegerist F, Hay E, Dikou JS, et al. ScoMorphoFISH: A deep learning enabled toolbox for 
single-cell single-mRNA quantification and correlative (ultra-)morphometry. J Cell Mol Med. Jun 
2022;26(12):3513-3526. doi:10.1111/jcmm.17392 
25. Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for 
RNA-sequencing and microarray studies. Nucleic Acids Res. Apr 20 2015;43(7):e47. 
doi:10.1093/nar/gkv007 
26. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large 
gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44-57. 
doi:10.1038/nprot.2008.211 
27. Chen EY, Tan CM, Kou Y, et al. Enrichr: interactive and collaborative HTML5 gene list 
enrichment analysis tool. BMC Bioinformatics. Apr 15 2013;14:128. doi:10.1186/1471-2105-14-
128 
28. Kuleshov MV, Jones MR, Rouillard AD, et al. Enrichr: a comprehensive gene set 
enrichment analysis web server 2016 update. Nucleic Acids Res. Jul 8 2016;44(W1):W90-7. 
doi:10.1093/nar/gkw377 
29. Xie Z, Bailey A, Kuleshov MV, et al. Gene Set Knowledge Discovery with Enrichr. Curr 
Protoc. Mar 2021;1(3):e90. doi:10.1002/cpz1.90 
30. Kursa MB, Rudnicki WR. Feature Selection with the Boruta Package. Journal of Statistical 
Software. 09/16 2010;36(11):1 - 13. doi:10.18637/jss.v036.i11 
31. Knapp B, Wolfrum U. Adhesion GPCR-Related Protein Networks. Handb Exp Pharmacol. 
2016;234:147-178. doi:10.1007/978-3-319-41523-9_8 
32. Singh A, Winterbottom E, Daar IO. Eph/ephrin signaling in cell-cell and cell-substrate 
adhesion. Front Biosci (Landmark Ed). Jan 1 2012;17(2):473-97. doi:10.2741/3939 
33. Bojesen KB, Clausen O, Rohde K, et al. Nectin-1 binds and signals through the fibroblast 
growth factor receptor. J Biol Chem. Oct 26 2012;287(44):37420-33. 
doi:10.1074/jbc.M112.345215 
34. Irie K, Shimizu K, Sakisaka T, Ikeda W, Takai Y. Roles and modes of action of nectins in 
cell-cell adhesion. Semin Cell Dev Biol. Dec 2004;15(6):643-56. 
doi:10.1016/j.semcdb.2004.09.002 
35. Bernardo BC, Belluoccio D, Rowley L, Little CB, Hansen U, Bateman JF. Cartilage 
intermediate layer protein 2 (CILP-2) is expressed in articular and meniscal cartilage and down-
regulated in experimental osteoarthritis. J Biol Chem. Oct 28 2011;286(43):37758-67. 
doi:10.1074/jbc.M111.248039 
36. Cheng G, Zhong M, Kawaguchi R, et al. Identification of PLXDC1 and PLXDC2 as the 
transmembrane receptors for the multifunctional factor PEDF. Elife. Dec 23 2014;3:e05401. 
doi:10.7554/eLife.05401 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 19, 2024. ; https://doi.org/10.1101/2024.03.18.24304401doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.18.24304401


19 
 

37. Guan Y, Du Y, Wang G, et al. Overexpression of PLXDC2 in Stromal Cell-Associated M2 
Macrophages Is Related to EMT and the Progression of Gastric Cancer. Front Cell Dev Biol. 
2021;9:673295. doi:10.3389/fcell.2021.673295 
38. Fournier P, Dussault S, Fusco A, Rivard A, Royal I. Tyrosine Phosphatase PTPRJ/DEP-
1 Is an Essential Promoter of Vascular Permeability, Angiogenesis, and Tumor Progression. 
Cancer Res. Sep 1 2016;76(17):5080-91. doi:10.1158/0008-5472.CAN-16-1071 
39. Zacharias M, Kashofer K, Wurm P, et al. Host and microbiome features of secondary 
infections in lethal covid-19. iScience. Sep 16 2022;25(9):104926. 
doi:10.1016/j.isci.2022.104926 
40. Luo YS, Li W, Cai Y, et al. Genome-wide screening of sex-biased genetic variants 
potentially associated with COVID-19 hospitalization. Front Genet. 2022;13:1014191. 
doi:10.3389/fgene.2022.1014191 
41. Leng L, Cao R, Ma J, et al. Pathological features of COVID-19-associated lung injury: a 
preliminary proteomics report based on clinical samples. Signal Transduct Target Ther. Oct 15 
2020;5(1):240. doi:10.1038/s41392-020-00355-9 
42. Tan Y, Zhang W, Zhu Z, et al. Integrating longitudinal clinical laboratory tests with targeted 
proteomic and transcriptomic analyses reveal the landscape of host responses in COVID-19. 
Cell Discov. Jun 8 2021;7(1):42. doi:10.1038/s41421-021-00274-1 
43. Bowe B, Xie Y, Xu E, Al-Aly Z. Kidney Outcomes in Long COVID. J Am Soc Nephrol. Nov 
2021;32(11):2851-2862. doi:10.1681/ASN.2021060734 
44. Xia T, Zhang W, Xu Y, et al. Early kidney injury predicts disease progression in patients 
with COVID-19: a cohort study. BMC Infect Dis. Sep 27 2021;21(1):1012. doi:10.1186/s12879-
021-06576-9 
45. Alexander MP, Mangalaparthi KK, Madugundu AK, et al. Acute Kidney Injury in Severe 
COVID-19 Has Similarities to Sepsis-Associated Kidney Injury: A Multi-Omics Study. Mayo Clin 
Proc. Oct 2021;96(10):2561-2575. doi:10.1016/j.mayocp.2021.07.001 
46. Jayaraman P, Rajagopal M, Paranjpe I, et al. Peripheral Transcriptomics in Acute and 
Long-Term Kidney Dysfunction in SARS-CoV2 Infection. medRxiv. Oct 27 
2023;doi:10.1101/2023.10.25.23297469 
47. Gupta A, Al-Tamimi AO, Halwani R, Alsaidi H, Kannan M, Ahmad F. Lipocalin-2, 
S100A8/A9, and cystatin C: Potential predictive biomarkers of cardiovascular complications in 
COVID-19. Exp Biol Med (Maywood). Jul 2022;247(14):1205-1213. 
doi:10.1177/15353702221091990 
48. Matuszewski M, Reznikov Y, Pruc M, et al. Prognostic Performance of Cystatin C in 
COVID-19: A Systematic Review and Meta-Analysis. Int J Environ Res Public Health. Nov 7 
2022;19(21)doi:10.3390/ijerph192114607 
49. Cheung MD, Erman EN, Liu S, et al. Single-Cell RNA Sequencing of Urinary Cells 
Reveals Distinct Cellular Diversity in COVID-19-Associated AKI. Kidney360. Jan 27 
2022;3(1):28-36. doi:10.34067/KID.0005522021 
50. Hinze C, Kocks C, Leiz J, et al. Single-cell transcriptomics reveals common epithelial 
response patterns in human acute kidney injury. Genome Med. Sep 9 2022;14(1):103. 
doi:10.1186/s13073-022-01108-9 
51. Klocke J, Kim SJ, Skopnik CM, et al. Urinary single-cell sequencing captures kidney injury 
and repair processes in human acute kidney injury. Kidney Int. Dec 2022;102(6):1359-1370. 
doi:10.1016/j.kint.2022.07.032 
52. Aregger F, Uehlinger DE, Witowski J, et al. Identification of IGFBP-7 by urinary 
proteomics as a novel prognostic marker in early acute kidney injury. Kidney Int. Apr 
2014;85(4):909-19. doi:10.1038/ki.2013.363 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 19, 2024. ; https://doi.org/10.1101/2024.03.18.24304401doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.18.24304401


20 
 

53. Su L, Zhang J, Peng Z. The role of kidney injury biomarkers in COVID-19. Ren Fail. Dec 
2022;44(1):1280-1288. doi:10.1080/0886022X.2022.2107544 
54. Suvarna K, Salkar A, Palanivel V, et al. A Multi-omics Longitudinal Study Reveals 
Alteration of the Leukocyte Activation Pathway in COVID-19 Patients. J Proteome Res. Oct 1 
2021;20(10):4667-4680. doi:10.1021/acs.jproteome.1c00215 
55. Fang Y, Liu H, Huang H, et al. Distinct stem/progenitor cells proliferate to regenerate the 
trachea, intrapulmonary airways and alveoli in COVID-19 patients. Cell Res. Aug 
2020;30(8):705-707. doi:10.1038/s41422-020-0367-9 
56. Lechner M, Wojnar P, Redl B. Human tear lipocalin acts as an oxidative-stress-induced 
scavenger of potentially harmful lipid peroxidation products in a cell culture system. Biochem J. 
May 15 2001;356(Pt 1):129-35. doi:10.1042/0264-6021:3560129 
57. Xu M, Yang W, Wang X, Nayak DK. Lung Secretoglobin Scgb1a1 Influences Alveolar 
Macrophage-Mediated Inflammation and Immunity. Front Immunol. 2020;11:584310. 
doi:10.3389/fimmu.2020.584310 
58. Cao W, Feng Q, Wang X. Computational analysis of TMPRSS2 expression in normal and 
SARS-CoV-2-infected human tissues. Chem Biol Interact. Sep 1 2021;346:109583. 
doi:10.1016/j.cbi.2021.109583 
59. Aroca-Martinez G, Avendano-Echavez L, Garcia C, et al. Renal tubular dysfunction in 
COVID-19 patients. Ir J Med Sci. Apr 2023;192(2):923-927. doi:10.1007/s11845-022-02993-0 
60. Werion A, Belkhir L, Perrot M, et al. SARS-CoV-2 causes a specific dysfunction of the 
kidney proximal tubule. Kidney Int. Nov 2020;98(5):1296-1307. doi:10.1016/j.kint.2020.07.019 
61. Baird SK, Kurz T, Brunk UT. Metallothionein protects against oxidative stress-induced 
lysosomal destabilization. Biochem J. Feb 15 2006;394(Pt 1):275-83. doi:10.1042/BJ20051143 
62. Larsen CP, Wickman TJ, Braga JR, et al. APOL1 Risk Variants and Acute Kidney Injury 
in Black Americans with COVID-19. Clin J Am Soc Nephrol. Dec 2021;16(12):1790-1796. 
doi:10.2215/CJN.01070121 
63. Nystrom SE, Li G, Datta S, et al. JAK inhibitor blocks COVID-19 cytokine-induced 
JAK/STAT/APOL1 signaling in glomerular cells and podocytopathy in human kidney organoids. 
JCI Insight. Jun 8 2022;7(11)doi:10.1172/jci.insight.157432 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 19, 2024. ; https://doi.org/10.1101/2024.03.18.24304401doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.18.24304401

	Manuscript main text.pdf
	Main Figures_v4
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5


