1	Clinical phenotypes and outcomes associated with SARS-CoV-2 Omicron variant JN.1
2	in critically ill COVID-19 patients: a prospective, multicenter cohort study
3	
4	Nicolas de Prost M.D., Ph.D. ^{1,2,3,4} , Etienne Audureau ³ M.D., Ph.D. ^{,5,6} , Antoine Guillon M.D.,
5	Ph.D. ⁷ , Lynda Handala M.D. ⁸ , Sébastien Préau M.D., Ph.D. ⁹ , Aurélie Guigon M.D. ¹⁰ , Fabrice
6	Uhel M.D., Ph.D. ^{11,12} , Quentin Le Hingrat M.D., Ph.D. ¹³ , Flora Delamaire M.D. ¹⁴ , Claire
7	Grolhier M.D. ¹⁵ , Fabienne Tamion M.D., Ph.D. ¹⁶ , Alice Moisan M.D. ¹⁷ , Cédric Darreau
8	M.D. ¹⁸ , Jean Thomin M.D., Ph.D. ¹⁹ , Damien Contou M.D. ²⁰ , Amandine Henry M.D. ²¹ ,
9	Thomas Daix M.D., Ph.D. ²² , Sébastien Hantz M.D., Ph.D. ²³ , Clément Saccheri M.D. ²⁴ ,
10	Valérie Giordanengo M.D., Ph.D. ²⁵ , Tài Pham M.D., Ph.D. ^{2,26,27} , Amal Chaghouri M.D. ²⁸ ,
11	Pierre Bay M.D. ^{1,2,3,4} , Jean-Michel Pawlotsky M.D., Ph.D. ^{3,4,29} , Slim Fourati M.D., Ph.D.
12	^{3,4,29} , on behalf of the SEVARVIR* investigators
13	Running title: JN.1 in severe COVID-19
14	AFFILIATIONS:
15	¹ Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance
16	Publique – Hôpitaux de Paris (AP-HP), Créteil, France
17	² Groupe de Recherche Clinique CARMAS, Université Paris-Est-Créteil (UPEC), Créteil,
18	France
19	³ Université Paris-Est-Créteil (UPEC), Créteil, France
20	⁴ INSERM U955, Team « Viruses, Hepatology, Cancer », Créteil, France
21	⁵ Department of Public Health, Hôpitaux Universitaires Henri Mondor, Assistance Publique –
22	Hôpitaux de Paris (AP-HP);

⁶ IMRB INSERM U955, Team CEpiA, Créteil, France

- ²⁴ ⁷Intensive Care Unit, Tours University Hospital, Research Center for Respiratory Diseases
- 25 (CEPR), INSERM U1100, University of Tours, Tours, France
- ⁸INSERM U1259, Université de Tours, Tours, France, CHRU de Tours, National Reference
- 27 Center for HIV-Associated Laboratory, Tours, France
- ⁹U1167 RID-AGE Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au
- 29 Vieillissement, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, F-59000 Lille,
- 30 France
- ¹⁰ Service de virologie, CHU de Lille, F-59000 Lille, France
- ¹¹ Université Paris Cité, APHP, Hôpital Louis Mourier, DMU ESPRIT, Service de Médecine
- 33 Intensive Réanimation, Colombes, France
- ¹² Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker-Enfants
- 35 Malades (INEM), Paris, France
- ¹³ Université Paris Cité, IAME INSERM UMR 1137, Service de Virologie, Hôpital Bichat-
- 37 Claude Bernard, Assistance Publique Hôpitaux de Paris, Paris, France
- ¹⁴ CHU Rennes, Maladies Infectieuses et Réanimation Médicale, Rennes, France
- ¹⁵ Laboratoire de virologie, CHU Rennes, Rennes, France.
- 40 ¹⁶ Service de Médecine Intensive-Réanimation, CHU De Rouen, Rouen, F-76000 Rouen,

41 France.

- 42 ¹⁷ Univ Rouen Normandie, Université de Caen Normandie, INSERM, Normandie Univ,
- 43 DYNAMICURE UMR 1311, CHU Rouen, Department of Virology, National Reference
- 44 Center of HIV, F-76000 Rouen, France

- 45 ¹⁸ Service de Réanimation médico-chirurgicale, Centre Hospitalier du Mans
- 46 ¹⁹ Laboratoire de Microbiologie, Centre Hospitalier du Mans
- 47 ²⁰ Service de Réanimation, Hôpital Victor Dupouy, Argenteuil, France
- 48 ²¹ Service de Virologie, Hôpital Victor Dupouy, Argenteuil, France
- 49 ²² Réanimation Polyvalente, INSERM CIC 1435 and UMR 1092, CHU Limoges, Limoges,
- 50 France
- ²³ French National Reference Center for Herpesviruses, Bacteriology, Virology, Hygiene
- 52 Department, CHU Limoges, F-87000 Limoges, France; INSERM, RESINFIT, U1092, F-
- 53 87000, Limoges, France
- 54 ²⁴ Service de Réanimation Médicale, CHU de Nice
- ²⁵ Laboratoire de Virologie, CHU de Nice
- ²⁶ Service de Médecine Intensive-Réanimation, Assistance Publique Hôpitaux de Paris,
- 57 Hôpital de Bicêtre, DMU 4 CORREVE Maladies du Cœur et des Vaisseaux, FHU Sepsis, Le
- 58 Kremlin-Bicêtre, France,
- ²⁷ Inserm U1018, Equipe d'Epidémiologie respiratoire intégrative, CESP, 94807, Villejuif,
- 60 France
- ²⁸ Laboratoire de Virologie, Hôpital Paul Brousse, Assistance Publique Hôpitaux de Paris,
- 62 Villejuif, France
- 63 ²⁹Department of Virology, Hôpitaux Universitaires Henri Mondor, Assistance Publique –
- 64 Hôpitaux de Paris, Créteil, France
- 65 *Study Group team members are listed in the Acknowledgments
- 66 Corresponding authors:

- 67 Prof. Slim Fourati
- 68 Email: <u>slim.fourati@aphp.fr</u>
- 69 Tel: +33 1 45 17 81 45
- 70 Department of Virology, Hôpitaux Universitaires Henri Mondor, Assistance Publique -
- 71 Hôpitaux de Paris, Créteil, France
- 72 Prof. N. de PROST
- 73 Service de Médecine Intensive Réanimation, Hôpital Henri Mondor, Créteil, France
- 74 E-mail: <u>nicolas.de-prost@aphp.fr</u>
- 75 Tel: +33 1 45 17 86 37
- 76
- 77 Word count abstract: 100
- 78 Word count text: 1683

80 ABSTRACT

81	A notable increase in severe	cases of COVID-19, with	significant hos	pitalizations d	ue to the
----	------------------------------	-------------------------	-----------------	-----------------	-----------

- emergence and spread of JN.1 was observed worldwide in late 2023 and early 2024. During
- the study period (November 2022-January 2024), 56 JN.1- and 126 XBB-infected patients
- 84 were prospectively enrolled in 40 French intensive care units. JN.1-infected patients were
- more likely to be obese (35.7% vs 20.8%; p=0.033) and less frequently immunosuppressed
- than others (20.4% vs 41.4%; p=0.010). JN.1-infected patients required invasive mechanical
- ventilation support in 29.1%, 87.5% of them received dexamethasone, 14.5% tocilizumab and
- none received monoclonal antibodies. Day-28 mortality of JN.1-infected patients was 14.6%.
- 89 Keywords: SARS-CoV-2; Omicron; JN.1; Acute Respiratory Failure
- 90 Word count of the abstract : 100 words

91 BACKGROUND

92	Following the emergence of the Omicron variant of SARS-CoV-2, several sublineages have
93	co-circulated until the dominance of XBB recombinant variants in early 2023, which were
94	subsequently replaced by a distinct branch of BA.2 named BA.2.86. Compared to XBB and
95	the parental BA.2, the spike protein of BA.2.86 has more than 30 mutations [1]. Initially,
96	BA.2.86 did not dominate other coexisting subvariants until it acquired an additional mutation
97	(i.e., L455S), causing its progeny JN.1 to rapidly increase and become the dominant SARS-
98	CoV-2 variant in several parts of the world. Subsequently, the WHO designated JN.1 as a
99	variant of interest due to its increased transmissibility.
100	Several in vitro studies have shown that JN.1 has phenotypic characteristics that confer
101	enhanced in vitro fitness. The L455S substitution in the spike protein enhances the ability of
102	the virus to bind to the angiotensin-converting enzyme 2 receptor. JN.1 also appears to be one
103	of the most immune-evading SARS-CoV-2 variants to date, contributing to its increased
104	transmissibility compared to other Omicron sublineages [2].
105	Clinical reports from medical institutions indicate that the risk of serious illness due to JN.1
106	variant infection is low [3]. However, there has been a notable increase in severe cases of
107	COVID-19, with significant hospitalizations due to COVID-19 in late 2023. Importantly, a
108	certain proportion of patients is still admitted to intensive care units (ICUs) for COVID-19-
109	associated acute respiratory failure, but their clinical phenotype and outcomes have changed
110	since the early waves of the pandemic [4,5], and those of patients admitted with severe
111	COVID-19 due to the JN.1 subvariant are currently unknown. This information is critical as it
112	could improve our ability to target individuals who may benefit from more personalized
113	preventive measures, such as frequent vaccination and/or active immunoprophylaxis, as well

114 as tailored therapeutic interventions, including early administration of antivirals in the event

115 of infection.

116 As part of the SEVARVIR study, we have established a prospective French national

117 multicenter cohort focused on patients admitted to ICUs with COVID-19-associated acute

respiratory failure. In this specific substudy, our aim is to comprehensively characterize the

119 clinical presentation and outcomes of patients infected with the emerging JN.1 variant and

120 compare them with those infected with sublineages derived from XBB.

121 METHODS

122

123 Study design and patients

124 The current study is a substudy of the SEVARVIR prospective multicenter 125 observational cohort study. Patients admitted to any of the 40 participating ICUs between 126 November 17, 2022, and January 22, 2024, were eligible for inclusion in the SEVARVIR 127 cohort study (NCT05162508) if they met the following inclusion criteria: age ≥ 18 years, 128 SARS-CoV-2 infection confirmed by a positive reverse transcriptase-polymerase chain 129 reaction (RT-PCR) in nasopharyngeal swab samples, ICU admission for acute respiratory 130 failure (i.e., peripheral oxygen saturation $\leq 90\%$ and need for supplemental oxygen or any type 131 of ventilatory support). Patients with SARS-CoV-2 infection but no acute respiratory failure 132 or with a RT-PCR cycle threshold (Ct) value >32 in nasopharyngeal swabs were not included. 133 The study was approved by the Comité de Protection des Personnes Sud-Méditerranée I (N° 134 EudraCT/ID-RCB: 2021-A02914-37). Informed consent was obtained from all patients or 135 their relatives.

Demographics, clinical and laboratory variables were recorded upon ICU admission
and during ICU stay. Patients' frailty was assessed using the Clinical Frailty Scale [6]. The

138 severity of the disease upon ICU admission was assessed using the World Health

139 Organization (WHO) 10-point ordinal scale [7], the sequential organ failure assessment

140 (SOFA) score, and the simplified acute physiology score (SAPS) II score. Acute respiratory

141 distress syndrome (ARDS) was defined according to the Berlin definition [8]. The primary

- 142 clinical endpoint of the study was day-28 mortality.
- 143 SARS-CoV-2 variant determination

Full-length SARS-CoV-2 genomes from all included patients were sequenced by
means of next-generation sequencing. For mutational pattern analysis at the amino acid level,
only high-quality sequences, i.e., sequences covering ≥90% of the viral genome and 95% of
the spike gene, were considered. Full-length viral genome sequence analysis yielding high
coverage have been deposited in Genbank (PP357634 - PP357842).

149 Statistical Analysis

Descriptive results are presented as mean±standard deviation [SD] or median (1st-3rd 150 151 quartiles) for continuous variables, and as numbers with percentages for categorical variables. 152 Two-sided p-values <0.05 were considered statistically significant. Unadjusted comparisons 153 between patients infected with two groups of Omicron sublineages (including XBB 154 sublineages, referred to as the "XBB group", and emerging BA.2.86 sublineages, [parental 155 BA.2.86, JN.1, and JN.3], referred to as the "JN.1 group") were performed using Chi-squared 156 or Fisher's exact tests for categorical variables, and ANOVA or Kruskal-Wallis tests for 157 continuous variables, as appropriate. 158 Analyses were performed with Stata V16.1 statistical software (StataCorp, College 159 Station, TX, USA) and R 4.2.0 (R Foundation for Statistical Computing, Vienna, Austria). 160 RESULTS

162	Between November 17, 2022, and January 22, 2024, 233 patients were admitted to one of the
163	40 participating ICUs and enrolled in the SEVARVIR cohort study. Of these, 126 patients in
164	the "XBB group" and 56 patients in the "JN.1 group" were included in the analysis.
165	No statistically significant differences were observed between patients infected with
166	JN.1 and XBB sublineages with respect to age, gender and frequency of comorbidities.
167	However, patients in the JN.1 group were more likely to be obese ($n=20/56$, 35.7% vs
168	n=26/125, 20.8%; p=0.033), and had a higher median body mass index (26.4 [22.4-33.4] vs
169	25.0 [21.2-28.7] kg/m ² ; p=0.019). There were also significantly fewer immunosuppressed
170	patients in the JN.1 group than in the XBB group (n=10/49, 20.4% vs n=48/116, 41.4%;
171	p=0.010) (Table 1).
172	The proportion of patients who had received at least one dose of SARS-CoV-2 vaccine
173	did not differ significantly between groups, although the median number of doses received
174	was significantly higher in patients from the XBB group (3 [3-4] vs 3 [3-3]; p=0.019). The
175	median time from onset of first symptoms to ICU admission was significantly shorter in the
176	JN.1 group than in the XBB group (3 [1-6] vs 5 [3-9]; p=0.006). Other variables related to
177	SARS-CoV-2 virological characteristics, including median viral level in the upper respiratory
178	tract measured by cycle threshold in RT-PCR and prevalence of positive SARS-CoV-2 anti-S
179	antibodies at ICU admission, did not differ significantly between groups (Table 1).
180	There was no significant difference between the two groups in the severity of illness at
181	ICU admission, as reflected by the SOFA and SAPS II scores and the WHO 10-point ordinal
182	scale (Table 1). Invasive mechanical ventilation support was required in 22.0% (n=40/182) of
183	patients within 24 hours of ICU admission, with no significant difference between groups. No
184	patient required extracorporeal membrane oxygenation (ECMO) support on ICU admission.
185	Respiratory failure was eventually attributed to SARS-CoV-2 pneumonia without bacterial
186	co-infection in about half of cases in both JN.1 and XBB groups (Table 2).

187	During the ICU stay, 32.6% (n=59/181) of patients required invasive mechanical
188	ventilation, with no significant differences between the subgroups. There was also no
189	significant difference between groups regarding the need for other organ support (Table 2).
190	Day-28 mortality and ICU length of stay were not significantly different between groups.
191	Regarding COVID-19 management, JN.1-infected patients were treated with dexamethasone
192	significantly more often than their XBB counterparts (n=42/48, 87.5% vs n=66/111, 59.5%;
193	p<0.001). No significant differences between groups were observed in the use of other
194	treatments, including anti-IL-6 antagonists, convalescent plasma and antivirals (Table 2).
195	DISCUSSION
196	
197	The current study is the first to describe the clinical phenotype associated with the
198	newly emerging Omicron sublineage JN.1 in patients with severe COVID-19 requiring ICU
199	admission. Our data provide reassuring evidence that this emerging sublineage does not cause
200	more severe outcomes than XBB variants that emerged and spread earlier in the population.
201	We observed unexpected phenotypic differences, with more frequent obesity and less frequent
202	immunosuppression in patients infected with JN.1, as compared to those infected with XBB
203	sublineages.
204	Recent epidemiologic data have confirmed the increased transmissibility of JN.1. Its
205	proportion of the circulating variants in the US had increased to more than 90% according to
206	nowcast estimates from the US Centers for Disease Control and Prevention (CDC) [9]. In
207	France, JN.1 represented more than 90% of circulating variants, according to the Santé
208	Publique France report of January 31st, 2024 [10]. In this context, and given the surge in
209	COVID-19 cases during the winter of 2024 [3], obtaining clinical data reporting the clinical
210	phenotype and lethality of patients infected with this subvariant as compared with the
211	previous ones is crucial to inform public health authorities and clinicians managing these

212	patients. Our data provide reassuring evidence regarding the severity of disease associated
213	with JN.1 infection, showing not only a non-significant difference in day 28 mortality
214	compared to patients infected with XBB, but also no significant differences in other
215	outcomes, including the need for invasive mechanical ventilation and length of stay in the
216	ICU.
217	Patients infected with sublineage JN.1 were more likely to be obese and less likely to
218	be immunosuppressed than those infected with XBB in our study. Such a finding was
219	unexpected because immunosuppression has been reported to be the most common
220	comorbidity in COVID-19 patients infected with the Omicron variant since the "ancestral"
221	BA.1 Omicron sublineage [4,11], occuring in almost 50% of cases, and may reflect an
222	inherently less pathogenic variant as reported in a hamster model [12]. On the other hand, the
223	higher prevalence of obesity, a previously reported risk factor for severity with previous
224	SARS-CoV-2 variants, including the ancestral variant, is consistent with previous data
225	reporting obesity as a risk factor for severity [13]. These findings may have important
226	implications for the updated use of pre-exposure monoclonal antibodies use [14] as well as
227	COVID-19 vaccination recommendations. Initial estimates of the updated XBB.1.5 COVID-
228	19 vaccine showed sustained vaccine efficacy against symptomatic JN.1 lineage infection
229	[15]. In terms of ICU management, patients in the JN.1 group received dexamethasone more
230	frequently than their counterparts in the XBB group, possibly because they were less likely to
231	be immunosuppressed. Other aspects of treatment did not differ.
232	Our study has limitations, including a limited sample size in the JN.1 group, which
233	limitis our statistical power to perform subgroup analyses and adjust for confounding
234	variables.

- In conclusion, critically-ill patients with Omicron JN.1 infection showed a different
- clinical phenotype than patients infected with the earlier XBB sublineage, including more
- 237 frequent obesity and less immunosuppression. Compared with XBB, JN.1 infection was not
- associated with significantly different day-28 mortality.
- 239
- 240 Word count of the text : 1683 words

241 FOOTNOTE PAGE:

242 CONFLICT OF INTEREST STATEMENT: S.F. has served as a speaker for

- 243 GlaxoSmithKline, AstraZeneca, MSD, Pfeizer, Cepheid and Moderna; J.-M.P. has served as
- an advisor or speaker for Abbvie, Arbutus, Assembly Biosciences, Gilead and Merck; E.A.
- 245 has received fees for lectures from Alexion, Sanofi, Gilead and Pfizer. His hospital has
- received research grant from Pfizer, MSD and Alexion. D.D. served as an advisor for Gilead-
- 247 Sciences, ViiV Health care, and Merck. N.D.P has served as an advisor or speaker for
- 248 Moderna and AstraZeneca. Other authors and investigators have no conflict of interest to
- 249 disclose.

250 **FUNDING STATEMENT:** This work was supported by the EMERGEN consortium—

- 251 ANRS Maladies Infectieuses Emergentes (ANRS0153). This study has been labeled as a
- 252 National Research Priority by the National Orientation Committee for Therapeutic Trials and
- 253 other researches on Covid-19 (CAPNET). The investigators would like to acknowledge
- 254 ANRS | Emerging infectious diseases for their scientific support, the French Ministry of
- 255 Health and Prevention and the French Ministry of Higher Education, Research and Innovation
- 256 for their funding and support.
- 257 The current work was not presented previously to a meeting.

258 CORRESPONDING AUTHOR:

- 259 Correspondence and requests for reprints should be addressed to Prof Fourati : Department of
- 260 Virology, Hôpitaux Universitaires Henri Mondor, Assistance Publique Hôpitaux de Paris,
- 261 Créteil, France ; Email: slim.fourati@aphp.fr; Tel: +33 1 45 17 81 45
- 262

263 ACKNOWLEDGMENTS:

264	The authors would like to thank all staff involved in the study, Dr Pierre-André Natella, Ms.
265	Nolwenn Bombenger for taking care of regulatory aspects, Mr. Léo Graca for taking care of
266	data management, Mr. Mohamed Ader for clinical data abstraction, the nurses and physicians
267	who took care of the patients, the laboratory staff who took care of virological samples and
268	the patients and their family for agreeing to participate in the study. Assistance Publique –
269	Hôpitaux de Paris is the sponsor of the study.
270	The authors would like to thank the SEVARVIR investigators: Henri Mondor, Créteil,
271	Medical ICU: Nicolas DE PROST, Pierre BAY, Keyvan RAZAZI, Armand MEKONTSO
272	DESSAP; Henri Mondor, Créteil, Surgical ICU: Raphaël BELLAÏCHE, Lucile PICARD;
273	Henri Mondor Créteil, Virology: Slim FOURATI; Alexandre SOULIER; Mélissa N'DEBI;
274	Sarah SENG; Christophe RODRIGUEZ; Jean-Michel PAWLOTSKY; Cochin, Paris, Medical
275	ICU: Frédéric PENE; Cochin, Paris, Virology: Anne-Sophie L'HONNEUR ; Saint-Louis,
276	Paris, Medical ICU: Adrien JOSEPH, Elie AZOULAY; Saint-Louis, Paris, Virology: Maud
277	SALMONA; Marie-Laure CHAIX ; Pitié-Salpêtrière, Paris, Medical and cardiac ICU:
278	Charles-Edouard LUYT, David LEVY; Pitié-Salpêtrière, Paris, Medical ICU: Julien
279	MAYAUX ; Pitié-Salpêtrière, Paris, Virology : Stéphane MAROT, Saint-Antoine, Paris,
280	Medical ICU: Juliette BERNIER; Maxime GASPERMENT, Tomas URBINA, Hafid AIT-
281	OUFELLA, Eric MAURY; Saint-Antoine, Paris, Virology : Laurence MORAND-JOUBERT;
282	Djeneba BOCAR FOFANA; Bichat, Paris, Medical ICU: Jean-François TIMSIT; Bichat,
283	Paris, Virology: Diane DESCAMPS, Quentin LE HINGRAT; Tenon, Paris, Medical and
284	Surgical ICU: Guillaume VOIRIOT, Nina DE MONTMOLLIN, Mathieu TURPIN;
285	Avicenne, Bobigny, Medical and Surgical ICU : Stéphane GAUDRY; Avicenne, Bobigny,
286	Virology: Ségolène BRICHLER; Louis Mourier, Colombes, Medical and Surgical ICU:
287	Fabrice Uhel, Damien Roux; Bicêtre, Le Kremlin-Bicêtre, Medical ICU: Tài Olivier PHAM;

288	Bicêtre, Le Kremlin-Bicêtre, Virology: Amal CHAGHOURI; Raymond Poincaré, Garches,
289	Medical ICU : Nicholas Heming, Djillali Annane; Ambroise Paré, Boulogne, Medical and
290	Surgical ICU: Sylvie Meireles, Antoine Vieillard-Baron; Ambroise Paré, Boulogne, Virology:
291	Elyanne GAULT; Hôpital Marc Jacquet, Melun, Medical ICU: Sébastien Jochmans; Hôpital
292	Marc Jacquet, Melun, Microbiology: Aurélia PITSCH; CH Sud Francilien, Jossigny, ICU:
293	Guillaume CHEVREL, Céline CLERGUE; CH Sud Francilien, Jossigny, Microbiology:
294	Kubab SABAH; CH Victor Dupouy, Argenteuil, ICU: Damien CONTOU; CH Victor
295	Dupouy, Argenteuil, Microbiology: Laurence COURDAVAULT VAGH WEINMANN;
296	Saint-Camille, Bry-sur-Marne, Polyvalent ICU: Malo EMERY; Saint-Camille, Bry-sur-
297	Marne, Microbiology: Claudio GARCIA-SANCHEZ; CHU de Strasbourg, Medical ICU:
298	Ferhat MEZIANI; Louis-Marie JANDEAUX; CHU de Strasbourg, Virology : Samira FAFI-
299	KREMER; Elodie LAUGEL; CHU de Lille, Medical ICU: Sébastien PREAU, Raphaël
300	Favory; CHU de Lille, Virology, Aurélie GUIGNON; CHRU de Nancy, Hôpitaux de Brabois,
301	Medical ICU: Antoine KIMMOUN ; CHRU de Nancy, Hôpitaux de Brabois, Virology:
302	Evelyne SCHVOERER, Cédric HARTARD; Antoine Béclère, Clamart, General ICU: Charles
303	DAMOISEL; Hôpital Européen Georges Pompidou, Paris, Medical ICU: Nicolas BRECHOT;
304	Hôpital Européen Georges Pompidou, Paris, Virology: Hélène PÉRÉ; CHU Tours, Medical
305	ICU: Antoine GUILLON; CHU Tours, Virology : Lynda Handala ; CHU d'Angers, Medical
306	ICU: François BELONCLE; CHU d'Angers, Virology : Francoise LUNEL FABIANI; CHU
307	de Poitiers, Medical ICU : Rémi COUDROY, Arnaud W. THILLE, François ARRIVE,
308	Sylvain LE PAPE, Laura MARCHASSON; CHU de Poitiers, Virology: Luc DEROCHE,
309	Nicolas LEVEQUE; CHU de Rennes, Medical ICU: Jean-Marc Tadié, Flora DELAMAIRE;
310	CHU de Rennes, Virology : Vincent THIBAUT; Claire GROLHIER; CH de Lorient, Medical
311	ICU : Béatrice LA COMBE; CH de Lorient, Microbiology : Séverine HAOUISEE; CHU de
312	Bordeaux, Medical ICU: Alexandre BOYER ; CHU de Bordeaux, Virology: Sonia

313	BURREL; CHU de Rouen, Medical ICU: Fabienne TAMION; Gaetan BEDUNEAU,
314	Christophe GIRAULT, Maximillien GRALL, Dorothée CARPENTIER ; CHU de Rouen,
315	Virology : Alice, MOISAN; Jean-Christophe PLANTIER; CHU de Nantes, Medical ICU :
316	Emmanuel CANET ; CHU de Nantes, Virology : Audrey, RODALLEC, Berthe Marie
317	IMBERT; CHU de Nice, Medical ICU: Clément SACCHERI; CHU de Nice, Virology:
318	Valérie GIORDANENGO; Marseille Hôpital Nord, Medical ICU : Sami HRAEICH ;
319	Marseille Hôpital Nord, IHU Méditerranée : Pierre-Edouard FOURNIER, Philippe COLSON;
320	CH Le Mans, General ICU: Cédric Darreau; CH Le Mans, Microbiology: Jean THOMIN;
321	CHU de Grenoble, Medical ICU: Anaïs DARTEVEL; CHU de Grenoble, Virology: Sylvie
322	LARRAT; CHU de Saint-Etienne, Medical ICU : Guillaume THIERY; CHU de Saint-
323	Etienne, Virology : Sylvie PILLET; CHU de Montpellier, Medical ICU : Kada KLOUCHE;
324	CHU de Montpellier, Virology : Edouard TUAILLON; CHU de Brest, Medical ICU: Cécile
325	AUBRON; CHU de Brest, Virology : Adissa TRAN, Sophie VALLET; CHU de Dijon,
326	Medical ICU: Pierre-Emmanuel CHARLES; CHU de Dijon, Virology: Alexis DE
327	ROUGEMONT; CHU de Clermont-Ferrand, Medical ICU: Bertrand SOUWEINE; CHU de
328	Clermont-Ferrand, Virology : Cecile HENQUELL; Audrey MIRAND; CHU de Reims,
329	Medical ICU: Bruno MOURVILLIER ; CHU de Reims, Virology: Laurent ANDREOLETTI,
330	Clément LIER; CHU de Caen, Medical ICU : Damien DU CHEYRON; CHU de Caen,
331	Virology : Nefert CANDACE DOSSOU; Astrid VABRET; CHU de Besançon, Medical
332	ICU: Gaël PITON; CHU de Besançon, Virology: Quentin LEPILLER; CHU de Limoges,
333	Medical ICU: Thomas DAIX; CHU de Limoges, Virology: Sébastien HANTZ, Sylvie
334	ROGER
335	Author's contributions: N.D.P., E.A., J.M.P., and S.F., designed the study and obtained

funding; E.A. performed statistical analyses; N.D.P., A.G., S.P., F.U., F.D., F.T., C.D., D.C.,

337 T.D., C.S., T.P., P.B., included the patient and were responsible for clinical data collection;

- 338 L.H., A.G., Q.L.H., V.T., A.M., J.T., A.H., S.H., V.G., A.C., and S.F. were responsible of the
- 339 management of virological samples; J.-M.P., and S.F. were responsible of virological
- analyses; N.D.P., E.A., and S.F. wrote the first draft of the article; All authors revised and
- 341 approved the article. The corresponding author attests that all listed authors meet authorship
- 342 criteria and that no others meeting the criteria have been omitted. N.D.P. and S.F. are the
- 343 guarantors.

344 **REFERENCES**

- Wang Q, Guo Y, Liu L, et al. Antigenicity and receptor affinity of SARS-CoV-2
 BA.2.86 spike. Nature. 2023; 624(7992):639–644.
- Kaku Y, Okumura K, Padilla-Blanco M, et al. Virological characteristics of the SARS CoV-2 JN.1 variant. The Lancet Infectious Diseases. 2024; 24(2):e82.
- Rubin R. As COVID-19 Cases Surge, Here's What to Know About JN.1, the Latest
 SARS-CoV-2 "Variant of Interest." JAMA. 2024; .
- de Prost N, Audureau E, Heming N, et al. Clinical phenotypes and outcomes associated
 with SARS-CoV-2 variant Omicron in critically ill French patients with COVID-19. Nat
 Commun. 2022; 13(1):6025.
- de Prost N, Audureau E, Préau S, et al. Clinical phenotypes and outcomes associated
 with SARS-CoV-2 Omicron variants BA.2, BA.5 and BQ.1.1 in critically ill patients
 with COVID-19: a prospective, multicenter cohort study. Intensive Care Med Exp. 2023;
 11(1):48.
- Rockwood K, Song X, MacKnight C, et al. A global clinical measure of fitness and
 frailty in elderly people. CMAJ. 2005; 173(5):489–495.
- 360 7. WHO Working Group on the Clinical Characterisation and Management of COVID-19
 361 infection. A minimal common outcome measure set for COVID-19 clinical research.
 362 Lancet Infect Dis. 2020; 20(8):e192–e197.
- ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, et al. Acute respiratory
 distress syndrome: the Berlin Definition. JAMA. 2012; 307(23):2526–2533.
- CDC. COVID Data Tracker [Internet]. Centers for Disease Control and Prevention. 2020
 [cited 2024 Feb 7]. Available from: https://covid.cdc.gov/covid-data-tracker
- SPF. Infections respiratoires aiguës (grippe, bronchiolite, COVID-19). Bulletin du 31 janvier 2024. [Internet]. [cited 2024 Feb 7]. Available from:
 https://www.santepubliquefrance.fr/maladies-et-traumatismes/maladies-et-infectionsrespiratoires/grippe/documents/bulletin-national/infections-respiratoires-aigues-grippebronchiolite-covid-19-.-bulletin-du-31-janvier-2024
- 372 11. Vieillard-Baron A, Flicoteaux R, Salmona M, et al. Omicron Variant in the Critical Care
- Viellard-Baron A, Filcoleaux R, Saimona M, et al. Officion Variant in the Critical Care
 Units of Paris Metropolitan Area The Reality Research Group. Am J Respir Crit Care
 Med. 2022; .
- Tamura T, Mizuma K, Nasser H, et al. Virological characteristics of the SARS-CoV-2
 BA.2.86 variant. Cell Host & Microbe [Internet]. 2024 [cited 2024 Feb 6]; . Available
 from: https://www.sciencedirect.com/science/article/pii/S1931312824000052
- Williamson EJ, Walker AJ, Bhaskaran K, et al. Factors associated with COVID-19related death using OpenSAFELY. Nature. 2020; 584(7821):430–436.

- Yang S, Yu Y, Xu Y, et al. Fast evolution of SARS-CoV-2 BA.2.86 to JN.1 under heavy
 immune pressure. The Lancet Infectious Diseases. 2024; 24(2):e70–e72.
- Link-Gelles R. Early Estimates of Updated 2023–2024 (Monovalent XBB.1.5) COVID Vaccine Effectiveness Against Symptomatic SARS-CoV-2 Infection Attributable to
 Co-Circulating Omicron Variants Among Immunocompetent Adults Increasing
 Community Access to Testing Program, United States, September 2023–January 2024.
- 386 MMWR Morb Mortal Wkly Rep [Internet]. **2024** [cited 2024 Feb 7]; 73. Available from:
- 387 https://www.cdc.gov/mmwr/volumes/73/wr/mm7304a2.htm
- 388

Table 1. Clinical and biological characteristics of the 182 patients with severe SARS-CoV-2 infection at the time of their intensive care unit admission according to the infecting SARS-CoV-2 "sublineage groups" (XBB vs JN.1 group).

	Data	All patients	XBB group	JN.1 group	p-value
	available				
		N=182	N=126	N=56	
Demographics and comorbidities					
Sex, females	182	67 (36.8%)	50 (39.7%)	17 (30.4%)	0.23
Age, years	182	70.7 [62.9;76.2]	71.1 [63.2;75.9]	69.5 [62.4;76.8]	0.74
Diabetes	165	61(37.0%)	41 (35.3%)	20 (40.8%)	0.51
Obesity	181	46 (25.4%)	26 (20.8%)	20 (35.7%)	0.033
Body mass index, kg/m²	181	25.5 [21.8;30.1]	25.0 [21.2;28.7]	26.4 [22.5;33.2]	0.035
Chronic heart failure	164	27 (16.5%)	16 (13.9%)	11 (22.4%)	0.18
Hypertension	165	96 (58.2%)	65 (56.0%)	31 (63.3%)	0.39
Chronic respiratory failure ^a	165	45 (27.3%)	31 (26.7%)	14 (28.6%)	0.81
Chronic renal failure ^b	165	35 (21.2%)	25 (21.6%)	10 (20.4%)	0.87
Cirrhosis	165	3 (1.8%)	2 (1.7%)	1 (2.0%)	>0.99
Immunosuppression	165	58 (35.2%)	48 (41.4%)	10 (20.4%)	0.010

Immunosuppression	None	164	107 (65.2%)	68 (58.6%)	39 (81.3%)	0.059
	Solid organ transplant		11 (6.7%)	9 (7.8%)	2 (4.2%)	
	Onco-hematological malignancies		27 (16.5%)	23 (19.8%)	4 (8.3%)	
	Others ^c		19 (11.6%)	16 (13.8%)	3 (6.3%)	
Number of comorbidities ^d		166	2.00 [1.00;3.00]	2.00 [1.00;3.00]	2.00 [1.00;3.00]	0.46
Clinical frailty scale		179	3.00 [2.00;4.00]	3.00 [2.00; 5.0]	3.00 [2.00;4.00]	0.59
SARS-CoV-2 infection and Vac	cination					
Previous SARS-CoV-2 infection	n	145	26 (17.9%)	19 (19.4%)	7 (14.9%)	0.51
SARS-CoV-2 vaccination		148	123 (83.1%)	83 (79.8%)	40 (90.9%)	0.10
Number of doses among vacc	inated	111	3.00 [3.00;4.00]	3.00 [3.00;4.00]	3.00 [3.00;3.00]	0.020
Last dose - ICU admission ^e , da	ays	41	554 [265; 680]	315 [189;631]	628 [375;691]	0.067
SARS-CoV-2 serology at ICU	Unavailable	182	143 (78.6%)	96 (76.2%)	47 (83.9%)	0.52
admission	Negat ive ^f		7 (3.8%)	6 (4.8%)	1 (1.8%)	
	Positive		32 (17.6%)	24 (19.0%)	8 (14.3%)	
First symptoms - ICU admissio	on, days	182	5.0 [2.00;8.0]	5.0 [3.00;9.0]	3.00 [1.00;6.0]	0.006
SARS-CoV-2 RNA detection in	nasopharyngeal swabs, Ct	142	19.5 [16.0;22.8]	19.0 [16.0;22.0]	20.0 [17.0;23.0]	0.65
Patients severity upon ICU adı	mission and biological features					
WHO 10-point scale		182	6 (6;6)	6 (6;6)	6 (6;7)	0.329

SAPS score		153	39.0 [30.0;49.0]	39.0 [31.0;49.5]	37.0 [26.3;48.5]	0.37
SOFA score		163	4.00 [3.00;7.0]	4.00 [3.00; 7.0]	4.00 [3.50;7.0]	0.42
PaO ₂ /FiO ₂ ratio, mmHg		177	138 [92.9;197]	131 [93.0;193]	146 [92.0;211]	0.60
ARDS criteria		177	137 (77.4%)	94 (77.0%)	43 (78.2%)	0.87
Arterial lactate level, mM		161	1.50 [1.10;2.20]	1.55 [1.10;2.20]	1.50 [1.10;2.20]	0.98
Blood leukocytes, G/L		176	9.3 [5.9;14.7]	8.9 [4.80;13.4]	10.7 [7.6;17.0]	0.019
Blood lymphocytes, G/L		152	0.50 [0.30;1.10]	0.50 [0.30;0.80]	0.60 [0.40;1.60]	0.052
Blood platelets, G/L		175	204 [139; 276]	195 [129;280]	212 [165;273]	0.24
Serum urea level, mM		174	9.0 [6.0;15.0]	9.0 [6.0;14.0]	9.0 [5.8;17.0]	0.87
Serum creatinine level, µM		178	95.5 [65.0;158]	93.5 [61.8;159]	97.0 [69.0;153]	0.47
Bacterial coinfection		181	49 (27.1%)	29 (23.0%)	20 (36.4%)	0.063
Thoracic CT-scan						
Pulmonary embolism		181	10 (5.5%)	5 (4.0%)	5 (8.9%)	0.29
Lung parenchyma involveme	nt, %	60	50.0 [25.0;66.3]	45.0 [25.0;64.3]	50.0 [26.3;68.8]	0.42
Oxygen/ventilatory support	Oxygen	182	33 (18.1%)	24 (19.0%)	9 (16.1%)	0.68
	High flow oxygen		76 (41.8%)	55 (43.7%)	21 (37.5%)	
	NIV/C-PAP		33 (18.1%)	22 (17.5%)	11 (19.6%)	
	Invasive MV		40 (22.0%)	25 (19.8%)	15 (26.8%)	
ECMO		182	0 (0.0%)	0 (0.0%)	0 (0.0%)	-

	Vasopressor support	177	30 (16.9%)	20 (16.4%)	10 (18.2%)	0.77
393	Results are N(%), means (±standard dev	riation) or medians (interquartile range	e). ^a requiring long-term	oxygen treatment; ^b def	ined as glomerular	
394	filtration rate < 60 mL/min/1,73 m ^{2 c} in	cludes HIV infection, long-term cortio	costeroid treatment, ar	nd other immunosuppr	essive treatments;	
395	^d include diabetes, obesity, chronic heart	t, renal and respiratory failure, hyperte	ension, cirrhosis, and in	nmunosuppression; ^e tim	ne lag between the	
396	last vaccination dose and ICU admission	n; ^f defined as < 30 Binding Antibody U	Inits (BAU)/mL; ARDS:	acute respiratory distre	ess syndrome; CU:	
397	intensive care unit; Ct: cycle threshold;	WHO: World Health Organization; SOF	A: Sequential Organ Fai	lure Assessment; SAPS	II: Simplified Acute	
398	Physiology Score II; NIV: non-invasiv	e ventilation; C-PAP; continuous-po	sitive airway pressu	re; MV: mechanical v	entilation; ECMO:	
399	extracorporeal mechanical ventilation;	Two-tailed p-values come from unad	justed comparisons usi	ng Chi square or Fishe	er's exact tests for	
400	categorical variables, and t-tests or Mar	nn-Whitney tests for continuous variab	les, as appropriate. No	adjustment for multiple	e comparisons was	
401	performed; Bolded p-values are significa	nt at the p<0.05 level.				

 Table 2. Intensive care management and outcomes of patients with severe SARS-CoV-2 infection (n=182)

 during their intensive care unit stay according to the SARS-CoV-2 infecting "sublineage groups" (XBB vs

 JN.1 group).

	Data	All patients	XBB group	JN.1 group	-
	available				p-value
		N=182	N=126	N=56	
Invasive MV	181	59 (32.6%)	43 (34.1%)	16 (29.1%)	0.51
Prone positioning	170	32 (18.8%)	26 (21.7%)	6 (12.0%)	0.14
MV duration, days	56	8.0 [3.75;12.3]	8.0 [4.0; 14.0]	4.0 [3.0;9.0]	0.16
	170			28.0	0.00
Live-ventilator free days at day 28	173	28.0 [15.0;28.0]	28.0 [0.0;28.0]	[23.3;28.0]	0.22
ECMO support	181	1 (0.6%)	0 (0.0%)	1 (1.8%)	0.30
Vasopressor support	181	49 (27. 1%)	38 (30.2%)	11 (20.0%)	0.16
Renal replacement therapy	181	22 (12.2%)	17 (13.5%)	5 (9.1%)	0.40
Ventilator-acquired pneumonia (among IMV) ^a	59	19 (32.2%)	17 (39.5%)	2 (12.5%)	0.048
САРА	181	6 (3.3%)	6 (4.8%)	0 (0.0%)	0.18
Dexamethasone	159	108 (67.9%)	66 (59.5%)	42 (87.5%)	<0.001
Tocilizumab	181	22 (12.2%)	14 (11.1%)	8 (14.5%)	0.52

Nirmatrelvir-ritonavir	181	4 (2.2%)	3 (2.4%)	1 (1.8%)	>0.99
Monoclonal antibodies	180	1 (0.6%)	1 (0.8%)	0 (0.0%)	>0.99
Duration of ICU stay, days	158				
All patients	180	6.0 [4.00;13.0]	7.0 [4.00;14.0]	6.0 [3.50;11.0]	0.21
∣n survivors at day 28 on∣y	136	6.0 [4.00;13.3]	6.0 [4.00;14.0]	6.0 [4.00;11.0]	0.52
Day-28 mortality	171	34 (19.9%)	27 (22.0%)	7 (14.6%)	0.28

407 Results are N (%), means (±standard deviation) or medians (interquartile range); MV: mechanical ventilation; ECMO: extracorporeal mechanical ventilation; VAP: ventilator-acquired pneumonia; IMV: invasive

408 mechanical ventilation; CAPA: COVID-19-associated pulmonary aspergillosis; ^a VAP episodes were recorded per definition in patients under IMV since more than 48 hours; Two-tailed p-values come from

409 unadjusted comparisons using Chi square or Fisher's exact tests for categorical variables, and t-tests or Mann-Whitney tests for continuous variables, as appropriate. No adjustment for multiple comparisons was

410 performed; Bolded p-values are significant at the p<0.05 level.