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1 

Abstract 24 

During the COVID-19 pandemic, many hospitals reached their capacity limits and could no longer 25 
guarantee treatment of all patients. At the same time, governments endeavored to take sensible measures to 26 
stop the spread of the virus while at the same time trying to keep the economy afloat. Many models 27 
extrapolating confirmed cases and hospitalization rate over short periods of time have been proposed, 28 
including several ones coming from the field of machine learning. However, the highly dynamic nature of 29 
the pandemic with rapidly introduced interventions and new circulating variants imposed non-trivial 30 
challenges for the generalizability of such models.  31 
 32 
In the context of this paper, we propose the use of ensemble models, which are allowed to change in their 33 
composition or weighting of base models over time and can thus adapt to highly dynamic pandemic or 34 
epidemic situations.  In that regard, we also explored the use of secondary metadata - Google searches - to 35 
inform the ensemble model. We tested our approach using surveillance data from COVID-19, Influenza, 36 
and hospital syndromic surveillance of severe acute respiratory infections (SARI). In general, we found 37 
ensembles to be more robust than the individual models. Altogether we see our work as a contribution to 38 
enhance the preparedness for future pandemic situations. 39 

1. Introduction 40 

In late 2019 a novel coronavirus SARS-CoV-2 emerged [1]. This not only gave rise to the COVID-19 41 
pandemic but also affected every aspect of human life, from an economic downturn, and disruption in 42 
education and social interactions to severe health implications including millions of deaths [2–4]. Early on, 43 
governments struggled to find a balance between containing the spread of the virus and maintaining as 44 
much economy, social interactions, and educational services as possible. Important indicators for decision-45 
making were the number of confirmed cases and the hospitalization rate. During that time many models 46 
were developed for short-term forecasting of the number of incident cases and hospitalizations, respectively 47 
[5], modeling strategies in this field include mechanistic, machine learning, and hybrid modeling strategies 48 
[5]. All these models learn patterns from historical data to make forecasts, i.e. there is the implicit 49 
assumption of a stationary dynamical process. However, the highly dynamic nature of the pandemic with 50 
the rapid introduction of non-pharmaceutical interventions, new vaccines, and new circulating virus 51 
variants contradicted this assumption and thus imposed non-trivial challenges for the generalizability of all 52 
forecasting models over longer periods of time, regardless of the chosen modeling strategy. 53 
Since each modeling technique unavoidably comes along with its own assumptions and limitations, 54 
ensemble models have been proposed for forecasting the spread of infectious diseases like Influenza [6–8] 55 
or Ebola [9] and later for COVID-19 [10,11]. In principle, ensemble models can be understood as a 56 
collection of rather simplistic base models, which all produce an output based on each model’s assumption 57 
plus an algorithm or meta-model that combines them into one ensemble output. The advantage of such an 58 
ensemble approach is that the bias of the individual models is reduced, making the final output more robust 59 
[12].  In the literature, such ensemble methods often use the mean (e.g., [11]) or median (e.g., [10]) of the 60 
base model outputs. However, pandemics like COVID-19 are dynamic, there are times when the number 61 
of cases barely changes, there is exponential growth and decay, and there are turning points of waves, which 62 
can all depend on external factors like interventions [13,14], people’s behavior [15],  seasonality [16,17], 63 
or variants of concern [18,19].  64 
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To capture these dynamics and to be better prepared for future pandemics we here propose an ensemble 65 
modeling approach that is dynamically adjusted, to either select the right model at the right time or to weigh 66 
the models’ predictions according to the current situation by using a meta-model. As base models, we 67 
implemented a linear regression, ARIMA [20], XGBoost [21], Random Forest [22], and an LSTM [23] 68 
model. We then evaluated the performance of each base model and compared this to baseline ensemble 69 
methods. In the next step, we implemented a multi-layer perceptron (MLP) with softmax heads as a meta-70 
model. The base models’ forecasts and performances were used as input for the meta-model which was 71 
trained in either one of two ways: 1. select one of the models (selection), 2. combine the model’s predictions 72 
into one prediction (stacking). In addition, we tested whether the inclusion of metadata coming from Google 73 
Trends could inform the meta-model to make better decisions. 74 

2. Materials and Methods 75 

 76 

2.1 Surveillance Data 77 
 78 
We incorporate six different datasets related to COVID-19: the daily number of incident cases, hospital 79 
admissions (hospitalization), and deaths for Germany and France, respectively. Additionally, we evaluated 80 
the models on weekly Influenza cases and weekly hospital admissions related to severe acute respiratory 81 
infections (SARI) in Germany. While the weekly data is only available on a country level, the daily data is 82 
on a regional level (16 Bundesländer in Germany and 13 Régions in France, excluding overseas regions). 83 
Moreover, we also included the country-level data for the daily data. While in the SARI and Influenza 84 
datasets, the hospitalized and incident cases are provided, normalized to 100 thousand people (incidence), 85 
in the other datasets we worked with absolute numbers. An overview of the used surveillance data can be 86 
found in Table 1. The German surveillance data were received from the Robert Koch Institute (RKI) 87 
(https://github.com/robert-koch-institut) and the French surveillance data from Santé Publique France 88 
(SPF) (https://www.data.gouv.fr/fr/organizations/sante-publique-france). For all models, the time series 89 
were log-transformed, because the raw data is locally expected to demonstrate exponential growth behavior. 90 
The daily data was smoothed using a centered moving average over seven days. 91 
 92 

Name Source Period Fitting 
Windows 

Time 
Resolution 

Spatial Resolution 
(# regions) 

COVID Cases, Hosp., Deaths 
DE 

RKI 2020- 
2023 

140 daily Regional 
(16+1) 

COVID Cases, Hosp., Deaths 
FR 

SPF 2020- 
2023 

140 daily regional 
(13+1) 

Influenza Cases DE RKI 2020 
2024 

30 weekly country 
(1) 

SARI Hosp DE RKI 2014- 
2024 

80 weekly country 
(1) 

Table 1. Surveillance data. 93 
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2.2 Metadata 94 
 95 
As metadata, we incorporated data from Google Trends following Wang et al. [24]. First, we identified the 96 
20 top symptoms of COVID-19 which were used as search terms in Google Trends. By accessing their API 97 
(https://github.com/googleapis/google-api-python-client) we extracted the normalized daily number of 98 
counts each term was searched for. For smoothing we applied a centered moving average over seven days. 99 
 100 

2.3 Base Models 101 
 102 
In the following, we introduce the used base models and explain why they are suitable for time series 103 
forecasting. The exact training and tuning procedure is explained in section 2.5. 104 
 105 
Linear Regression 106 
 107 
Assuming that a pandemic follows exponential-like behavior - exponential growth and decay in waves, log-108 
transforming the data will locally yield linear slopes. Therefore, linear regression can be used to fit linear 109 
models to the log-transformed data. Using the regression parameters the fit can then be extrapolated to 110 
estimate short-term forecasts. We used the scikit-learn library (version 1.0.2) “linear-model”. 111 
 112 
ARIMA 113 
 114 
Autoregressive integrated moving average (ARIMA) models use the statistical characteristics of stationary 115 
data. They are popular for time-series forecasting and have previously been applied to modeling of COVID-116 
19 surveillance data [25–28]. A stationary series has no trends and consistently varies around its mean. 117 
That means short-term random time patterns can be extracted accordingly and used for forecasting. Here 118 
we employed a non-seasonal ARIMA model fitted to short-term periods which are not expected to show 119 
seasonal effects. This also applies to the Influenza and SARI data. Using seasonal ARIMA would only 120 
become effective when including at least two seasons. In this case, the ARIMA models depended on three 121 
parameters:  122 
 123 

● p the number of autoregressive terms 124 
● d the degree of differencing the data to make it stationary 125 
● q the number of lagged forecast errors 126 

 127 
With these parameters the general ARIMA forecasting equation is defined as: 128 
 129 

𝑦"# = 	𝜇 + 𝜑1𝑦")1+. . . +𝜑+𝑦")+ − 𝜃1𝑒")1−. . . −𝜃/𝑒")/                                  (1) 130 
 131 

Here ŷ corresponds to the forecast which is computed as the deviation of the mean 𝜇 of a stationary time 132 
series with 𝜑, the slope parameters for each of the p previous values y, and q moving average parameters θ 133 
with autocorrelation errors e. This means the model learns to predict future steps based on the mean of a 134 
stationary time series with adjusted autocorrelation errors and a lagged period [20]. To ensure stationarity 135 
we employed the differencing technique. Differencing refers to the process of computing the differences 136 
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between consecutive values in a time series. Doing so transforms the time series to the fluctuations of 137 
consecutive values, which in first or second order often leads to stationarity [29].  To find the best 138 
parameters (p,d,q) we implemented the auto-ARIMA functionality which is part of the pmdarima library 139 
(version 2.0.3) [30]. This essentially corresponds to a hyperparameter tuning.  140 
 141 
Random Forest and XGBoost 142 
 143 
Both Random Forest and eXtreme Gradient Boosting (XGBoost) are based on decision trees. However, 144 
they differ to a great extent in their training algorithm. Random Forest builds an unweighted ensemble of 145 
decision trees, which are - by applying bagging - trained in parallel on different subsets of the data and then 146 
averaged [22]. In contrast, XGBoost builds its decision trees one after the other and corrects the residual 147 
errors made by the previously trained weighted decision tree ensemble using gradient descent [21]. Both 148 
models are commonly applied to tabular data but have also been shown to be successful in time series 149 
forecasting [31,32], also for COVID-19 [33–36]. Since they are based on decision trees, they can only 150 
extrapolate based on previously seen training data. If the models are tasked to predict values outside of the 151 
training data, they will predict an average of this. Therefore, we first log-transformed the data and then 152 
applied the previously explained differencing technique [29] to ensure stationarity. We tested for 153 
stationarity by applying the augmented dickey-fuller (ADF) test [37]. Using stationary data does not only 154 
mean that the extrapolation problem is reduced, but also that it is possible to apply k-fold cross-validation 155 
for hyperparameter tuning since stationarity breaks the time dependence [38]. For Random Forest we used 156 
the scikit-learn library (version 1.0.2) “ensemble” and for XGBoost the xgboost library (version 1.7.3). 157 
 158 
LSTM 159 
 160 
Recurrent Neural Networks (RNNs) are commonly used for sequencing data. Their advantage compared to 161 
standard neural networks is their internal memory, i.e., their ability to remember and learn the influence of 162 
previous steps on current steps. Opposed to standard RNNs, a Long Short Term Memory (LSTM) can learn 163 
longer-range time patterns of time series without suffering from the vanishing gradient problem [23]. 164 
LSTMs have also been applied for time series forecasting in COVID-19 [39,40] Here we implemented an 165 
LSTM model in which the last hidden state - the state that contains the latent information about the time 166 
series - is decoded in a fully connected layer with output dimension according to the prediction window (14 167 
days / 2 weeks). The LSTM model and fully connected layer were implemented using pytorch (version 168 
1.11.0).  169 

 170 

2.4 Sliding Window Approach for Model Training, Tuning, and 171 

Evaluation 172 

 173 
We split the time series into N (140, 30, 80) training and testing windows. For this, we followed a sliding 174 
window approach (see Figure 1) with a training window size of 70 days for the data with daily resolution 175 
and 52 weeks for the data with weekly resolution, respectively. A testing window size of 14 days (daily 176 
data) / 2 weeks (weekly data), and a step size of 7 days (daily data) / 1 week (weekly data) were used. The 177 
objective was to forecast the value of the time series 14 days ahead of time, counted from the end of the 178 
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training window. ARIMA, Random Forest, as well as XGBoost, were trained on the whole training set, and 179 
the log-linear regression was fitted on the last seven days (daily data) / five weeks (weekly data) of the 180 
training data. These models were applied separately for each region. For the LSTM model, however, we 181 
needed more data. Therefore, we applied another sliding window approach by creating fitting windows of 182 
size 7 days (daily data) / 5 weeks (weekly data) and evaluation windows of size 14 days (daily data) / 2 183 
weeks (weekly data), with a stride of 1 day (daily data) / 1 week (weekly data). We decided to not train one 184 
LSTM model per region but to shuffle the regional windows, to increase the amount of training data. 185 
Therefore, the LSTM models’ training objective was to predict 14 days (daily data) / 2 weeks (weekly data) 186 
ahead based on 7 days (daily data) / 5 weeks (weekly data) of training data. We then tuned the 187 
hyperparameters of Random Forest, XGBoost, and LSTM models for each training window and region if 188 
applicable using Optuna (version 2.10.1). For more information about hyperparameter tuning, we refer to 189 
the supplementary materials (see S1). Since we were using the auto–ARIMA functionality, the 190 
hyperparameter tuning was done via a grid search, where the maximum parameter values for (p,q) were set 191 
to (14,14). Random Forest and XGBoost were tuned with an inner 5-fold cross-validation, while for the 192 
LSTM we split the training windows into 80% training and 20% validation sets. Here k-fold cross-193 
validation was not possible, because we had to consider the time dependencies of the data. Also, we decided 194 
not to follow the classical time series split for time series cross-validation due to the increased run time and 195 
insufficient data. For more details we refer to [38]. After hyperparameter tuning we retrained the models - 196 
using the best hyperparameters for each fitting window - on the whole training data and progressively 197 
predicted and evaluated on the test windows. 198 
 199 

 200 
 201 

Fig 1: Sliding window approach. The time series was split into N training and testing windows. Models were tuned on the training 202 
windows using cross-validation (green), retrained with the best hyperparameters, and then forecasted 2 weeks ahead. Predictions 203 
were compared against real values observed in the test window (yellow).  204 
 205 

 206 

 207 

 208 
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2.5 Model Evaluation Metrics 209 
 210 
To evaluate the performance of the base models and later the ensemble we used the mean absolute 211 
percentage error (MAPE) as a metric: 212 

							𝑀𝐴𝑃𝐸	 = 1
4
∑ 678)7

98
78
64

:;1 	 ∗ 100                                                      (2) 213 

 214 
with Y as the real value, Ŷ as the predicted value, and n as the number of data points, in our case the 215 
prediction window (14 days / 2 weeks). The MAPE represents the deviation of the prediction from the real 216 
data in percent and is therefore a more tangible measure than the mean squared error. The MAPE alone 217 
should not be used for determining the performance of a model, since it is scale-dependent [41]. However, 218 
it is a good measure to quantitatively compare the performances of different models. 219 
 220 

2.6 Baseline Ensemble Approaches  221 
 222 
As a baseline, we implemented two basic ensemble algorithms, more specifically the mean and the median 223 
of the model forecasts. Additionally, we built an ensemble algorithm that always chooses the model that 224 
performed best in the previous testing period (Prev.-Best). This corresponds to a first step in accounting for 225 
the dynamics of the pandemic and thus the dynamic performance of each base model. 226 

2.7 Dynamic Model Selection and Stacking 227 
 228 
We here propose two possible extensions of the baseline ensemble methods discussed before: i) dynamic 229 
model selection and ii.) dynamic model stacking, an extension of a classical stacked regressor approach 230 
[42]. In practice, we realize both approaches by training a meta-model, which  we chose as a simple MLP 231 
architecture with a tunable hidden layer size.  The input for the meta-model constituted of the predicted 232 
values as well as estimated prediction performances of all base models, by concatenating the MAPEs of the 233 
previous testing period to the log-transformed forecasts of the current testing period. Therefore, the MLP 234 
has five input vectors - one per base model. After each hidden layer a rectified linear unit (ReLU) activation 235 
function is applied. The output layer is designed to hold one node per model including a softmax head at 236 
the end. As mentioned above, there are two learning objectives: 237 
 238 

1. Dynamic model selection: The meta-model is trained to always select the model with the highest 239 
softmax output. This essentially corresponds to a classification task, where the model with the 240 
highest probability score is selected.  241 

2. Dynamic model stacking: The meta-model is trained to multiply the base model forecasts by the 242 
individual softmax inputs. These weighted outputs are then aggregated into one final ensemble 243 
output. This essentially corresponds to a weighted mean, since the softmax outputs add up to 1. 244 

 245 
Both learning objectives are trained with a weighted MSE (WMSE) loss function: 246 
 247 

     𝑊𝑀𝑆𝐸	 = 	 1
4
∑ (78)798)2

78
4
:;1         (3) 248 

 249 
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with Y as the real value, Ŷ as the predicted value, and n as the number of data points, in our case the 250 
prediction window (14 days / 2 weeks). The WMSE has the advantage that it penalizes the relative deviation 251 
rather than the absolute deviation. For example: say the real value was 100 and the predicted value was 101 252 
the MSE would be 1. It would be the same for the real value being 1 and the predicted value being 2. 253 
However, the relative deviation would be 1% vs. 100%. Weighting the MSE by the real values results in 254 
normalizing this error to the real value scale. In this case, the WMSE would be 0.01 and 1, respectively - 255 
the deviation of 100% is accordingly penalized much more than the deviation of 1%.   256 

 257 

2.8 Inclusion of Metadata 258 
 259 
Our above-described modeling approaches used only surveillance data, their forecasts, and estimated 260 
prediction performances as input for the base models and meta-model, respectively. In our previous 261 
publication, we showed that social media data is not only correlated with surveillance data but can also be 262 
used to forecast up- and downtrends of pandemic waves [24]. Therefore, we wanted to test if the inclusion 263 
of social media data or further metadata could improve the prediction performance of the meta-model. We 264 
employed Google Trends data as described above and applied a sliding window approach, where we used 265 
the past n (n=2,3,4) weeks (before the last date of our fitting period) as the training period for the metadata. 266 
To extract time patterns, we used an LSTM model and concatenated the last hidden state to the input of the 267 
meta-model, extending the input feature vector to include the forecasted value, the prediction performance 268 
estimated from the previous testing period, and now the information coming from the metadata. The meta-269 
model was then trained in the same way as before, but now the weights of the LSTM were also updated 270 
according to the weighted MSE loss between the output and the real values. Due to the high computational 271 
burden and to be consistent with Wang et al. [24],  we evaluated this approach on German surveillance data 272 
only. 273 
 274 

2.9 Overall Ensemble Model Pipeline 275 
 276 
The final ensemble model pipeline can be seen in Figure 2. The surveillance data, which was previously 277 
split into training and testing windows according to the sliding window approach explained above, is used 278 
as input for the base models. The tuned base models are trained in parallel and create a rolling forecast 279 
based on the testing windows. After each testing window, the baseline models (mean, median, Prev.-Best) 280 
are created. The predictions are evaluated using the current test data and the MAPE as a metric. The base 281 
models’ forecasts together with their performance on the previous testing period are concatenated to form 282 
the input vectors of the meta-model. If metadata is included the metadata is fed into an LSTM model, of 283 
which the last hidden state - the latent representation of the metadata - is concatenated to the input vectors 284 
of the meta-model. As described in Section 2.4 the overall data was split into 80% training and 20% test. 285 
The training data was further split into 5 folds for an inner 5-fold cross-validation and hyperparameter 286 
tuning (see S1). Finally, the models’ performances over the test data were averaged and an output containing 287 
these mean performances was returned. The code for the ensemble model can be accessed on Git Hub 288 
(https://github.com/SCAI-BIO/Dynamic_Ensemble). 289 
 290 
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 291 
Fig 2: Overall ensemble Model Pipeline. The surveillance data is fed into the base models which produce forecasts. All forecasts 292 
and their evaluation (plus the latent representation of the metadata) are used as input for the meta-model which outputs forecasts 293 
either based on dynamic selection or dynamic stacking.  294 
 295 

2.10 Model Ranking and Post-Hoc Analysis 296 

 297 
To quantitatively compare the model performances across datasets we first ranked all models according to 298 
a consensus ranking [43] - allowing for ties - based on Kemeny’s axiomatic approach [44]. The algorithm 299 
compares models pairwise and counts how often one model is ranked above the other. The total sum of 300 
counts is then used to form the consensus ranking. This ranking alone, however, does not necessarily mean 301 
that one model’s performance is significantly different from another model. To test for statistical 302 
significance across models we thus used a Kruskal-Wallis test [45]. To test which individual models 303 
differed significantly from each other we then used a pairwise Wilcoxon test as post-hoc test [46]. All p-304 
values are adjusted for multiple testing based on the Holm-Bonferroni method [47]. Statistical tests were 305 
implemented using R (version 4.3.0) and the libraries ConsRank (version 2.1.4) and stats (version 4.3.0). 306 

3. Results 307 

In the following, we display the results on the country level and the regional results aggregated (mean over 308 
all regional results) at the country level. The complete set of results can be found in the supplementary 309 
material. Model performances are displayed as the mean MAPE of all test windows in percent together with 310 
its standard error in parentheses.  We use the following abbreviations for the models: Linear Regression - 311 
LR, XGBoost- XG, Random Forest - RF, and ensemble baseline by best model selection - Prev.-Best. Since 312 
the Influenza dataset only contains 30 test windows (and just 6 test windows for the meta-model) the results 313 
should be interpreted cautiously, as the small sample size leads to a reduced statistical meaningfulness. 314 
Additionally, we provide the results from the consensus ranking and the Kruskal-Wallis as well as the 315 
Wilcoxon test. For all results, the Kruskal-Wallis test returned a significant p-value of less than 5%. 316 
 317 

 318 

 319 
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3.1 Base Models versus Baseline Ensembles 320 
 321 
First, we evaluated the base and baseline ensemble models by computing and testing a rolling forecast over 322 
the full time series. This resulted in 140 test windows for the daily COVID-19 datasets, 30 test windows 323 
for the weekly Influenza cases, and 80 test windows for the weekly SARI hospitalization. The results are 324 
summarized in Table 2. For a better overview, we colored the three best models for each dataset / dataset 325 
aggregation. First, looking at the base models’ performances on the daily COVID-19 datasets, it can be 326 
seen that mostly linear regression and ARIMA performed best and LSTM and XGBoost worst. On the 327 
weekly dataset, Random Forest and XGBoost were able to perform similarly well as ARIMA. Here the 328 
linear regression showed a reduced performance. Taking a look at the baseline ensemble methods shows 329 
that mean and median baseline ensembles rarely performed as one of the three best models, but the Prev.-330 
Best method was able to outperform most of the base models in many instances; at least for the daily 331 
COVID-19 datasets. Evaluated on the SARI hospitalization dataset, mean managed to be the best model. 332 
Since Prev.-Best always selects the best model of the previous week, we integrated a counter to keep track 333 
of this selection. The number of model selections per dataset can be seen in Figure 3. This agrees with the 334 
results displayed in Table 2. The base models that performed best were also the ones being selected most 335 
often. But, still, the other base models were selected a considerable amount of times. Finally, it can be 336 
observed that the variance of the Prev.-Best method performances tended to be smaller than the variance of 337 
the base models (perhaps excluding ARIMA) performances. Now looking at the consensus ranking, we can 338 
see that ARIMA and Prev.-Best were both ranked first, followed by the mean and median baseline ensemble 339 
methods. Table 3 shows the p-values computed by the pairwise Wilcoxon test. It can be seen that indeed 340 
no significant difference between the Prev.-Best method and ARIMA could be found. However, they were 341 
both found to be significantly different than all other methods. 342 
 343 
 344 
 345 

Geography LR LSTM XG RF ARIMA Mean Median Prev.-Best 

Daily COVID-19 Cases DE (N=140 ) 

DE 21.07 (2.27) 38.10 (3.76) 27.90 (1.71) 24.54 (1.36) 19.15 (1.14) 23.04 (1.30) 22.51 (1.15) 17.37 (1.04) 

DE_reg 29.84 (2.61) 38.56 (7.44) 31.43 (1.40) 28.22 (1.08) 24.93 (1.08) 27.27 (1.88) 26.26 (1.05) 24.75 (1.05) 

Daily COVID-19 Hospitalization DE (N=140) 

DE 12.75 (0.77) 28.95 (2.21) 20.51 (1.39) 19.17 (1.15) 8.88 (0.66) 14.97 (0.90) 15.40 (0.98) 11.94 (1.54) 

DE_reg 27.28 (1.65) 27.06 (2.46) 28.22 (1.29) 25.79 (1.01) 17.64 (0.72) 21.39 (0.92) 21.30 (0.75) 20.19 (0.87) 

Daily COVID-19 Deaths DE (N=140) 

DE 19.85 (1.27) 37.55 (2.04) 27.29 (1.72) 24.84 (1.39) 21.17 (1.02) 22.31 (1.15) 23.00 (1.19) 20.10 (1.28) 

DE_reg 37.41 (0.95) 26.88 (2.20) 29.93 (1.36) 27.13 (0.96) 25.35 (0.87) 28.21 (0.73) 30.94 (0.92) 24.52 (1.18) 

Daily COVID-19 Cases FR (N=140) 

FR 20.71 (1.33) 45.94 (4.46) 38.08 (3.44) 33.89 (2.71) 22.67 (1.89) 28.63 (2.28) 29.50 (2.42) 23.01 (2.08) 
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 346 
 347 
 348 
Table 2: Base models versus baseline ensemble methods. The performances are given as the mean MAPE and its standard error 349 
in parentheses of the N test windows for each dataset / dataset aggregation. The best three models are colored according to the 350 
provided legend. DE (FR) stands for German (France) country level and DE_reg (FR_reg) for German (France) regional level 351 
aggregated to country level. The last two rows display the results from the consensus ranking over all datasets and models. 352 
 353 
  ARIMA LR LSTM Mean Median Prev. Best RF 

LR <1E-16 - - - - - - 

LSTM <1E-16 6.59E-02 - - - - - 

Mean <1E-16 7.55E-14 4.58E-06 - - - - 

Median <1E-16 8.46E-03 8.89E-01 7.32E-06 - - - 

Prev. Best 8.42E-01 <1E-16 <1E-16 <1E-16 <1E-16 - - 

RF <1E-16 8.89E-01 2.01E-01 1.03E-11 9.41E-02 <1E-16 - 

XG <1E-16 5.90E-04 1.07E-09 <1E-16 1.03E-11 <1E-16 2.14E-05 

 354 
Table 3: Base models versus baseline ensemble approaches: pairwise Wilcoxon Test (adjusted p-values).  355 
 356 

FR_reg 23.47 (1.27) 37.54 (4.32) 41.14 (3.97) 37.04 (3.05) 25.13 (2.05) 29.75 (2.21) 28.10 (1.84) 24.07 (1.43) 

Daily COVID-19 Hospitalization FR (N=140) 

FR 16.45 (1.01) 33.61 (1.94) 25.95 (1.66) 24.26 (1.43) 16.84 (1.05) 20.43 (1.19) 21.02 (1.22) 17.57 (1.11) 

FR_reg 26.90 (1.19) 29.39 (1.37) 28.87 (1.45) 26.52 (1.17) 23.08 (0.91) 23.83 (0.97) 24.70 (1.02) 23.90 (0.92) 

Daily COVID-19 Deaths FR (N=140) 

FR 16.77 (1.35) 30.63 (1.87) 20.79 (1.27) 19.32 (1.19) 17.09 (1.12) 17.07 (1.03) 17.96 (1.10) 16.70 (1.42) 

FR_reg 32.40 (1.17) 22.7 (1.23) 25.54 (0.87) 23.34 (0.67) 21.42 (0.62) 23.22 (0.70) 24.91 (0.77) 22.48 (0.79) 

Weekly Influenza Cases DE (N=30) 

DE 47.57 (3.67) 23.53 (10.18) 14.85 (4.95) 15.44 (4.70) 11.28 (3.54) 38.67 (2.31) 44.34 (2.32) 28.46 (10.57) 

Weekly SARI Hospitalization DE (N=80) 

DE 16.41 (1.43) 20.07 (1.96) 12.62 (1.27) 12.92 (1.28) 12.90 (1.34) 12.36 (1.14) 13.05 (1.16) 15.64 (1.60) 

Consensus Ranking 

All 6 4 7 5 1 2 3 1 

 Best Model  2nd Best Model  3rd Best Model 
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 357 
Fig 3: Number of model selections per region bar plot. DE (FR) stands for German (France) country level and DE_reg (FR_reg) 358 
for German (France) regional level aggregated to country level. 359 
 360 

 361 

3.2 Baseline Ensembles versus Dynamic Model Stacking and Selection   362 
 363 
Next, we evaluated our proposed Dynamic Model Stacking and Selection approaches against the previously 364 
tested Prev.-Best method. Since the meta-model was trained on 80% of the test windows, the number of 365 
test windows for the meta-model was reduced to 28 for the daily COVID-19 dataset, 6 for the weekly 366 
Influenza cases, and 16 for the weekly SARI hospitalization. According to the results presented in Table 3 367 
Dynamic Selection was not able to outperform Prev.-Best. However, Dynamic Model Stacking 368 
outperformed Prev-Best and Dynamic Model Selection on the French and German COVID-19 deaths 369 
datasets and was the second-best model on the German COVID-19 hospitalization dataset. Moreover, it 370 
outperformed Dynamic Model Selection and Prev.-Best on the weekly datasets. Also, the variance of the 371 
Dynamic Model Stacking approach tended to be reduced compared to the other methods. The results of the 372 
consensus ranking are again in line with the findings above. The Dynamic Model Stacking method is ranked 373 
first being significantly better than Prev.-Best (see Table 5).  374 
For the sake of completeness, we also list in Table S3.2.1 an additional comparison of Dynamic Model 375 
Stacking against all base models, which have been re-trained on the same dataset. Also, in this comparison, 376 
Dynamic Model Stacking could significantly outperform ARIMA as the best base model (p = 5.74E-3). 377 
 378 
 379 
 380 
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 381 
Geography Prev.-Best Dynamic Selection Dynamic Stacking 

Daily COVID-19 Cases DE (N=28) 

DE 17.07 (2.38) 28.94 (7.10) 24.58 (2.41) 

DE_reg 22.50 (2.13) 30.44 (3.59) 26.29 (2.37) 

Daily COVID-19 Hospitalization DE (N=28) 

DE 12.25 (2.01) 24.51 (3.38) 14.32 (2.01) 

DE_reg 17.47 (1.36) 24.39 (2.16) 19.68 (2.05) 

Daily COVID-19 Deaths DE (N=28) 

DE 24.87 (3.83) 27.27 (4.57) 21.99 (2.40) 

DE_reg 31.71 (1.78) 34.59 (8.26) 22.86 (2.70) 

Daily COVID-19 Cases FR (N=28) 

FR 21.53 (3.08) 31.36 (8.19) 20.48 (2.58) 

FR_reg 22.80 (2.90) 28.79 (5.23) 22.09 (2.46) 

Daily COVID-19 Hospitalization FR (N=28) 

FR 21.35 (2.76) 29.80 (5.04) 17.60 (2.62) 

FR_reg 28.88 (2.09) 32.53 (4.03) 20.73 (1.82) 

Daily COVID-19 Deaths FR (N=28) 

FR 19.32 (3.83) 21.06 (4.57) 14.07 (2.40) 

FR_reg 26.76 (1.78) 24.41 (8.26) 17.99 (2.70) 

Weekly Influenza Cases DE (N=6) 

DE 10.87 (7.76) 35.80 (8.17) 7.82 (3.82) 

Weekly SARI Hospitalization DE (N=16) 

DE 15.15 (3.66) 17.2 (2.64) 13.19 (3.12) 

Consensus Ranking  

All 2 3 1 

 382 
Table 4: Comparison of ensemble modeling approaches. The performances are given as the mean MAPE and its standard error 383 
in parentheses of the N test windows for each dataset / dataset aggregation. DE (FR) stands for German (France) country level and 384 
DE_reg (FR_reg) for German (France) regional level aggregated to country level.  385 
 386 
 387 
 388 
 389 
 390 
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  Prev.-Best 
Dynamic 
Selection 

Dynamic 
Stacking 

Dynamic 
Selection 3.24E-01 - - 

Dynamic 
Stacking 2.57E-07 2.17E-10 - 

 391 
Table 5: Prev.-Best versus Dynamic Model Stacking and Selection:  pairwise Wilcoxon Test (adjusted p-values). 392 
 393 

3.3 Potential Benefits of Including Metadata 394 

Finally, we wanted to assess whether the inclusion of metadata - here Google Trends symptom counts - 395 
could further enhance our proposed Dynamic Model Stacking approach. We could not find an improvement 396 
by including metadata. Both Dynamic Model Stacking with and without metadata were ranked on position 397 
1 after consensus ranking and the Wilcoxon-test showed no significant differences between both 398 
approaches.  399 
 400 

4. Discussion 401 

The COVID-19 pandemic highlighted the need for robust models that can accurately forecast the spread of 402 
the pandemic and can adjust dynamically to external factors such as newly imposed non-pharmaceutical 403 
interventions, new virus variants, vaccination, seasonal effects, and others. In this work, we initially tested 404 
and compared different base machine learning models against basic ensemble methods (mean, median, 405 
Prev.-Best), demonstrating no statistically significant benefit of these simple techniques compared to a 406 
state-of-the art ARIMA time series forecasting model. Only Prev.-Best was found to perform en par with 407 
ARIMA. Even though the other base models did not perform as well as ARIMA we still found them to be 408 
frequently selected as significantly often as being the best model in the previous test window. Therefore, 409 
we decided to keep these other base models in the model ensemble.  410 
We then developed a meta-model that can either dynamically select one of the base model predictions or 411 
add the weighted base model predictions into one forecast. Interestingly, only Dynamic Model Stacking 412 
turned out to outperform Prev.-Best while at the same time showing a reduced variance in prediction 413 
performance. The inclusion of Google Trends symptom counts as metadata could not further improve 414 
Dynamic Model Stacking significantly and thus cannot be recommended.  415 
Comparing the performances on the country and regional level we found Dynamic Model Stacking on the 416 
country level to be superior. We assume that this comes from the data quality of the regional data. Since 417 
we are working with surveillance data that needs to be registered at local health departments, it can happen 418 
that mistakes are made on a regional level. These mistakes would have reduced effects when the regional 419 
data is aggregated to the country-level data.  420 
In general, we saw considerable differences between model performances on the daily and the weekly 421 
datasets. Specifically, the SARI hospitalization data suggests that decision tree-based models - especially 422 
Random Forest - and the mean and median baseline ensemble methods work well here. In this regard, we 423 
should point out that in the weekly data, the task is just to forecast the next two data points (2 weeks) which 424 
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seems to be handled well by decision tree models. Linear regression struggles here because the model is fit 425 
to the past 5 data points (i.e. weeks), hence resulting in over-smoothing. 426 
We should mention the limitations of the non-COVID datasets, specifically limited sample size and, in case 427 
of the Influenza, also seasonal fluctuations (see Figure S2). Moreover, the SARI dataset contains 428 
hospitalization due to different pathogens. These limitations lead to non-trivial challenges for learning a 429 
good model.  430 
 431 
A comparison of our findings with those in other studies is challenging because different datasets (perhaps 432 
even just one wave rather than a whole pandemic), different forecasting horizons, and different metrics 433 
have been used.  Paireau et al. [11] developed an ensemble model (mean) and forecasted among other 434 
indicators the COVID-19 hospitalization in France. On country-level data, they documented a mean MAPE 435 
of 20% and on aggregated regional level of 30% for a 14-day forecast horizon. Our best model - evaluated 436 
on the French COVID-19 hospitalization dataset - achieved a mean MAPE of around 17% and around 20% 437 
to 23% (for the meta-model test windows or all test windows) on country-level and regional aggregated 438 
country-level data, respectively. Heredia Cacha et al. [10] forecasted COVID-19 cases in Spain using 439 
different ensemble methods (mean, median, weighted average) and documented a mean MAPE of around 440 
30% for a 14-day forecasting horizon. We achieved a MAPE of around 17% to 25% for forecasting the 441 
number of COVID-19 cases in Germany and France. Stating that our models are better than the ones of 442 
Paireau et al. and Heredia Cacha et al. would not be fair, though, since we are not using the exact same 443 
data. However, this comparison confirms that our models are generally competitive with others reported in 444 
the literature. 445 

5. Conclusion 446 

A major challenge for the modeling of pandemic situations, specifically COVID-19, is their highly dynamic 447 
character. Rapid introduction of non-pharmaceutical interventions, newly emerging virus variants, 448 
vaccinations, and seasonal effects strongly violate the typical assumption of stationarity in time series 449 
modeling and forecasting and thus negatively affect the generalization ability of models. In this regard, we 450 
here proposed a novel ensemble learning strategy, in which a meta-model learns to dynamically weigh and 451 
integrate a set of base models based on currently observed data and past performance indicators. Based on 452 
results from 8 datasets, our Dynamic Model Stacking approach was able to outperform state-of-the art time 453 
series forecasting techniques, such as ARIMA, and other ensemble learning approaches. Furthermore, we 454 
could show that our method could not be further improved by adding further metadata, such as Google 455 
searches.  456 
Of course, our proposed Dynamic Model Stacking approach is not without limitations. Most importantly, 457 
machine learning methods need a sufficient amount of training data, i.e. retrospective pandemic data, which 458 
are not always available at the beginning of a pandemic. A potential strategy in future pandemics might 459 
thus be to start building a collection of comparable simple base models, specifically including ARIMA, and 460 
then to train Dynamic Model Stacking once sufficient historical data is available.  461 
While we only evaluated Dynamic Model Stacking on surveillance data of COVID-19, SARI, and 462 
Influenza, our method is not limited per se to these data. Dynamic Model Stacking could potentially be 463 
applied also to other areas, where non-stationary time series forecasting plays a role, e.g. traffic, energy 464 
consumption, air flights, and others. Moreover, future work could apply Dynamic Model Stacking to age-465 
distributed data, especially to the vulnerable, mostly elderly population.  466 
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