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ABSTRACT	

Variants	of	SARS-CoV-2	have	been	associated	with	different	transmissibilities	and	disease	
severities.	The	present	study	examines	SARS-CoV-2	genetic	variants	and	their	relationship	
to	risk	for	hospitalization,	using	data	from	12,538	patients	from	a	large,	multisite	
observational	cohort	study.	The	association	of	viral	genomic	variants	and	hospitalization	is	
examined	with	clinical	covariates,	including	COVID-19	vaccination	status,	outpatient	
monoclonal	antibody	treatment	status,	and	underlying	risk	for	poor	clinical	outcome.	
Modeling	approaches	include	XGBoost	with	SHapley	Additive	exPlanations	(SHAP)	analysis	
and	generalized	linear	mixed	models.	The	results	indicate	that	several	SARS-CoV-2	lineages	
are	associated	with	increased	hospitalization	risk,	including	B.1.1.7,	AY.44,	and	AY.54.	As	
found	in	prior	studies,	Omicron	is	associated	with	lower	hospitalization	risk	compared	to	
prior	WHO	variants.	In	addition,	the	results	suggest	that	variants	at	specific	amino	acid	
locations,	including	locations	within	Spike	protein	N-terminal	domain	and	in	non-structural	
protein	14,	are	associated	with	hospitalization	risk.	
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INTRODUCTION	

Since	the	start	of	the	COVID-19	pandemic,	SARS-CoV-2	lineages	have	evolved	to	differ	in	
transmissibility,	disease	severity,	interactions	with	the	human	immune	system,	and	
susceptibility	to	vaccines	(1).	Understanding	how	SARS-CoV-2	genetic	variants	impact	
health	outcomes	is	important	for	surveillance	and	the	future	development	of	therapeutics	
and	vaccines.	

Multiple	studies	have	investigated	associations	between	SARS-CoV-2	genomic	variation	
and	COVID	severity	in	different	times	and	places	during	the	pandemic	and	collectively	have	
identified	a	diverse	set	of	candidate	genetic	variants	(2–16).	These	studies	have	either	used	
data	from	GISAID	(2,	4–6,	9,	11,	16–18)	or	from	individual	hospitals	(3,	10,	12–15).	The	
GISAID-based	studies	use	COVID-19	severity	metrics	that	classify	samples	into	two	or	more	
severity	categories,	such	as	‘asymptomatic’	and	‘severe’,	based	on	patient	status	
descriptions.	These	studies	typically	use	datasets	from	a	few	thousand	to	more	than	ten	
thousand	samples.	Most	of	these	studies	include	patient	age	and	sex	as	covariates	in	
analyses,	but,	because	GISAID	lacks	additional	patient	data,	they	do	not	include	patient	co-
morbidity	information,	COVID-19	vaccination	status,	or	drug	treatments.	These	factors	are	
known	to	have	substantial	consequences	for	COVID	health	outcomes	and	absence	of	data	
about	them	may	obscure	genetic	associations.	Genome-wide	association	studies	(GWAS)	
using	data	from	individual	hospitals	have	evaluated	differences	in	outcome	severity	among	
hospitalized	patients.	These	studies	often	incorporate	extensive	co-morbidity	and	other	
patient	data,	but	typically	have	only	hundreds	of	samples.	

In	addition	to	data	availability	limitations,	investigating	associations	between	SAR-CoV-2	
genetic	variants	and	health	outcomes	is	challenging	due	to	the	virus’s	largely	clonal	
structure.	Single	nucleotide	variants	are	often	tightly	correlated	with	each	other,	and	these	
correlations	need	to	be	accounted	for	to	disambiguate	associations.	Some	studies	have	used	
methods	to	analyze	one	variant	at	a	time,	including	chi-square	or	Fisher	exact	tests	that	do	
not	account	for	genetic	correlations	(2,	3),	multiple	logistic	regression	with	covariates	to	
capture	genetic	background	like	in	many	human	GWAS	(4,	14,	15),	and	phylogeny-based	
association	tests	(6).	Other	studies	have	used	analytical	approaches	to	investigate	multiple	
variant	loci	at	a	time,	including	multiple	logistic	regression	with	multiple	variants	as	
features	(5,	17),	neural	network	approaches	(7,	8),	random	forests	(16,	17),	and	XGBoost	
(7,	8).	

XGBoost	offers	several	advantages	for	investigating	SARS-CoV-2	variant-health	outcome	
associations.	It	has	been	a	top-performing	algorithm	for	many	classification	problems,	can	
incorporate	many	features	at	once,	enables	the	investigation	of	interactions	between	
features,	is	fairly	robust	to	collinearity,	and	has	ways	for	handling	imbalanced	outcome	
data	(19,	20).	XGBoost	can	be	used	with	Shapley	Additive	exPlanations	(SHAP)	analysis,	an	
explainable	artificial	intelligence	method	based	on	game	theory	that	measures	the	
contribution	each	feature	makes	to	a	model’s	predictions	(21).	Another	method	that	has	
been	used	recently	to	study	SARS-CoV-2	genetic	variant	fitness	is	hierarchical	Bayesian	
multinomial	logistic	regression;	this	method	provides	a	way	to	account	for	lineage	
associations	and	to	calculate	the	uncertainty	of	parameter	estimates	(22).	
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In	this	paper,	we	present	an	analysis	of	SARS-CoV-2	genomic	variants	and	clinical	outcomes	
using	a	large	dataset	from	a	study	on	the	effectiveness	of	neutralizing	monoclonal	
antibodies	(nMAbs)	for	SARS-CoV-2	(23,	24).	The	nMAbs	observational	study	collected	data	
from	four	health	care	systems	in	the	United	States	from	November	2020	through	January	
2022	and	included	patients	diagnosed	with	COVID-19	who	met	at	least	one	Emergency	Use	
Authorization	“high	risk”	criterion	supporting	the	use	of	nMAbs	(25).	The	study	
demonstrated	an	association	between	nMAbs	treatment	and	reduced	odds	of	
hospitalization	and	death,	with	larger	treatment	effects	in	unvaccinated	patients	and	those	
with	higher	risk	of	poor	outcomes	(23).	For	13,703	of	the	patients	in	the	study,	SARS-CoV-2	
diagnostic	samples	were	collected	and	sequenced.	This	genomic	data	was	used	to	identify	
WHO	variants,	Pango	lineages,	and	amino	acid	mutations	that	may	confer	an	escape	
capability	to	nMab	treatments	(24).	

In	this	study,	we	used	the	subset	of	nMAbs	observational	study	patients	with	both	clinical	
data	and	viral	genomic	data	to	identify	candidate	SARS-CoV-2	genetic	variants	associated	
with	altered	odds	of	hospitalization	within	14	days	of	diagnosis.	We	used	two	approaches,	
1)	XGBoost	modeling	and	SHAP	analysis	to	investigate	associations	across	the	whole	
dataset	and	2)	generalized	linear	mixed	models	to	investigate	associations	between	and	
within	SARS-CoV-2	lineages.	The	analyses	accounted	for	each	patient’s	underlying	disease	
risk	due	to	demographics	and	comorbidities,	nMAb	treatment,	and	COVID-19	vaccination	
status,	and	explored	interactions	between	these	clinical	covariates	and	genetic	variants.	We	
found	evidence	that	risk	for	hospitalization	varies	among	SARS-CoV-2	lineages	and	among	
variants	at	specific	amino	acid	locations,	including	locations	within	spike	(S)	protein	and	
non-structural	protein	14	(nsp14).	
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METHODS	

The	data	used	for	this	study	come	from	a	prior	observational	cohort	study	of	the	
effectiveness	of	nMAbs.	Details	of	this	dataset	have	been	described	previously	(23)	and	are	
described	in	Supplementary	Materials.	In	brief,	the	nMAbs	dataset	includes	structured	
clinical	data	(e.g.,	demographic	features,	comorbidities,	COVID-19	vaccination	and	nMAb	
treatment	status,	outcomes)	and	linked	viral	genomic	data	(e.g.,	complete	SARS-CoV-2	
genome	sequences)	for	13,703	patients	from	four	health	systems	within	the	United	States.	
The	viral	genomic	data	were	derived	from	patient	samples	taken	on	the	day	of	COVID-19	
diagnosis.	

Patient	Covariates	

For	each	patient,	we	derived	a	Boolean	feature,	nMAb	treatment	status,	that	represents	
whether	or	not	the	patient	was	treated	with	an	nMAb	for	COVID-19.	Following	the	parent	
observational	cohort	study,	a	patient	was	considered	“treated”	if	they	received	any	of	the	
four	nMAbs	treatments	available	during	the	study	period	within	10	days	of	their	diagnosis.	

We	also	derived	a	second	Boolean	feature,	COVID-19	vaccination	status,	that	represents	
whether	or	not	the	patient	was	vaccinated	to	some	degree	(including	partial	or	incomplete	
primary	course,	completed	primary	course,	or	completed	primary	course	with	one	or	more	
booster	doses).	Patients	with	no	evidence	of	any	COVID-19	vaccination	were	considered	
“unvaccinated”.	

We	developed	a	predictive	model	to	summarize	each	patient’s	“underlying	risk”	for	poor	
COVID-19	outcomes,	given	their	specific	demographics	and	combination	of	comorbidities.	
We	used	the	model	to	encapsulate	each	patient’s	risk	due	to	these	factors	in	a	single	
number,	the	disease	risk	score.	To	create	the	model,	we	included	the	following	patient	
features	as	independent	variables:	age	decile	(10-year	groupings),	gender,	comorbidities	
grouped	according	to	Elixhauser	(26),	ethnicity,	race,	marital	status,	insurance	type,	total	
prior	healthcare	visits,	population	density	and	area	deprivation	index	(28)	for	the	zip3	of	
patient	primary	residence,	and	indicator	variables	for	smoking	status,	pregnancy,	obesity,	
and	whether	a	patient	had	recently	taken	immunosuppressant	medication.	Categorical	
features	with	more	than	one	level	were	one-hot	encoded.	These	included	age	group,	
gender,	ethnicity,	race,	marital	status,	insurance	type,	and	smoking	status.	Continuous	
features,	including	zip3	population	density	and	area	deprivation	index,	and	total	prior	
healthcare	visits,	were	scaled	into	the	[0,1]	interval.	The	list	of	features	used	in	disease	risk	
score	modeling	is	in	the	Supplementary	Materials,	Table	S1.	Of	note,	among	the	features	not	
used	in	disease	risk	modeling	were	COVID-19	vaccination	status	and	nMAb	treatment	
status,	as	we	wanted	to	explicitly	represent	any	association	of	these	with	clinical	outcomes	
in	further	modeling.	In	addition,	date	of	infection,	which	is	associated	with	SARS-CoV-2	
genetic	variant,	was	not	included	as	a	feature	for	disease	risk	score	given	the	goal	of	
assessing	genetic	associations.	

This	set	of	features	was	used	to	predict	whether	death	or	hospitalization	occurred	within	
30	days	of	the	date	of	diagnosis,	among	all	patients	who	were	not	treated	with	nMAbs,	
including	patients	with	and	without	SARS-CoV-2	genomic	data.	A	training	set	was	
constructed	using	a	random	90%	subset	of	the	untreated	patients	(141,942	total	untreated	
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patients,	of	which	127,748	used	for	the	training	set),	with	the	remaining	10%	held	out	for	
testing	(n=14,194).	The	scaling	of	continuous	variables	was	derived	using	the	training	
dataset	and	applied	to	the	test	set.	For	modeling,	we	used	the	scikit-learn	Python	package	
(29).	Specifically,	we	used	sklearn.linear_model.LogisticRegression	with	the	following	
hyperparameters:	l2	penalty,	inverse	of	regularization	strength	(C)	of	10,	balanced	class	
weighting,	maximum	iterations	of	1000,	and	the	‘lbfgs’	solver.	After	fitting	the	model	on	the	
training	set,	the	model	was	evaluated	on	the	test	set	using	area	under	the	receiver	
operating	characteristic	curve	(AUROC)	and	area	under	the	precision-recall	curve	(PR-
AUC).	Following	model	evaluation,	a	disease	risk	score	was	calculated	for	all	persons	in	the	
dataset.	The	score	represents	an	estimated	probability	of	death	or	hospitalization	within	30	
days	in	the	absence	of	nMAb	treatment,	given	the	input	features.	

Identification	of	Lineages,	WHO	Variants,	and	Amino	Acid	Changes	

Details	regarding	our	genomics	data	processing	pipeline	can	be	found	in	Supplementary	
Materials.	Briefly,	the	pipeline	processed	FASTQ	file	inputs	and	generated	consensus	fasta	
genome	(DNA)	sequences	for	all	samples;	12,538	samples	met	data	quality	thresholds	and	
were	used	in	analyses.	To	address	missing	base	calls,	the	pipeline	included	a	step	for	
imputation	of	missing	or	ambiguous	sequence	data	using	UShER	(30);	we	term	the	
resulting	consensus	sequences	UShER-cleaned	sequences	(see	Supplementary	Materials).	

We	processed	the	UShER-cleaned	sequences	via	the	pangolin	tool	for	implementing	the	
dynamic	nomenclature	of	SARS-CoV-2	lineages	(31),	version	4.2	with	pangolin-data	version	
1.19,	to	produce	updated	SARS-CoV-2	lineage	calls.	We	then	used	the	lineage	designations	
to	assign	sequences	to	WHO	variants	(Supplemental	Table	S2).	To	identify	variants	at	the	
amino	acid	level,	the	UShER-cleaned	DNA	sequences	were	processed	with	the	Nextclade	
tool	for	mutation	calling	and	sequence	quality	checks	(32).	Amino	acid	variant	data	were	
condensed	to	represent	all	alternate	substitutions	at	a	single	protein-amino	acid	position	as	
one	feature	(i.e.,	1	for	any	alternate	variant,	0	for	the	Wuhan	reference	strain	variant);	stop	
codon	amino	acid	positions	were	kept	as	distinct	features.	We	refer	to	these	features	as	
“amino	acid	changes”.	

For	the	association	analyses,	we	selected	a	subset	of	amino	acid	changes	to	evaluate.	First,	
to	mitigate	collinearity,	we	eliminated	amino	acid	changes	that	were	highly	correlated	with	
other	amino	acid	changes	characteristic	of	a	particular	WHO	variant.	To	do	this,	we	
eliminated	amino	acid	changes	that	were	correlated	with	one	of	the	six	common	WHO	
variants	(Alpha,	Delta,	Epsilon,	Gamma,	Mu,	or	Omicron)	at	greater	than	0.9,	and	instead	
used	WHO	variant	as	a	feature	to	collectively	account	for	these	sets	of	amino	acid	changes.	
Second,	we	applied	a	minimum	allele	frequency	(MAF)	and	assessed	only	amino	acid	
changes	that	occurred	with	a	frequency	between	0.01	and	0.99	within	the	dataset.	Finally,	
to	prevent	the	inclusion	of	artifacts	from	the	sequence	imputation	strategy	described	in	
Supplementary	Materials,	we	removed	all	amino	acid	changes	where	the	majority	of	
samples	with	the	alternate	allele	did	not	have	an	alternate	allele	in	the	original	data	before	
imputation.	

XGBoost	and	SHAP	analyses	
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To	evaluate	associations	between	hospitalization	within	14	days	and	genetic	variation	
across	lineages,	we	trained	XGBoost	models	with	the	following	features:	amino	acid	
changes,	WHO	variant	designations,	and	the	three	clinical	patient	covariates	(disease	risk	
score,	COVID-19	vaccination	status,	and	nMAb	treatment	status).	WHO	variant	was	one-hot	
encoded,	with	one	feature	for	each	of	the	six	most	common	WHO	variants	in	the	dataset.	

To	ensure	robust	performance	and	to	calculate	SHAP	values	across	the	entire	dataset,	we	
used	repeated	k-fold	cross-validation,	with	5-fold	cross	validation	with	80%	training	/	20%	
cross-validation	data,	repeated	for	five	different	randomly	selected	ways	of	splitting	the	
data,	resulting	in	a	set	of	25	data	split-folds.	For	each	fold	from	each	split,	we	used	the	
training	data	to	identify	hyperparameters	by	performing	a	random	grid	search	using	
sklearn.model_selection.RandomizedSearchCV	(29)	(see	Supplementary	Materials	Table	
S3	for	hyperparameter	search	grid	values).	The	assessment	metric	used	in	hyperparameter	
selection	was	average_precision	which	measures	area	under	the	precision-recall	curve	
(PR-AUC).	To	adjust	for	imbalance	in	the	outcome	variable,	in	all	models,	we	used	a	scale-
weight	value	equal	to	the	number	not	hospitalized	in	the	data	divided	by	number	
hospitalized.	XGBoost	models	were	trained	with	the	R	xgboost	package	(33)	using	the	
hyperparameter	values	identified	for	the	corresponding	data	split-fold	training	data.	To	
account	for	random	variation	in	model	construction,	for	each	of	the	25	data	split-folds,	five	
XGBoost	models	were	constructed	with	different	seed	initializations,	and	the	median	result	
values,	including	median	performance	metric	and	SHAP	values,	were	selected	for	each	data	
split-fold	for	further	analyses.	

Because	we	were	primarily	interested	in	predicting	cases	of	hospitalization,	which	were	
infrequent	(3-4%	of	cases),	we	evaluated	the	models’	predictive	ability	by	calculating	PR-
AUC.	For	each	data	split-fold,	we	used	the	cross-validation	set	to	calculate	PR-AUC	with	the	
package	MLmetrics	(34).	To	assess	whether	the	genetic	variation	features	contributed	to	
predictive	ability,	XGBoost	models	were	also	created	using	just	the	three	clinical	features,	
excluding	all	amino	acid	changes	and	WHO	variant	features.	This	was	done	with	the	same	
folds	and	splits	of	the	data	as	used	for	the	model	with	the	full	set	of	features,	and	the	same	
grid	search	procedure	for	selection	of	hyperparameters.	PR-AUC	values	were	compared	
between	models	with	all	features	and	models	with	just	the	three	clinical	covariates	by	
doing	a	one-sided	Wilcoxon	test	using	paired	results	from	each	of	the	25	data	split	folds.	

To	identify	important	features,	we	performed	SHAP	analysis	(35).	SHAP	values	and	SHAP	
interaction	values	were	calculated	on	the	training	data	for	each	of	the	data	split-folds	using	
the	R	xgboost	package	(33).	For	each	of	the	25	data	split-folds,	we	calculated	mean	absolute	
SHAP	value	for	each	feature	across	samples	and	mean	absolute	SHAP	interaction	values	
between	pairs	of	features	across	all	samples.	To	identify	important	features,	we	calculated	
the	means	of	these	across	all	the	data	split-folds,	and	features	were	sorted	by	overall	mean	
absolute	SHAP	value,	from	highest	to	lowest.	For	top-ranked	features,	we	calculated	
descriptive	summary	statistics	about	their	variation	and	calculated	median	SHAP	values	for	
each	sample	across	the	25	data	split-folds.	These	values	were	used	to	create	SHAP	
beeswarm	plots	using	the	R	shapviz	package	(36)	and	generate	plots	using	ggplot2	(37)	to	
examine	relationships	between	SHAP	values	and	features.	

Generalized	linear	mixed	models	

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 10, 2024. ; https://doi.org/10.1101/2024.03.08.24303818doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.08.24303818
http://creativecommons.org/licenses/by-nc/4.0/


	 	 	
	

©	2024	The	MITRE	Corporation,	All	Rights	Reserved	
Approved	for	Public	Release.	Distribution	Unlimited.	Public	Release	Case	Number	24-0748.	

	

For	analysis	with	generalized	linear	mixed	models	(GLMMs),	we	chose	a	subset	of	the	
amino	acid	changes	studied	in	XGBoost	and	SHAP	analyses,	because	the	GLMMs	were	
designed	to	assess	associations	of	amino	acid	changes	within	lineages.	Thus,	the	amino	acid	
changes	chosen	had	the	following	characteristics	within	at	least	one	Pango	lineage:	amino	
acid	change	represented	by	at	least	50	samples	and	frequency	<	0.75.	We	set	a	minimum	of	
50	samples	to	avoid	testing	extremely	rare	amino	acid	changes.	We	enforced	a	frequency	of	
<	0.75	in	the	same	lineage	to	avoid	testing	amino	acid	changes	highly	collinear	with	lineage,	
as	lineage-level	effects	are	explicitly	included	in	the	GLMMs.	

To	assess	for	potential	associations	between	amino	acid	changes	at	the	sub-lineage	level	
and	hospitalization,	we	used	GLMMs	and	Bayesian	techniques	for	parameter	estimation.	In	
this	approach,	risk	of	hospitalization	within	14	days	is	predicted	using	clinical	variables	
(nMAb	treatment	status,	COVID-19	vaccination	status,	disease	risk	score),	lineage-level	
effects	(separate	intercepts	for	each	lineage),	and	the	effect	of	a	single	amino	acid	change,	
where	the	effect	may	be	different	across	different	lineages.	Parameters	were	estimated	via	
stochastic	variational	inference	(38)	using	Pyro	(39,	40),	a	probabilistic	programming	
language	for	Python.	We	ran	this	model	separately	for	each	of	the	amino	acid	changes	
identified	for	analysis	at	the	sub-lineage	level	(as	described	below,	28	amino	acid	changes	
were	identified	for	analysis	with	GLMMs;	thus,	we	ran	this	model	28	times,	once	for	each	
amino	acid	change	in	turn).	After	specifying	the	model	and	running	stochastic	variational	
inference,	the	trained	model	was	used	to	produce	posterior	distributions	for	all	model	
parameters,	including	lineage	intercept	effect	estimates	and	lineage-specific	amino	acid	
change	effect	estimates.	Our	model	can	be	expressed	as:	

𝑔'𝐸(𝑌!), = 𝛼"(!)
% + 𝛼&𝜏! + 𝛼'𝛿! + 𝛼(𝜈! + 𝛽"(!)

) 𝑆𝑁𝑃!)

𝛼&, 𝛼', 𝛼( ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0,10)
𝛼"(!) ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎%)
𝛽"(!)
) ∼ 𝐿𝑎𝑝𝑙𝑎𝑐𝑒(0, 𝜎&)
𝜎% ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1)
𝜎& ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,0.0005)

	

where	𝑌! 	is	the	outcome	of	patient	𝑖;	𝑔	is	the	logit	link	function;	𝛼"(!)	represents	the	
intercept	for	lineage	𝑐(𝑖);	𝜏,	𝛿,	and	𝜈	denote	patient	nMAb	treatment	status,	disease	risk	
score,	and	COVID-19	vaccination	status,	respectively;	𝑆𝑁𝑃!) 	represents	the	presence	or	
absence	of	a	specific	amino	acid	change;	𝑁𝑜𝑟𝑚𝑎𝑙(𝑥, 𝑦)	represents	a	normal	prior	with	
location	𝑥	and	scale	𝑦;	𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑎, 𝑏)	represents	a	uniform	prior	bounded	between	𝑎	and	
𝑏;	and	𝐿𝑎𝑝𝑙𝑎𝑐𝑒(𝑥, 𝑦)	represents	a	Laplace	prior	with	location	𝑥	and	scale	𝑦.	The	intercept	
𝛼"(!)	and	the	amino	acid	change	parameter	𝛽"(!)

) 	are	lineage	dependent	random	effects.	The	
scales	of	these	random	effects,	𝜎%	and	𝜎&,	are	independent	of	the	lineage.	The	nMAb	
treatment,	disease	risk	score,	and	vaccine	effects	(𝛼&,	𝛼',	and	𝛼()	are	fixed	effects.	The	
model	is	depicted	diagrammatically	in	Figure	1.	Broad	priors	were	chosen	for	nMAb	
treatment	status,	disease	risk	score,	and	COVID-19	vaccination	status	(scale	=	10).	A	
narrower	prior	was	chosen	for	the	lineage	intercept	estimates	(scale	=	1)	and,	following	
Obermeyer	et	al.	(22),	a	very	narrow	prior	was	chosen	for	individual	amino	acid	change	
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effects	(scale	=	0.0005).	Additional	analyses	were	conducted	with	different	priors	and	are	
presented	in	Supplementary	Materials.	

	
Figure	1.	Generalized	linear	mixed	model.	The	diagram	depicts	parameters	for	nMAb	
treatment	(mab	tx,	𝛼&),	disease	risk	score	(𝛼'),	COVID-19	vaccination	status	(vax,	𝛼(),	
shared	scale	for	lineage	intercepts	(lin	scale,	𝜎%),	shared	scale	for	amino	acid	change	across	
lineages	(var	scale,	𝜎&),	lineage	intercepts	(lin j intercept,	𝛼"(!)

% ),	and	amino	acid	change	
for	different	lineages	(var k in lin j,	𝛽"(!)

) ).	Rectangles	represent	plates,	which	are	stand-
ins	for	many	similar	types	of	variables.	For	example,	the	rectangle	around	𝛼"(!)

% 	represents	
the	intercept	estimates	for	all	160	lineages,	individually	indicated	as	c(i).	The	oval	𝑌! 	
indicates	the	observed	hospitalization	outcomes	for	each	patient.	

To	highlight	amino	acid	changes	with	the	strongest	evidence	of	association	with	the	
outcome,	we	selected	amino	acid	changes	with	results	meeting	either	of	the	following	two	
criteria.	First,	we	used	the	mean	and	standard	deviation	of	the	posterior	distributions	to	
calculate	z-scores	and	selected	amino	acid	changes	with	extreme	z-scores	(>	1.6	or	<	-1.6,	
outside	the	90%	confidence	level	centered	on	zero).	Second,	we	calculated	Bayes	factors	
(41)	for	effect	estimates	of	all	amino	acid	changes	and	selected	those	with	Bayes	factors	>	3	
(42).	

Visualization	of	amino	acid	changes	within	SARS-CoV-2	proteins	

The	locations	of	amino	acid	changes	within	SARS-CoV-2	proteins	were	visualized	using	x-
ray	crystallography	models	from	the	PDB	Database	(43)	where	available	and	using	models	
predicted	with	AlphaFold2	(44)	where	not	available.	For	models	predicted	with	
AlphaFold2,	amino	acid	variant	substitutions	were	made	in	ChimeriaX	(45)	using	the	most	
common	amino	acid	rotamer	for	the	amino	acid	and	surrounding	amino	acid	neighbors.	
Post-substitution,	models	were	relaxed	using	SCWRL4	(46)	and	revisualized	in	ChimeraX.	
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RESULTS	

Clinical	and	viral	genetic	variation	in	the	dataset	

After	filtering	for	sequence	quality,	the	data	included	12,538	patients	with	genomic	
sequences	(see	Supplemental	Text).	In	this	set,	3.9%	of	patients	experienced	a	
hospitalization	within	14	days	of	COVID-19	diagnosis.	Forty-two	percent	of	patients	had	a	
record	of	COVID-19	vaccination	prior	to	COVID-19	diagnosis,	and	33%	were	treated	with	
nMAbs.	Disease	risk	scores	were	calculated	for	these	patients	using	the	model	trained	on	
demographic	and	clinical	data	(this	model	had	a	PR-AUC	of	0.12	on	the	test	set,	see	
Supplemental	Text).	

A	total	of	160	distinct	lineages	were	found	across	the	samples	(Table	S2).	Delta	was	the	
most	prevalent	WHO	variant	(62%	of	samples),	followed	by	Omicron	(19%),	Alpha	(9%),	
Epsilon	(2%),	Mu	(0.6%)	and	Gamma	(0.5%).	In	addition,	6%	of	samples,	which	mostly	pre-
dated	Alpha,	were	not	assigned	to	a	WHO	variant,	and	0.2%	of	samples	were	assigned	to	
other	WHO	variants.	

Across	the	dataset,	5,189	amino	acid	changes	were	identified,	which	consisted	of	5,045	
sites	with	an	alternate	amino	acid	substitution	compared	to	the	Wuhan	reference	sequence	
and	144	sites	with	stop	codons.	Of	these,	77	were	highly	correlated	(Person	𝑟'	>	0.9)	with	
one	of	the	six	most	prevalent	WHO	variants	in	the	dataset;	these	amino	acid	changes	were	
removed	and	instead	represented	by	features	for	the	respective	WHO	variants	(e.g.,	
Omicron,	Delta,	Alpha).	Of	the	remaining	amino	acid	changes,	4,995	had	a	minor	allele	
frequency	less	than	0.01	and	were	not	included	in	subsequent	analyses.	An	additional	35	
amino	acid	changes	were	removed	to	eliminate	potential	artifacts	related	to	the	UShER-
based	imputation	strategy.	The	remaining	82	amino	acid	variant	sites	were	used	as	
features	in	XGBoost	modeling.	Of	these,	a	subset	of	28	amino	acid	changes	that	were	
variable	within	at	least	one	lineage	were	used	in	generalized	linear	mixed	models	
(GLMMs).	Amino	acid	changes	that	were	evaluated	and	those	that	were	associated	with	
WHO	variants	are	listed	in	the	Supplemental	Materials.	

XGBoost	and	SHAP	analysis	results	

XGBoost	models	with	clinical,	WHO	variant,	and	amino	acid	change	features	predicted	
hospitalization	within	14	days	with	a	mean	PR-AUC	of	0.115.	This	exceeds	the	PR-AUC	
values	for	the	chance,	baseline	model,	which	is	the	frequency	of	hospitalization	in	this	
dataset,	0.039.	

XGBoost	models	with	all	the	features	predicted	hospitalization	better	than	models	built	
with	just	the	three	clinical	covariates,	indicating	that	the	genetic	features	contributed	to	
prediction.	PR-AUC	values	for	models	with	all	the	features	were	larger	than	the	PR-AUC	
values	for	models	with	just	the	clinical	features	across	the	25	data	split-folds	(one-sided,	
paired	Wilcoxon	signed-rank	test,	p=2.3	X10-5).	The	models	with	just	the	clinical	covariates	
had	a	mean	PR-AUC	value	of	0.103,	which	is	smaller	than	the	mean	for	the	models	with	all	
the	features.	Together,	these	results	indicated	that	the	genetic	features	collectively	made	a	
small	but	significant	contribution	to	the	prediction	of	hospitalization.	
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Consistent	with	this,	in	SHAP	analyses	of	the	models	with	all	the	features,	the	three	clinical	
covariates	had	the	largest	contributions	to	the	hospitalization	predictions.	Table	1	shows	
the	features	with	the	highest	mean	absolute	SHAP	values;	each	value	indicates	the	average	
magnitude	of	the	effect	of	a	feature	on	predicted	hospitalization	risk	across	all	samples.	
Figure	2	shows	that	higher	disease	risk	scores	predicted	that	patients	were	more	likely	to	
be	hospitalized,	and	that	COVID-19	vaccination	and	nMAb	treatment	predicted	that	
patients	were	less	likely	to	be	hospitalized.	

The	genetic	features	with	the	largest	impacts	on	hospitalization	predictions	were	an	amino	
acid	change	in	the	spike	(S)	protein	at	position	95	(S_T95),	the	Omicron	WHO	variant,	and	
an	amino	acid	change	in	open	reading	frame	1a	at	position	2554	(ORF1a_A2554)	(see	Table	
1	and	Figure	2).	Both	an	alternate	allele	at	S_T95	and	Omicron	status,	i.e.,	infection	with	an	
Omicron	strain	versus	a	strain	of	any	other	WHO	variant,	predicted	lower	probability	of	
hospitalization.	There	was	just	one	substitution	at	S_T95	in	this	dataset,	isoleucine	(I)	
replacing	threonine	(T);	this	occurred	in	3,595	samples,	including	in	nearly	all	Omicron	and	
Mu	samples	as	well	as	in	14%	of	the	Delta	samples.	An	amino	acid	change	at	ORF1a_A2554,	
which	occurs	in	non-structural	protein	3	(nsp3)	at	amino	acid	position	1736,	predicted	
slightly	increased	hospitalization	risk.	All	but	one	of	the	samples	with	an	amino	acid	change	
at	this	site	had	valine	(V)	substituted	for	alanine	(A).	Amino	acid	substitutions	at	this	site	
occurred	in	1,902	samples,	including	23%	of	Delta	samples	and	3%	of	Omicron	samples.	Of	
the	14	genetic	variant	features	shown	in	Table	1,	seven	are	in	the	spike	protein,	and	five	of	
these	are	in	the	spike	protein’s	N-terminal	domain.	

Table	1.	Features	with	mean	absolute	SHAP	values	above	0.015,	calculated	from	25	data	
split-fold	combinations.	

Feature  Mean absolute SHAP value  
disease risk score  0.750  
COVID-19 vaccination status  0.439  
nMAb treatment status   0.358  
S_T95   0.073  
Omicron  0.072  
ORF1a_A2554   0.047  
S_S112   0.024  
ORF8_L60* 0.022  
ORF1b_S1898   0.022  
S_R158   0.020  
S_D950   0.019  
S_L212   0.019  
ORF1b_P1975   0.017  
ORF1b_H1087* 0.017  
S_G142   0.016  
ORF3a_E239   0.016  
S_P681   0.015  
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*ORF8_L60	and	ORF1b_H1087	alternate	alleles	are	correlated	with	each	other	and	with	
ORF1a_H2125	at	greater	than	0.9	in	this	dataset.	All	other	genetic	variants	in	this	table	
have	no	correlations	with	other	genetic	variant	features	greater	than	0.9.	

	

	
Figure	2.	Distribution	of	SHAP	values	for	the	six	features	with	highest	mean	absolute	SHAP	
values.	Each	point	represents	the	median	SHAP	value	for	one	sample	across	the	25	data	
split-folds.	Colors	indicate	the	magnitude	of	the	feature	value	for	each	sample.	All	features,	
apart	from	disease	risk	score,	are	Boolean.	SHAP	values	are	in	log	odds	ratio	units	and	
indicate	the	contribution	a	feature	makes	to	the	predicted	hospitalization	risk	for	each	
sample	compared	to	the	mean	hospitalization	rate.	

A	SHAP	analysis	of	feature	interactions	indicates	that	the	effects	of	several	genetic	variables	
on	predicted	hospitalization	risk	varied	depending	on	patient	covariate	values.	Table	2	
shows	the	pairs	of	features	with	the	highest	mean	SHAP	interaction	values.	Omicron	status	
had	mean	SHAP	interaction	values	exceeding	0.02	with	disease	risk	score,	COVID-19	
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vaccination	status,	and	nMAb	treatment	status.	Figure	3	shows	the	impact	of	Omicron	
status	on	hospitalization	predictions	by	disease	risk	score,	COVID-19	vaccination	status,	
and	nMAb	treatment	status.	SHAP	values	are	lower	than	zero	for	patients	infected	with	
Omicron	strains,	indicating	that	being	infected	with	Omicron	instead	of	another	WHO	
variant	predicted	reduced	odds	of	hospitalization.	In	addition,	the	predicted	impact	of	
Omicron	status	in	reducing	hospitalization	was	greatest	in	unvaccinated,	non-nMAb	
treated	patients,	while	Omicron	status	had	less	impact	on	predicted	hospitalization	in	those	
known	to	be	vaccinated	and	nMAB-treated.	Furthermore,	the	predicted	impact	of	Omicron	
status	was	greatest	for	those	with	intermediate	disease	risk	score	values.	SHAP	values	for	
S_T95	and	S_S112	also	varied	depending	on	patient	covariates,	and	their	relationships	with	
disease	risk	score,	COVID-19	vaccination	status,	and	nMAb	treatment	status	are	shown	in	
Figures	S1-S2	in	Supplemental	Materials.	Finally,	COVID-19	vaccination	and	nMAb	
treatment	both	had	substantial	interactions	with	disease	risk	score,	and	COVID-19	
vaccination	and	nMAb	treatment	interacted	with	each	other.	The	effect	nMAb	treatment	on	
predicted	hospitalization	tended	to	increase	with	disease	risk	score,	while	the	effect	of	
COVID-19	vaccination	on	predicted	hospitalization	was	greatest	in	those	with	intermediate	
disease	risk	score	values	(Figures	S3-S4	in	Supplemental	Materials).	

Table	2.	Median	SHAP	interaction	values	from	25	split-folds	for	pairs	of	variables	with	the	
interaction	value	exceeding	0.02.	

Feature 1  Feature 2  Mean SHAP interaction value  
COVID-19 vaccination status  disease risk score  0.121  
nMAb treatment status   disease risk score  0.117  
Omicron  disease risk score  0.047  
S_T95   disease risk score  0.046  
N_G204   disease risk score  0.021  
S_S112   disease risk score  0.020  
nMAb treatment status   COVID-19 vaccination status  0.038  
S_L212   COVID-19 vaccination status  0.027  
ORF1a_A2554  COVID-19 vaccination status  0.021  
Omicron  COVID-19 vaccination status  0.020  
S_S112   nMAb treatment status   0.030  
Omicron  nMAb treatment status   0.027  

	

	

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 10, 2024. ; https://doi.org/10.1101/2024.03.08.24303818doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.08.24303818
http://creativecommons.org/licenses/by-nc/4.0/


	 	 	
	

©	2024	The	MITRE	Corporation,	All	Rights	Reserved	
Approved	for	Public	Release.	Distribution	Unlimited.	Public	Release	Case	Number	24-0748.	

	

	
Figure	3.	Median	SHAP	values	for	Omicron	status	for	all	samples	by	disease	risk	score,	
COVID-19	vaccination	status,	and	nMAb	treatment	status.	Omicron	samples	are	
represented	by	triangles	and	non-Omicron	samples	are	represented	by	circles.	SHAP	values	
above	zero	indicate	an	increase	in	predicted	risk	of	hospitalization,	while	those	below	zero	
indicated	a	decrease	in	predicted	risk	of	hospitalization.	

GLMM	modeling	results	

GLMM	were	fitted	using	stochastic	variational	inference	for	each	of	the	28	amino	acid	
changes	at	the	sublineage	level.	In	each	case,	model	fitting	resulted	in	posterior	
distributions	for	all	model	parameters.	The	results	presented	below	are	similar	to	those	for	
other	choices	of	priors	(see	Supplementary	Materials	Table	S4).	Figures	S5	and	S6	in	
Supplementary	Materials	demonstrate	that	the	GLMM	model	correctly	approximates	risk	
for	the	hospitalization	outcome.	

Representative	posterior	distributions	for	the	𝛼&,	𝛼',	and	𝛼(	parameters	(corresponding	to	
nMAb,	disease	risk	score,	and	COVID-19	vaccination	status	effects,	respectively)	are	shown	
in	Figure	4.	The	posterior	distributions	are	shown	on	the	logit	scale.	As	expected,	treatment	
with	nMAb	or	having	been	at	least	partially	vaccinated	is	associated	with	lower	odds	of	
hospitalization,	with	posterior	distributions	of	these	parameters	lying	entirely	below	zero.	
Also,	a	higher	disease	risk	score	is	associated	with	higher	odds	of	hospitalization,	as	
demonstrated	by	that	posterior	distribution	lying	entirely	above	zero.	
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Figure	4.	Representative	posterior	distributions	from	Bayesian	mixed	modeling	for	the	𝛼&,	
𝛼',	and	𝛼(	parameters,	corresponding	to	nMAb,	disease	risk	score,	and	COVID-19	
vaccination	status	effects,	respectively.	The	posterior	distributions	are	shown	on	the	logit	
scale.	Results	are	shown	for	a	model	with	one	specific	amino	acid	change	and	are	
representative	of	results	for	models	with	other	amino	acid	changes.	

Figure	5	shows	representative	posterior	distributions	for	the	lineage-specific	intercept	
estimates	for	the	30	most	common	lineages	(each	represented	by	at	least	50	samples).	Each	
line	in	this	forest	plot	represents	the	posterior	distribution	of	the	lineage	intercept	
estimate	of	the	correspondingly	labeled	lineage.	The	baseline	expectation,	corresponding	to	
no	lineage	effect	(with	a	value	equal	to	the	overall	risk	of	admission	on	the	logit	scale)	is	
shown	as	a	vertical	dashed	red	line.	The	width	of	the	posterior	reflects	residual	uncertainty	
after	model	fitting.	Mean	values	of	each	posterior	are	shown	as	an	open	circle	on	each	line.	
The	figure	suggests	a	range	of	associations	between	lineage	and	hospitalization	risk,	with	
lineages	such	as	BA.1	being	associated	with	lower	risk,	AY.26	with	average	(i.e.,	baseline)	
risk,	and	B.1.621	with	higher	hospitalization	risk.	Of	note,	several	of	the	lineages	seemingly	
associated	with	lower	risk	are	Omicron	lineages	(e.g.,	BA.1,	BA.1.20,	BA.1.18,	BA.1.1);	this	is	
consistent	with	the	predicted	effects	of	the	Omicron	feature	seen	in	the	XGBoost/SHAP	
analysis	(see	Table	1	and	Figure	2	above).	
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Figure	5.	Representative	posterior	distributions	for	the	lineage-specific	intercept	estimates	
for	the	30	lineages	with	at	least	50	samples.	Each	line	in	the	forest	plot	represents	the	
posterior	distribution	(the	highest	posterior	density	interval	for	94%	of	density)	of	the	
lineage	intercept	estimate	for	each	correspondingly	labeled	lineage.	The	interquartile	range	
and	mean	of	each	posterior	correspond	to	the	thicker	part	of	each	line	segment	and	the	
open	circle,	respectively.	The	baseline	expectation,	corresponding	to	overall	risk	of	
admission	on	the	logit	scale,	is	shown	as	a	vertical	dashed	red	line.	

Table	3	shows	quantitative	evidence	that	as	many	as	six	of	these	lineage	intercept	
estimates	may	be	different	from	the	baseline	expectation,	i.e.,	no	lineage	effect.	These	
lineages	were	identified	by	posterior	distributions	with	extreme	z-scores	(>	1.6	or	<	-1.6)	
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or	with	Bayes	factors	>	3.	In	the	case	of	AY.44,	the	Bayes	factor	is	very	large,	with	a	value	
greater	than	two	million.	This	indicates	that	the	posterior	distribution	is	very	different	
from	the	prior,	which	can	also	be	seen	in	Figure	5.	

Table	3.	Lineages	potentially	associated	with	hospitalization	according	to	GLMMs	(either	
|z-score|	>	1.6	or	Bayes	factor	>	3).	

Lineage Lineage frequency Number of samples Z-score Bayes factor 
AY.103 0.108 1352 1.80 0.70 
AY.44 0.153 1922 4.18 2006632.20 
AY.54 0.014 172 2.81 10.01 
B.1.1.7 0.087 1090 4.16 213.07 
B.1.621 0.006 69 2.44 7.13 
BA.1 0.021 268 -1.86 2.00 

	

Table	4	shows	amino	acid	changes	highlighted	by	Bayes	factors	>	3	(none	were	identified	
with	extreme	z-scores).	These	amino	acid	changes	have	at	least	some	evidence	of	
association	with	hospitalization	risk	according	to	the	GLMMs.	The	analyses	indicate	that	
alternate	amino	acids	at	ORF1b_P1975,	ORF1a_R4179,	S_L212,	and	S_S112	may	be	
associated	with	increased	risk	of	hospitalization	(positive	z-scores),	while	alternate	amino	
acids	at	the	other	seven	amino	acid	change	sites	may	be	associated	with	decreased	risk	for	
hospitalization	(negative	z-scores).	Note	that	for	amino	acid	change	S_G142,	two	
associations	are	highlighted,	one	within	lineage	AY.3,	and	a	second	within	AY.100;	in	both	
cases,	the	amino	acid	change	appears	to	be	negatively	associated	with	hospitalization	risk.	
Results	with	different	priors	consistently	identified	the	same	set	of	amino	acid	changes	(see	
Supplementary	Materials	Table	S4).	Also	of	note,	most	of	the	amino	acid	changes	
highlighted	by	GLMMs	were	also	in	the	top	ranked	features	identified	in	the	XGBoost-SHAP	
analysis;	specifically	ORF1b_P1975,	S_D950,	S_G142	S_L212,	and	S_S112	were	found	in	
both	approaches	(Table	1).	
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Table	4.	Amino	acid	changes	potentially	associated	with	hospitalization	according	to	
GLMMs.	None	were	identified	as	having	extreme	z-scores	(|z-score|	>	1.6),	instead	all	were	
identified	because	their	Bayes	factors	were	>	3.	Similar	results	were	found	for	a	range	of	
priors	on	𝜎&	(see	Supplementary	Materials	Table	S4).	

Amino acid 
change Lineage 

Amino acid 
change frequency 

Number of 
samples Z-score Bayes factor 

ORF1a_R4179 AY.25 0.312 317 1.48 4.48 
ORF1b_P1975 B.1.1.7 0.176 192 1.04 3.13 
ORF3a_P104 AY.103 0.083 112 -1.10 3.13 
ORF8_Y31 AY.100 0.591 405 -1.15 3.84 
S_D950 AY.39 0.305 53 -1.05 3.25 
S_G142 AY.3 0.284 189 -1.28 4.39 
S_G142 AY.100 0.632 433 -1.10 3.44 
S_L212 BA.1 0.653 175 1.29 3.67 
S_S112 AY.25 0.470 477 1.01 3.12 
N_M234 B.1.429 0.388 92 -1.55 6.13 
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DISCUSSION	

In	this	work,	clinical	and	SARS-CoV-2	viral	genomic	data	from	12,538	patients	was	
examined	for	association	of	viral	genomic	variants	with	hospitalization	within	14	days	of	
COVID-19	diagnosis.	We	created	and	used	a	model-based	disease	risk	score,	summarizing	
risk	from	dozens	of	co-morbidities	and	demographic	factors,	and	incorporated	information	
on	COVID-19	vaccination	and	nMAb	treatment	status,	thus	accounting	for	their	influences	
on	outcome	(23).	Using	two	different	modeling	approaches,	we	find	evidence	for	the	
association	of	several	amino	acid	variants	with	hospitalization.	To	our	knowledge,	this	
study	is	the	largest	to	date	that	combines	detailed	clinical	and	viral	genomic	information	
with	the	clinical	outcome	of	hospitalization,	and	the	only	such	study	that	uses	data	from	
multiple	health	systems.	

The	results	of	this	study	are	consistent	with	and	extend	the	results	of	the	prior	study	from	
which	this	study’s	dataset	is	derived	(23).	Like	in	the	prior	study	which	used	a	different	
analytical	method,	both	the	XGBoost-SHAP	and	GLMM	analyses	identified	COVID-19	
vaccination	and	nMAb	treatment	as	predictive	of	lower	risk	of	hospitalization.	This	study	
found	that	SARS-Co-V-2	genetic	factors	were	also	predictive	of	hospitalization	in	this	
dataset.	While	the	genetic	factors,	including	WHO	variant,	collectively	improved	prediction	
in	the	XGBoost	models,	the	individual	contributions	of	WHO	variants	and	amino	acid	
mutations	were	small	compared	to	the	magnitude	of	the	effects	of	the	patient	covariates.	
Furthermore,	the	SHAP	interaction	results	suggest	that	the	associations	of	these	genetic	
variants	with	hospitalization	risk	may	vary	depending	on	patient	condition.	

This	study	used	two	different	modeling	approaches	to	investigate	genetic	associations	at	
different	scales.	GLMMs	were	used	to	investigate	variation	among	lineages	and	amino	acid	
variation	within	lineages,	while	XGBoost	with	SHAP	analysis	was	used	to	investigate	amino	
acid	variants	across	lineages	and	interactions	between	genetic	variants	and	patient	
covariates.	Because	these	analyses	investigated	associations	in	different	subsets	of	the	data,	
the	finding	of	overlapping	but	not	identical	sets	of	top	candidate	variants	is	not	surprising.	
Nevertheless,	five	of	the	nine	candidates	from	the	GLMM	were	observed	in	the	top	14	
genetic	features	in	the	XGBoost-SHAP	analysis.	S_T95,	the	top	XGBoost-SHAP	genetic	
feature,	was	not	evaluated	in	the	GLMMs	because	it	did	not	meet	the	frequency	and	number	
thresholds	in	any	one	lineage	but	was	detected	in	the	XGBoost-SHAP	analyses	due	to	its	
occurrence	in	multiple	lineages	representing	three	different	WHO	variants.	Similarly,	the	
following	amino	acid	changes	highlighted	by	the	XGBoost	analysis	were	not	included	in	
GLMMs	because	they	did	not	meet	frequency	and	number	thresholds	in	any	one	lineage:	
ORF1a_A2554,	ORF1b_S1898,	ORF3a_E239,	and	S_P681.	

Of	the	14	genetic	features	with	mean	absolute	SHAP	values	above	0.15,	half	occurred	in	the	
spike	protein.	Five	of	these,	S_T95,	S_S112,	S_G142,	S_R158,	and	S_L212,	occur	in	the	N-
terminal	domain	(NTD),	S_P681	occurs	in	the	S	protein	cleavage	site,	and	S_D950	occurs	in	
the	C-terminal	domain.	Interestingly,	none	of	the	genetic	features	were	found	in	the	S	
protein	receptor	binding	domain	(RBD).	A	few	of	these	have	been	associated	with	disease	
severity	in	prior	studies.	Sokhansanj	et	al.	identified	mutations	at	S_G142	as	contributing	to	
prediction	of	disease	severity	in	a	deep	learning	model	using	S	protein	features	(8),	and	
Liang	et	al	identified	both	S_T95	and	S_L212	as	associated	with	COVID-19	disease	severity	
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in	a	study	of	associations	between	spike	amino	acid	mutation	prevalence	in	GISAID	data	
and	concurrent	hospitalization	rates	in	CDC	data	(7).	Obermeyer	et	al.	also	found	that	the	
amino	acid	substitution	S	T95I	was	associated	with	increased	SARS-CoV-2	transmission	
(22),	and	other	studies	point	to	associations	of	S_T95	with	increased	transmission	(47).	
Shen	et	al.	reported	that	S_T95I	was	associated	with	increased	viral	loads	in	patients,	based	
on	PCR	cycle	threshold	results,	and	that	S_T95I	arose	multiple	times	in	Delta	lineages	in	
addition	to	its	presence	in	Omicron	strains	(48).	Together,	these	results	suggest	that	the	
S_T95I	mutation	may	increase	transmission	while	reducing	disease	severity.	Within	the	
spike	protein	(S),	the	polar	threonine	amino	acid	at	position	95	(S_T95)	resides	within	a	
five-angstrom	pocket	of	hydrophobic	residues	(S_F186,	S_L189,	S_I210,	S_L212,	S_A264).	
The	change	from	the	polar	tyrosine	residue	to	the	hydrophobic	isoleucine	residue	(S_T95I)	
could	conceivably	result	in	a	stabilization	of	the	globular	region	that	S_T95I	resides	within	
(see	Figure	8).	
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Figure	8.	Location	and	environment	of	the	T95I	mutation.	The	hydrophobic	ILE	95	
substitutes	for	the	polar	THR	95	in	the	hydrophobic	pocket	of	surrounding	residues.	All	
residues	shown	are	within	five	angstroms	of	the	95	residue	atoms.	

The	GLMM	analysis	identified	several	candidates,	including	one	in	the	Alpha	lineage,	
ORF1b_P1975	(in	nsp14	at	position	451).	The	most	common	genetic	mutation	for	
ORF1b_P1975,	C19390T,	was	also	found	to	be	weakly	associated	with	severe	COVID-19	in	a	
prior	GWAS	study	(14).	While	we	are	not	aware	of	papers	about	this	mutation’s	functional	
effects,	nsp14	has	been	found	to	shut	down	host	protein	synthesis	and	thereby	interfere	
with	host	innate	immune	responses	(49).	
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Other	candidate	variants	found	by	two	or	more	prior	studies	include	nsp6	amino	acid	
variant	L37F,	which	was	associated	with	asymptotic	or	mild	symptoms	(2,	6,	9);	spike	
protein	(S)	variant	V1176F	(2,	4)	and	open	reading	frame	3a	(ORF3a)	variant	Q57H	(2,	10),	
which	were	associated	with	more	severe	symptoms;	and	S	variant	D614G,	which	was	
associated	with	more	severe	symptoms	in	three	papers	(2,	10,	11)	and	less	severe	
outcomes	in	another	paper	(3).	None	of	these	were	identified	in	our	study.	ORF1a_L37F	
and	ORF3a_Q57H	were	tested	in	our	dataset,	and	S_V1176F	was	part	of	the	set	of	amino	
acid	changes	highly	correlated	with	Gamma;	however,	S_D614	was	not	tested	because	it	fell	
outside	the	minimum	allele	frequency	threshold	in	our	dataset.	One	possible	reason	for	
differences	in	associations	is	that	our	study	used	a	different	measure	of	disease	severity	
and	a	different	study	population–hospitalization	in	persons	with	co-morbidities.	In	
contrast,	many	of	the	prior	studies	have	used	symptom	information	for	severity	(6,	16),	
evaluated	differences	in	symptoms	among	patients	that	were	already	hospitalized	(13,	14),	
or	included	persons	without	co-morbidities	(3,	7).	

This	study	has	several	important	limitations.	First,	the	genetic	variants	we	highlight	
represent	correlations,	not	causation,	with	our	outcome.	As	discussed	above,	there	are	
biologically	plausible	reasons	that	could	explain	some	of	the	associations,	however	we	
cannot	eliminate	the	possibility	that	they	represent	false	positive	findings.	The	fact	that	
some	of	the	variants	we	highlight	have	been	observed	in	previous	studies	supports	the	
notion	that	they	are	not	spurious,	but	further	research	would	be	needed	to	claim	causality.	

Second,	we	used	all-cause	hospitalization	within	14	days	of	diagnosis	of	COVID-19	as	our	
outcome	of	interest.	Other	possible	outcomes	we	could	have	explored	include	death	within	
14	or	30	days	of	diagnosis,	or	hospitalization	within	30	days	of	diagnosis.	Hospitalization	
within	14	days	is	a	rare	outcome	in	our	dataset,	and	the	limited	number	of	cases	hinders	
our	ability	to	detect	associated	genomic	variants.	Death,	either	within	14	or	30	days,	is	even	
rarer	(0.1-0.3%	of	patients),	and	thus,	we	did	not	use	this	outcome.	By	limiting	to	14	days,	
our	aim	was	to	enrich	for	hospitalizations	that	are	truly	related	to	severe	COVID-19	illness.	
However,	it	is	likely	that	a	small	fraction	of	these	hospitalizations	was	not	COVID-19	
related,	and	thus	represent	misclassifications.	This	problem	would	likely	be	worse	had	we	
used	30-day	hospitalization.	

Third,	although	this	dataset	is	relatively	large,	statistical	power	is	a	limitation.	This	is	due	
to	the	low	rate	of	hospitalizations	discussed	above,	the	complexity	of	the	viral	genomic	data	
(e.g.,	many	different	lineages)	and	the	clinical	data,	and	the	relatively	small	magnitude	of	
the	associations	observed	between	viral	genomic	variants.	A	larger	sample	size	would	
likely	help	clarify	which	findings	represent	false	positives	and	false	negatives.	

Fourth,	the	data	used	here	were	collected	primarily	to	support	an	observational	cohort	
study	of	the	effectiveness	of	nMAbs	for	COVID-19	(23),	and	genomic	data	from	some	
samples	did	not	have	a	high	read	depth.	As	such,	aspects	of	the	viral	genomic	data	were	
limiting.	For	example,	viral	genomic	data	from	1,259	samples	were	discarded	as	part	of	
quality-screening	procedures	in	the	original	cohort	study	(24).	Data	from	an	additional	
1,165	samples	were	discarded	as	part	of	the	Nextclade	quality	threshold	set	for	the	present	
study.	Even	after	applying	these	quality	thresholds,	various	sequence	gaps	and	ambiguities	
remained.	To	address	these,	we	imputed	missing	/	ambiguous	base	calls	by	placing	our	
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samples	on	a	large,	publicly	available	SARS-CoV-2	phylogenetic	tree	using	UShER.	While	
most	placements	on	the	tree	were	unambiguous,	some	were	not,	and	misplacements	are	
likely	to	have	resulted	in	some	incorrect	imputed	values	in	the	dataset	used	for	analyses.	

Fifth,	this	study	investigated	only	the	presence	of	amino	acid	substitutions	or	stop	codons	
at	sites.	Synonymous	nucleotide	variation	that	has	effects	beyond	protein	component	could	
be	important,	as	could	variation	caused	by	deletions.	Our	approach	pooled	both	different	
nucleotide	substitutions	that	cause	the	same	amino	acid	substitution,	and	furthermore	all	
alternate	amino	acid	substitutions	at	a	site.	This	was	done	to	increase	power	to	detect	
associations	by	increasing	the	number	of	samples	with	a	given	feature,	and	to	jointly	
analyze	amino	acid	changes	that	occurred	in	different	lineages	and	WHO	variants	via	
different	nucleotide	or	amino	acid	substitutions.	This	pooling	approach	may	obscure	
varying	associations	for	different	amino	acid	substitutions.	

Finally,	while	we	evaluated	the	overall	contribution	of	genetic	variation	in	both	the	
XGBoost	and	GLMM	models,	we	have	not	evaluated	the	statistical	significance	of	individual	
amino	acid	changes.	For	the	XGBoost-SHAP	analysis,	methods	for	evaluating	statistical	
significance	are	an	active	area	of	research	(50).	In	the	case	of	GLMMs,	we	ran	separate	
versions	of	the	model	for	each	of	28	amino	acid	changes	and	did	not	apply	multiple-testing	
correction	methods.	It	is	possible	that	some	of	the	associations	we	have	highlighted	are	due	
to	chance.	However,	the	number	of	tests	is	relatively	small	number	compared	to	most	
GWAS.	Moreover,	these	28	tests	are	not	truly	independent,	since	there	exist	varying	
degrees	of	correlation	within	this	set	of	28	amino	acid	changes;	for	example,	three	amino	
acid	changes	in	this	set,	ORF1b_H1087,	ORF1a_H2125,	and	ORF8_L60,	each	have	pair-wise	
Pearson	correlations	greater	than	0.9.	

The	COVID-19	pandemic	has	highlighted	the	need	for	vigilance	in	the	face	of	possible	future	
pandemics.	Large-scale	linked	clinical-genomic	datasets	are	one	possible	approach	to	
uncovering	associations	that	may	lead	to	improved	pathophysiologic	understanding	and,	
perhaps,	therapeutic	targets.	As	such,	enduring	capabilities	that	combine	clinical	and	
genomic	data	from	multiple	sites	within	a	secure	infrastructure,	like	the	dataset	used	in	
this	study,	should	be	considered	as	possible	measures	for	ongoing	national	pandemic	
preparedness.	
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