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Abstract 
 
Background: Time-varying radiofrequency (RF) fields necessary to perform magnetic resonance imaging 
(MRI) may induce excessive heating near implanted conductive medical devices during MRI. Both time 
and space-averaged root mean square of the effective magnetic field (B1+rms) and whole-body average 
specific absorption rate (SAR) (average RF power per unit body weight) have been proposed as metrics to 
control the induced heating and avoid unintended thermal injury. 

Purpose: To evaluate the relationship between the induced RF heating near an implanted conductive 
medical device, scanner-reported B1+rms, and scanner-reported RF power. 

Methods: RF heating was measured near the electrodes of deep brain stimulation (DBS) lead placed in a 
gel phantom using fluoroptic temperature probes in a commercial 3T scanner during MRI. Four transmit 
and receive RF coil combinations were used, a circularly polarized head transmit and receive coil, a 20-
channel head and neck, a 32-channel head, or a 64-channel head and neck receive-only coil with a whole-
body transmit coil. RF heating was induced by running a 2D GRE sequence with two RF pulse types (fast 
and normal) with varying flip angles of 30°, 60°, and 90° and by turning the receive-only coils off and on. 
The scanner-reported B1+rms and RF power were recorded. 

Results: Measurements show that the induced temperature change correlated linearly with both the scanner-
reported B1+rms and RF power for each coil combination. However, the variation in the induced heating 
for various RF coil combinations appeared to be much larger for the scanner-reported B1+rms compared 
to the scanner-reported RF power. 

Conclusion: Additional studies across other MR scanners are needed to better understand the full extent 
of the variation in the induced heating near implanted conductive devices as a function of the scanner-
reported B1+rms and RF power to develop conservative and reliable patient labeling. 
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1. INTRODUCTION 
 
There are millions of patients implanted with conductive medical devices (1-4). These patients 

may need to undergo magnetic resonance imaging (MRI) at least once over the lifespan of the 

device and/or patients for the diagnosis of diseases related or unrelated to the device and/or therapy 

response monitoring (5-9). However, the interaction between the MR environment and these 

patients introduces many risks (e.g., displacement, torque, device malfunction, unintended 

stimulation, etc.) including the possibility of unintended, excessive heating near the implanted 

devices in a patient, landmark, scanner, and imaging parameters dependent way. The heating may 

induce thermal damage or deteriorate tissue and/or device function adversely affecting patient 

safety and device effectiveness (10). The heating is induced because, of the non-uniform, time-

varying electromagnetic fields produced in the patient body in and around the device during MRI 

(11-15). 

 
The International Commission on Non-Ionizing Radiation Protection (ICNIRP) identifies 

absolute, in vivo local temperature of 4 °C or more or the local temperature change of 5 °C or more 

in ‘Type-1’ tissues (i.e., all tissues in the upper arm, forearm, and hand, thigh, leg, foot, pinna and 

the cornea, anterior chamber and iris of the eye, epidermal, dermal, fat, muscle, and bone tissue) 

and 2 °C or more in ‘Type-2’ tissues (i.e., all tissues in the head, eye, abdomen, back, thorax, and 

pelvis, excluding those defined as Type-1 tissue) as potentially harmful (16). Per ICNIRP 1998 

guidelines “at levels of absorbed electromagnetic energy that cause body temperature rise more 

than 1–2 °C, a large number of physiological effects have been characterized in studies with 

cellular and animal systems (17). These effects include alterations in neural and neuromuscular 

functions; increased blood-brain barrier permeability; ocular impairment (lens opacities and 

corneal abnormalities); stress-associated changes in the immune system; hematological changes; 

reproductive changes (e.g., reduced sperm production); teratogenicity; and changes in cell 

morphology, water and electrolyte content, and membrane functions (18). The International 

Electrotechnical Commission (IEC) standard “IEC 60601-1:2005/(R)2012 Medical Electrical 

Equipment – Part 1: General Requirements for Basic Safety and Essential Performance” considers 

the local absolute temperature of 41 °C as safe (19). The International Organization for 

Standardization (ISO) standard “ANSI/AAMI/ISO 14708-3:2017 Implants for Surgery – Active 

Implantable Medical Devices – Part 3: Implantable Neurostimulators” considers the local absolute 
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tissue temperature of 39 °C as safe (20). US Food and Drug Administration (FDA) has accepted 

the local temperature change near implanted conductive devices of up to 4 °C in thermally non-

sensitive, normally perfused muscle-like tissue and up to 2 °C in thermally sensitive, normally 

perfused muscle-like tissue due to 15 minutes for RF power deposition as safe for imaging patients 

implanted with the devices for up to an hour in Normal Operating Mode (i.e., the whole-body 

average SAR of 2 W/kg or less) (21). 

 
Typically, the induced heating is kept below a chosen harmful threshold by keeping the maximum 

allowable scanner-reported whole-body average specific absorption rate (SAR) (i.e., RF power per 

unit body weight) and/or time and space averaged root mean square of the effective magnetic field 

(B1+rms) below a certain value (22-24). Conductive device manufacturers present data acquired 

experimentally in gel phantoms prepared per voluntary consensus standards and computationally 

using whole-body human models to regulatory agencies to support patient safety (by keeping 

expected heating below harmful threshold) for the labeled maximum allowable SAR and/or 

B1+rms (25,26). The relationship between the scanner-reported RF power and absorbed RF power, 

and the scanner-reported B1+rms and computational B1+rms are complex. Since, theoretically, 

the induced heating is proportional to the absorbed power (and not deposited power, scanner 

reported RF power, or scanner reported B1+rms) for a given implant, implant location, implant 

medium, and time, to better understand the relationship and/or uncertainty between the induced 

heating, scanner reported B1+rms, and scanner reported RF power, this novel, preliminary, first-

of-a-kind experimental work investigates if i) the induced RF heating near a conductive medical 

device correlates linearly with the scanner reported B1+rms or scanner reported RF power; and ii) 

the variation in the induced heating as a function of the scanner reported B1+rms or scanner 

reported RF power for various RF transmit and receive coil combinations. 

 
2. METHODS AND MATERIALS 
 
2.1 The Device, Phantom, and RF Heating Measurements 
 
A commercially available and legally marketed deep brain stimulation (DBS) lead was chosen as 

an example of an implanted conductive device. The lead was placed inside a tissue-mimicking gel 

phantom prepared per American Society for Testing Materials (ASTM) standard F2182 by using 

deionized water, 1.32 g/L of sodium chloride (NaCl), and 10 g/L of polyacrylic acid (PAA) (25). 
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The lead was positioned near the sidewalls of a plastic container to maximize the electric field 

exposure to the device (Figure 1). The connector side of the lead was left open. The induced RF 

heating was measured by placing calibrated fluoroptic temperature probes (Model: Luxtron m920, 

Manufacturer: Lumasense Technologies, Fort Collins, CO, USA) near the four electrodes of the 

lead. 

 
2.2 Inducing RF Heating 
 
The heating was induced by placing the gel phantom inside a commercial 3 Tesla MRI system and 

performing imaging with various combinations of RF transmit and receive (Tx/Rx) coils and pulse 

sequences. Four available RF coil combinations were used, a circularly polarized head transmit 

and receive (CP Tx/Rx) coil, and a 20-channel head and neck (20 H/N), 32-channel head (32 H), 

or 64-channel head and neck (64 H/N) receive-only coil with the whole-body transmit coil (BC). 

RF heating was induced by running a protocol with six sequences, a T1-weighted sequence with 

three flip angles (FA) (30, 60, and 90 degrees), and two RF pulse types (normal, fast) using a two-

dimensional (2D) gradient echo sequence (GRE) for each of the RF coil combinations and by 

turning the receive only coils off and on. The scanner reported B1+rms and power (P) were 

recorded. No attempt was made to control the scanner reported B1+rms or power (P). Imaging 

parameters for the 2D GRE sequence were: FA = 30/60/90 degrees, TE = 2.49 ms, TR = 250 ms, 

TA = 79 s, slice thickness = 4 mm. TR for the fast 2D GRE sequence with 90-degree FA for the 

32-channel head receive coil could not be kept at 250 ms and was adjusted by the scanner to 291 

ms due to excessive power deposition. It changed the acquisition time for this sequence from 79 s 

to 91 s. For this sequence, we report the temperature change after 79 s – not after 91 s - to be 

consistent with other heating results. 
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Figure 1: A DBS lead with four electrodes placed inside an ASTM F2182 tissue-mimicking gel. Four 
fluoroptic temperature (T) probes are placed next to the DBS lead electrodes to measure the induced 
heating. 

 

3. RESULTS 
 
Table 1 presents the induced peak temperature change (dT) near the DBS lead electrodes as a 

function of the RF coil combinations and pulse sequences. The table shows that the induced heating 

could vary significantly as a function of RF coil combinations and pulse sequences. The peak 

temperature change (dT) near the DBS lead electrode is reported at the end of 79 s for all 2D GRE 

sequences. 
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Table 1: The induced peak temperature change (dT) near the DBS lead electrodes as a function of the RF 
coil combinations and pulse sequences. 

 
Protocol 

No. 
Protocol Name 

(FA, RF) 
RF Coil 
(on/off) 

Flip Angle 
(°) 

B1+rms 
(µT) 

P  
(W) 

dT  
(°C) 

1 GRE (30, Fast) 20-H/N (off) 30 0.9 3.0 1.22 
2 GRE (60, Fast) 20-H/N (off) 60 1.7 12.2 5.99 
3 GRE (90, Fast) 20-H/N (off) 90 2.6 27.3 13.83 
4 GRE (30, Normal) 20-H/N (off) 30 0.7 1.8 0.66 
5 GRE (60, Normal) 20-H/N (off) 60 1.3 7.1 3.24 
6 GRE (90, Normal) 20-H/N (off) 90 2.0 16.0 7.68 
7 GRE (30, Fast) 20-H/N (on) 30 0.9 6.2 3.66 
8 GRE (60, Fast) 20-H/N (on) 60 1.7 24.8 18.94 
9 GRE (90, Fast) 20-H/N (on) 90 2.1 38.3 32.06 
10 GRE (30, Normal) 20-H/N (on) 30 0.7 3.6 2.98 
11 GRE (60, Normal) 20-H/N (on) 60 1.3 14.5 10.40 
12 GRE (90, Normal) 20-H/N (on) 90 2.0 32.7 25.11 
13 GRE (30, Fast) 32-H (off) 30 0.9 3.0 1.64 
14 GRE (60, Fast) 32-H (off) 60 1.7 12.1 7.21 
15 GRE (90, Fast) 32-H (off) 90 2.6 27.1 16.62 
16 GRE (30, Normal) 32-H (off) 30 0.7 1.8 1.20 
17 GRE (60, Normal) 32-H (off) 60 1.3 7.1 3.90 
18 GRE (90, Normal) 32-H (off) 90 2.0 15.9 8.76 
19 GRE (30, Fast) 32-H (on) 30 0.9 5.8 4.83 
20 GRE (60, Fast) 32-H (on) 60 1.7 23.4 23.02 
21 GRE (90, Fast) 32-H (on) 90 2.4 45.3 43.93 
22 GRE (30, Normal) 32-H (on) 30 0.7 3.4 3.14 
23 GRE (60, Normal) 32-H (on) 60 1.3 13.7 14.08 
24 GRE (90, Normal) 32-H (on) 90 2.0 30.8 31.18 
25 GRE (30, Fast) 64-H/N (off) 30 0.9 2.8 2.26 
26 GRE (60, Fast) 64-H/N (off) 60 1.7 11.3 9.03 
27 GRE (90, Fast) 64-H/N (off) 90 2.6 25.4 20.49 
28 GRE (30, Normal) 64-H/N (off) 30 0.7 1.7 1.26 
29 GRE (60, Normal) 64-H/N (off) 60 1.3 6.6 4.92 
30 GRE (90, Normal) 64-H/N (off) 90 2.0 14.9 11.58 
31 GRE (30, Fast) 64-H/N (on) 30 0.9 4.6 3.58 
32 GRE (60, Fast) 64-H/N (on) 60 1.7 18.5 19.39 
33 GRE (90, Fast) 64-H/N (on) 90 2.6 41.7 40.46 
34 GRE (30, Normal) 64-H/N (on) 30 0.7 2.7 2.62 
35 GRE (60, Normal) 64-H/N (on) 60 1.3 10.9 10.54 
36 GRE (90, Normal) 64-H/N (on) 90 2.0 24.4 25.58 
37 GRE (30, Fast) CP-Tx/Rx 30 0.9 1.2 3.77 
38 GRE (60, Fast) CP-Tx/Rx 60 1.7 4.8 5.91 
39 GRE (90, Fast) CP-Tx/Rx 90 2.6 10.8 10.44 
40 GRE (30, Normal) CP-Tx/Rx 30 0.7 0.7 0.73 
41 GRE (60, Normal) CP-Tx/Rx 60 1.3 2.8 2.22 
42 GRE (90, Normal) CP-Tx/Rx 90 2.0 6.3 5.90 
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Figure 2 shows the distribution of the RF heating as a function of the scanner-reported power for 

various RF coil combinations and pulse sequences. The induced RF heating appears to vary 

linearly with the scanner-reported power for various RF coil combinations and all RF coil 

combinations combined. 

 

 

Figure 2: RF heating as a function of the scanner-reported power for all RF coil combinations and pulse 
sequences. 

 

Figure 3 shows the distribution of the RF heating as a function of the scanner-reported B1+rms for 

various RF coil combinations and pulse sequences. The induced heating appears to vary linearly 

with the square of the scanner-reported B1+rms for a given RF coil combination. However, the 

induced heating appears to vary significantly for all coil combinations combined. 
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Figure 3: RF heating as a function of the square of the scanner-reported B1+rms for all RF coil 
combinations and pulse sequences. 

 
Figure 4 presents the distribution of scanner-reported power as a function of the square of the 

B1+rms for various RF coil combinations and pulse sequences. While, in general, the square of 

the ratio of the scanner-reported B1+rms was equal to the ratio of the power for varying flip angles 

and a given RF coil combination, the scanner-reported RF power appeared to vary significantly 

for a given scanner-reported B1+rms as a function of the RF coil combination. 
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Figure 4: Scanner-reported power as a function of the square of the B1+rms for all RF coil combinations 
and pulse sequences. 

 
4. DISCUSSION 
 
Three main observations were made from the results. First, significant heating may be induced 

near an implanted conductive medical device during MRI (13,14). This is because of the time-

varying, non-uniform electromagnetic fields produced in the human body during MRI-induced 

currents in the conductive device and heating near the device. The observation suggests the need 

to accurately determine conditions of safe use to enable imaging patients implanted with 

conductive devices safely in MRI. 

 
Second, the induced RF heating appears to be linearly correlated with the square of the scanner-

reported B1+rms and scanner-reported RF power for a given transmit and receive RF coil 

combination. This can be explained because the induced RF power density distribution near an 

implanted device (and thus, the heating) is expected to be linearly related to the RF power delivered 

from a transmit RF coil and square of the scanner reported B1+rms for a given total RF power loss 
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implant position in an RF coil combination. The observation suggests that the induced heating may 

be controlled by regulating the scanner-reported RF power or scanner-reported B1+rms for a given 

medium, implant placement in the medium, and transmit and receive RF coil combination. 

 
Third, the induced RF heating appears to vary much more for a given scanner-reported B1+rms 

compared to the scanner-reported RF power for all receive-only and body transmit coil 

combinations (Figure 2 vs Figure 3). This is because the scanner-reported RF power (and thus the 

induced heating) appears to vary significantly for a given scanner-reported B1+rms with various 

receive and body transmit coil, RF coil combinations (Figure 4). The observation suggests that all 

combinations of transmit and receive coils may need to be studied for a given medium and medium 

placement within an RF coil combination to identify the transmit and receive RF coil combination 

that requires depositing maximum power for a given scanner-reported B1+rms to determine the 

maximum allowable scanner reported B1+rms to keep the induced heating next to implanted 

conductive devices within the safe threshold. Further, since the induced heating is a function of 

the local electric field along the device and local electric fields, in turn, are related to local magnetic 

fields via Maxwell equations, the observation also suggests that it might be important to investigate 

the relation between the scanner reported B1+rms in a plane to the local magnetic field distribution 

along the device and heating as a function of the medium and medium placement in an RF coil 

combination for all RF coil combinations. 

 
Regarding the limitations of the study, the current study elucidates the challenges of developing 

patient labeling as a function of the scanner-reported B1+rms and/or RF power by keeping the 

medium, device, device placement inside the medium, and device/medium combination inside an 

RF coil combination fixed. Since induced RF heating is expected to vary as a function of the 

medium, device, device placement inside the medium, and device/medium combination inside an 

RF coil combination, the presented heating results should not be interpreted as a representation of 

the worst-case heating that could be induced in a gel phantom or in vivo. Finally, the scanner 

reported B1+rms, real B1+rms in a patient, and computed B1+rms in a whole-body model may 

vary from one another (27) for different MR manufacturers. Therefore, additional similar 

experimental studies are needed on MR scanners of various manufacturers to better understand the 

expected variation in the induced heating near conductive implanted devices for the scanner-
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reported B1+rms and RF power. Experimental and computational investigations should be 

conducted together to develop a better and deeper understanding. 

 
5. CONCLUSION 
 
The RF-induced heating near an implanted conductive device was shown to correlate linearly with 

both the scanner-reported B1+rms and RF power for each coil combination. However, the variation 

in the induced heating for various RF coil combinations appeared to be much larger for the scanner-

reported B1+rms compared to the scanner-reported RF power. Additional studies are needed 

involving various MR scanners to better understand the relationship between the induced heating, 

B1+rms (scanner-reported B1+rms, real B1+rms in patients, computational B1+rms), and RF 

power. 
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