
EHR-ML: A generalisable pipeline for reproducible clinical1

outcomes using electronic health records2

Yashpal Ramakrishnaiaha, Nenad Macesica,c, Geoffrey I. Webba,c, Anton Y. Pelega,c and3

Sonika Tyagia,b,∗
4

aDepartment of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne 3000, VIC, Australia5

bSchool of Computing Technologies, RMIT University, Melbourne 3000, VIC, Australia6

cCentre to Impact AMR, Monash University, Melbourne 3000, VIC, Australia7

8

A R T I C L E I N F O
Keywords:
Digital Health
Electronic Health Records
EHR
Clinical Outcome Prediction
Machine Learning

9 A B S T R A C T10

11

The healthcare landscape is experiencing a transformation with the integration of Artificial12

Intelligence (AI) into traditional analytic workflows. However, this advancement encounters13

challenges due to variations in clinical practices, resulting in a crisis of generalisability.14

Addressing this issue, our proposed solution, EHR-ML, offers an open-source pipeline designed15

to empower researchers and clinicians. By leveraging institutional Electronic Health Record16

(EHR) data, EHR-ML facilitates predictive modelling, enabling the generation of clinical17

insights. EHR-ML stands out for its comprehensive analysis suite, guiding researchers through18

optimal study design, and its built-in flexibility allowing for construction of robust, customisable19

models. Notably, EHR-ML integrates a dedicated two-layered ensemble model utilising feature20

representation learning. Additionally, it includes a feature engineering mechanism to handle21

intricate temporal signals from physiological measurements. By seamlessly integrating with our22

quality assurance pipelines, this utility leverages its data standardization and anomaly handling23

capabilities.24

Benchmarking analyses demonstrate EHR-ML’s efficacy, particularly in predicting outcomes25

like inpatient mortality and the Intensive Care Unit (ICU) Length of Stay (LOS). Models26

built with EHR-ML outperformed conventional methods, showcasing its generalisability and27

versatility even in challenging scenarios such as high class-imbalance.28

We believe EHR-ML is a critical step towards democratising predictive modelling in health-29

care, enabling rapid hypothesis testing and facilitating the generation of biomedical knowledge.30

Widespread adoption of tools like EHR-ML will unlock the true potential of AI in healthcare,31

ultimately leading to improved patient care.32

33
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1. Introduction57

Artificial Intelligence (AI) is rapidly transforming healthcare. AI-enabled predictive modelling of patient outcomes58

[1, 2, 3, 4], can support early disease detection, more targeted therapies, and improved risk stratification. Electronic59

Health Records (EHRs) paves the way for powerful predictive modelling [5, 6, 7, 8, 9]. However, concern around60

non-generalizability of research outcomes is a recurring theme in EHR-based predictive modelling [10, 11]. Models61

trained in one centre may not be applicable in other settings due to difference in clinical practices and data characteristics62

[12, 13]. Hence, to unlock the true potential of AI in healthcare, site-specific modelling is essential, leveraging localised63

data within the institutional EHRs.64

While numerous studies leverage EHRs in this way, they are impaired by the absence of well-established pre-65

processing techniques [14, 15, 16], modelling tools [17, 18, 19], and protocols [15, 18, 20]. This fragmented66

landscape leads to irreproducible results, inconsistent outcomes, needless complexity, and error-prone ad-hoc processes67

[17, 21, 22]. To establish standardization in this process, various frameworks[23, 24] and guidelines [25, 26, 27, 28, 29]68

are proposed for conducting and reporting such studies. Additionally, generic toolkits for predictive modeling have69

been developed to accelerate AI adoption in healthcare[30, 31, 32, 6]. However, these toolkits often suffer from some70

significant limitations. Restricting the data source to a single rigid input format [31, 32], hinders their applicability,71

while non-interpretable neural networks raise implementation concerns in healthcare settings [30, 6]. Furthermore,72

existing solutions lack end-to-end automation, covering data sourcing to model building, posing a roadblock for73

widespread localized deployments. Moreover, limitations such as restrictions in selecting a target, manual feature74

selection processes, and non-robust performance metrics compromise their utility. Additionally, generic out-of-the-75

box models offered by these frameworks often underperform compared to models customized with domain-specific76

nuances. Furthermore, all these approaches require extensive configuration regarding study design choices, including77

data window selection, target viability assessment, sample size optimization, and pre-processing steps.78

Developing an effective study design to construct robust predictive models from EHR data is challenging.79

One major hurdle involves determining the appropriate time window for data collection, ranging from early-stage80

predictions within 12-48 hours [33, 34, 35] to encompassing the entire duration of admission [36],or retrospective81

analysis [37, 38]. Additionally, the scarcity of examples within certain data classes can impede the modeling of82

specific clinical targets [39, 40]. For example, while predicting outcomes for hospital stays exceeding seven days83

may be feasible, it becomes impractical for stays surpassing 30 days due to insufficient data samples. Moreover,84

healthcare data is often constrained by privacy concerns and the high cost [41, 42]. Understanding the minimum85

data requirement for reliable modeling is crucial. Another challenge stems from the class imbalance, resulting in86

skewed outcome distributions, known as representation bias. This imbalance, where the class of interest may have87

fewer instances (e.g., longer hospital stays or patient deaths), can impede model training and necessitate careful data88

balancing strategies [43, 44]. Additionally, the varied scales of clinical attributes pose obstacles for machine learning89

models. Attributes like temperature, measured in degrees Celsius, span a range of 35 to 40, while heart rate, measured in90

beats per minute, typically falls between 60 and 100. Each attribute operates on distinct units and scales. To mitigate this91

issue, data harmonization and scaling techniques are employed to standardize all variables, benefiting certain modeling92

approaches. However, the decision to standardize data adds complexity to the modeling process [45]. Furthermore,93

EHR measurements are recorded at irregular intervals, making it challenging to design data transformation methods94

that retain both magnitude and temporal dynamics for machine learning models. Making informed choices about these95

parameters is crucial for successful modeling but currently relies heavily on empirical guesswork due to a lack of96

appropriate tool sets for exploring optimal parameter values [14, 46].97

In response to these challenges, we introduce EHR-ML, a comprehensive package for the predictive modelling of98

clinical outcomes using the EHR. This package ensures that every stage, from data acquisition to model construction,99

adheres to a clearly defined, domain-specific, data-centric, and reproducible protocol, enforcing optimal practices. To100

demonstrate the effectiveness of EHR-ML, we employed it to forecast clinical outcomes within a selected cohort of101

patients diagnosed with sepsis, a condition demanding time-sensitive intervention and treatment. Within this cohort,102

we conducted predictive modeling for two key clinical outcomes: patient mortality and Intensive Care Unit (ICU)103

Length of Stay (LOS) [47, 48, 49].104

To demonstrate its utility, we performed predictive analysis for mortality risk, a pivotal area of focus [50, 51, 52, 53],105

owing to its significance in patient care and resource management. Prompt identification of mortality risk equips106

healthcare professionals with crucial insights for patient triage, treatment strategies, efficient resource distribution,107

and a comprehensive comprehension of the factors affecting patient outcomes. Traditionally, severity scoring systems108
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Cohort Patients Episodes Data
Source

Inclusion Cri-
teria

Inclusion Condition

MIMIC
IV ICD

691 729 MIMIC
IV

Sepsis ICD
codes

Recorded ICD-9 codes of 995.91, 995.92, and
785.52, and ICD-10 codes of A419, R6520, and
R6521 corresponding to sepsis, severe sepsis, and
septic shock respectively

MIMIC
IV Micro

1790 1790 MIMIC
IV

Positive blood
culture result

Microbiology investigation yielded a positive result
with a bacteria detected

eICU ICD 9612 11146 eICU Sepsis ICD
codes

Recorded ICD-9 codes of 995.91, 995.92, and 785.52
corresponding to sepsis, severe sepsis, and septic
shock respectively

Table 1
Details of the three patient cohorts used in this study: MIMIC IV ICD (identified by ICD codes), MIMIC IV Micro
(microbiologically confirmed sepsis), and eICU ICD (identified by ICD codes). The number of patients and episodes in
each cohort, along with the source of the data, inclusion criteria, and the specific condition used for inclusion is presented
in this table.

like SOFA [54], qSOFA [55], SAPS II [56], and APACHE [57] have played a crucial role in this regard. However,109

leveraging localised data, machine learning has emerged as a promising alternative outperforming the one-size-fits-all110

conventional scoring schemes. The next prediction task deals with forecasting another clinical outcome, the ICU-111

LOS. The LOS prediction is usually approached as a binary prediction problem [58, 59, 60], although some studies112

adopt continuous regression modelling methods [61, 62]. Notably, the prediction of LOS poses increased complexity113

compared to mortality prediction [63], as patient distinctions are less pronounced between the classes in this case. By114

modelling these two diverse outcomes, we aim to showcase the utility, versatility, and simplicity of EHR-ML.115

In essence, the goal of EHR-ML is to bridge existing gaps by providing a user-friendly, open-source platform that116

enables clinicians and researchers to effectively leverage the potential of institutional healthcare data.117

2. Methods118

2.1. Data119

The development and assessment of EHR-ML utilised two openly accessible, EHR datasets: Medical Information120

Mart for Intensive Care (MIMIC) IV [64] and eICU [65]. MIMIC IV consists of the data from a single large tertiary121

teaching hospital, while eICU includes data from a network of critical care units. From these two sources, three distinct122

cohorts focused on sepsis patients were extracted (refer to Table M1). From each cohort, vital signs and laboratory123

measurements were extracted for analysis. Next, both datasets were standardised to the OMOP-CDM schema [66, 67]124

and mapped to standard SNOMED vocabulary [68]. This was achieved through the standardisation module within our125

previously published EHR-QC tool [69]. Standardisation facilitates consistent data interpretability, leveraging existing126

tools, interoperability of developed tools, standardised pre-processing, and deduplication of the data.127

2.2. Machine learning128

For machine learning, the chosen data cohort underwent rigorous preprocessing with the EHR-QC quality129

assurance module (see supplementary figure S1). Initially, vital signs and laboratory measurements for the patient130

cohort were extracted. Subsequently, a subset of measurements recorded for a high proportion of patients (over 80% in131

this work) was retained after coverage analysis. This analysis report lists attributes by prevalence in the EHR, aiding132

in determining a suitable threshold. The measurements that are rare in the EHR lack sufficient numbers for effective133

modelling, hence removed from the analysis. Essentially, this process retains the most widely recorded measurements134

(e.g., temperature and heart rate) whereas, rarely occurring measurements (e.g., Intracranial pressure) are removed.135

The subsequent phase entails formatting the chosen data to render it compatible with machine learning tasks.136

EHR data usually contains high-resolution vital signs and laboratory measurements with many recordings within a137

short period. While this information is valuable in modelling, directly utilising such data can be a challenge with138

the feature-based machine learning algorithms that necessitate the data to be structured as a two-dimensional matrix.139

This is addressed by employing a multi-faceted aggregation approach [70] using five functions: minimum, maximum,140

first value, last value, and mean. These aggregations are applied to vitals and lab measurements, producing 10 feature141
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Figure 1: A) This panel depicts a typical patient timeline with key timestamps: hospital admission (Day 1), ICU admission
(Day A), and discharge (Day D). The, WB and WA parameters define the data window used for obtaining the data
from A - WB to A + WA. The relevant clinical outcomes, LOS [LOS = discharge time D - admission time A], and
mortality indicating the patient status at discharge, are also shown. B) This panel illustrates the multi-level ensemble
architecture utilised by EHR-ML for machine learning. Level 1 consists of four individual models – XGB, LR, LGBM, and
MLP – each trained on vital signs and laboratory measurements formed using five different aggregation functions (see
methods). Level 2 then combines the learned feature representations to build the final ensemble model. C) This panel
depicts datasets with varying positive and negative class ratios, constructed for analysing the impact of class imbalance
on model performance. D) This panel showcases datasets of different sizes obtained through sampling, used for analysing
the influence of sample size on model performance. For this analysis, both the classes are randomly sampled without any
stratification. E) This panel illustrates multiple patient timelines with different data windows generated by varying the
WB and WA parameters, used for analysing the influence of data collection window on model performance. F) This panel
compares three data representations: raw data without any transformations, data scaled using Standard Scaling (mean of 0
and standard deviation of 1), and data scaled using MinMax Scaling (minimum of 0 and maximum of 1). These variations
enable analysis of the impact of data standardisation on model performance.

sets. Grouping attributes prevents an excessive number of features, mitigating the curse of dimensionality. Each group142

captures distinct time-series aspects, allowing extraction of statistical features and temporal dynamics. This ensures143

retention of crucial information on central tendency and variability post-aggregation, resulting in a richer representation144

for analysis and modeling.145

The formatted data typically includes some percentage of missing values, representing unrecorded measurements146

on specific dates. EHR-QC’s advanced imputation module automatically selects the most suitable method for each data147

type and missing proportion, providing optimal estimates for missing values. Following this, an unsupervised outlier148

detection algorithm [71] is employed to identify and remove highly eccentric data points. Ultimately, the QA process149

produces a high-quality data matrix suitable for modeling purposes.150
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The quality-assured data encompass all the available data from the patient timeline, whereas there is a need151

to restrict the data within a certain time frame or time window for modelling purposes. For instance, while using152

retrospective data for predicting the patient’s risk of mortality post 2 days of admission time, all the futuristic data at153

the time of prediction (48 hours) needs to be purged.154

A patient enters the hospital, marking the start of the analysed timeline denoted as Day 1. If transferred to ICU, the155

day of ICU admission is marked as Day A and day of discharge marked as Day D. The time-window usually centres156

around ICU admission (Day A), but can be anchored to any other relevant time point such as the time of positive157

microbiology culture result. We determine the starting point of our data window with a parameter called "window158

before" (WB), indicating how much historical data we capture before the anchor time. Conversely, the parameter159

"window after" (WA) determines the end point of the data window, representing the duration of data considered after160

the anchor time. The data window thus spans from A - WB to A + WA, covering a total duration of WB + WA.161

Selecting appropriate values for WA and WB depends on the study design. Increasing WB includes more historical162

data for modeling, while increasing WA extends the data collection period post anchor point.163

The next step is to calculate the target variable for the prediction. In this work, we specifically looked at two clinical164

outcomes, discharge mortality and ICU LOS. The mortality on discharge is a binary outcome indicating whether the165

patient survived during the ICU stay. The LOS is calculated as the difference between discharge and admission times166

(D - A). In this work, to facilitate binary classification, we framed LOS prediction as the probability of a patient167

exceeding a set hospital stay duration threshold. Specifically, we set the threshold as 7 and 14 days. This approach168

allows flexible adaptation of the target variable, enabling predictions for any threshold duration. In fact, EHR-ML169

provides the flexibility to model any clinical outcome of interest that is either directly present or derived from the170

EHR.171

Internally, EHR-ML leverages a two-layer ensemble architecture for robust clinical outcome prediction (Figure172

1-B). At level 1, four distinct models - XGBoost (XGB), Logistic Regression (LR), Light Gradient Boosted Machines173

(LGBM), and Multilayer Perceptron (MLP) – are individually trained on 10 feature sets. As each feature set is used174

by all four models, a total of 40 models are built at level 1. The predictions from Level 1 models are used as input to175

the second layer (Level 2). Using the outputs from level 1 models as inputs for level 2 helps to combine the strengths176

of individual models. This intermediate data, shown in figure 2 to have better discriminative power, serves as input177

for the final XGBoost prediction. In this architecture, obtaining the important features of the final model will help in178

understanding factors affecting the clinical outcome under consideration making it interpretable. Hyperparameters for179

each model at both layers are individually optimised specifically for the corresponding data input, ensuring optimal180

performance.181

2.3. Analytic evaluation and validation182

We evaluated and compared the performance of different models using a comprehensive set of metrics and183

visualisations. For individual model assessment, standard metrics like accuracy, balanced accuracy, average precision,184

F1 score, area under the receiver operating characteristic curve (AUROC), and Matthews correlation coefficient-F1185

(MCCF1) were computed. To facilitate comparisons between different models, we reported True Positives (TP), True186

Negatives (TN), False Positives (FP), and False Negatives (FN), along with a heatmap of the confusion matrix to187

visualise them. All metrics were calculated over 5-fold cross-validation, and mean values were reported.188

We compared the performance of our ensemble model by benchmarking it against the traditional SAPS II scoring189

system [56]. SAPS II utilises 12 physiological and 3 disease-related variables, assigning individual scores for variable190

ranges and aggregating them to calculate a final score. This score can then be used to estimate the risk of mortality191

through a predefined formula. In addition, we built another model, EHR-ML-SAPS-II, utilising EHR-ML ensemble192

architecture, but restricting the features to only those used in SAPS-II. This allowed for a direct comparison between193

the ensemble model’s architecture and traditional scoring methods while controlling for data variations.194

2.4. Parameter optimisation for study design195

EHR-ML encompasses an analysis suite to determine the optimal study design for modelling a specific clinical196

outcome and guide efficient data collection and preprocessing strategies.197

• Class Ratio Analysis This analysis explores the fluctuation in model performance as the proportions of positive198

and negative classes vary (Figure 1-C). Understanding the impact of class imbalance helps identify reliable199

performance metrics in extreme class ratio scenarios and informs strategies to mitigate the bias. Additionally,200
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Figure 2: This figure compares the original data (A) to the learned feature representations (B). While the data is high-
dimensional and difficult to visualise, t-SNE projects it onto a 2D space for comparison. Each data point is coloured and
shaped according to its class (orange and “x” for class 1, blue and “o” for class 0). Comparing the two plots reveals that
the learned feature representations lead to a clearer separation between classes. This improved class separability translates
to better predictive performance in downstream modelling tasks.

it helps assess whether a particular clinical outcome has adequate representation from the minority class to be201

considered suitable for modeling.202

• Sample Size Analysis This analysis serves to pinpoint the ideal data size necessary for a specific predictive task,203

a critical aspect for both retrospective and prospective studies. The process entails randomly sampling data of204

various sizes and constructing machine learning models utilizing 5-fold cross-validation By doing so, it enables205

the evaluation of current data sufficiency and provides direction for data augmentation in retrospective studies.206

Furthermore, it offers insights into sample size necessities for prospective studies. (Figure 1-D).207

• Data Window Analysis By varying the "window before" (WB) and "window after" (WA) parameters (Figure208

1-E), EHR-ML finds the optimal window for collecting data relevant to a prediction task. The best WB parameter209

determines the sufficient extent of historical data needed, while the best WA parameter reveals the optimal time210

duration after the admission (or a custom anchor point) for obtaining the data to get reliable outcome predictions.211

• Data Standardisation Analysis This analysis compares the performance of models trained on raw and scaled212

data (Figure 1-F). It helps to decide if scaling is beneficial and, if so, which scaling strategy provides the best213

results. While some machine learning models handle rescaling internally, others are sensitive to it, necessitating214

careful analysis.215

Additionally, EHR-ML offers flexibility by allowing these analyses to be applied either to the ensemble model or216

a standalone machine learning model.217

3. Results218

3.1. EHR-ML outperforms off-the-Shelf models in a comprehensive evaluation219

We compared the EHR-ML pipeline against both constituent models within the ensemble and standalone models220

constructed with standard Python libraries. First, we trained EHR-ML to predict the risk of mortality in patients221

diagnosed with sepsis [64]. Subsequently, we performed 5-fold cross-validation and obtained the average AUROC,222
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MCCF1, Accuracy, Balanced Accuracy, Average Precision, and F1 scores. These metrics were also calculated for the223

constituent models within EHR-ML, grouped into four categories based on their machine learning algorithm namely224

XGB, LR, LGBM, and MLP. Figure 3-A presents a spider plot comparing the performance of EHR-ML with the225

best-performing constituent model under each category. Further, we trained standalone XGB and LR models on the226

same dataset. Eventually, the performance of each model was evaluated using various metrics, visualised in figure 3-B227

and further detailed in supplementary tables S2 and S1.228

Figure 3: Performance comparison of EHR-ML and individual model constituents across six evaluation metrics, including
AUROC, MCCF1, Accuracy, Balanced Accuracy, Average Precision, and F1. A) Panel A compares EHR-ML against the
best performing constituent model within each category. The categories include XGB, LR, LGBM, and MLP and there
will be 12 individual models under each of them. B) Panel B compares EHR-ML against standalone models trained on the
same dataset. Overall, these plots demonstrate the consistent performance advantage of EHR-ML relative to both internal
constituent models and external standalone models.

Across both comparative evaluations, EHR-ML consistently demonstrates an improved overall performance against229

all constituent and standalone models, demonstrating its superior overall performance in clinical prediction tasks. This230

suggests that the two-layered ensemble approach of EHR-ML successfully leverages the complementary strengths of231

multiple constituent models to achieve superior performance and generalizability compared to off-the-shelf solutions.232

Specifically, it benefits as each Level 1 model captures different aspects of the data, leading to a more comprehensive233

representation upon combining. The well-separated predictions from Level 1 make the final model less susceptible234

to class imbalance issues. As the second layer operates on probability outputs from the previous layer, the need for235

data scaling or standardisation is less crucial. Overall, this two-layered architecture allows EHR-ML to extract rich236

learned feature representations from the data, leverage diverse modelling approaches, and mitigate the impact of class237

imbalance, ultimately leading to robust and accurate clinical outcome predictions.238

3.2. EHR-ML outperforms traditional scoring system (SAPS II)239

We further evaluated the performance of EHR-ML trained on all the attributes, referred to here as EHR-ML-FULL,240

against a traditional severity of illness scoring scheme, SAPS II [56]. In addition, we included EHR-ML-SAPS-II, a241

model also based on EHR-ML architecture but trained only on SAPS II variables. Figure 4-A presents overlapping242

ROC curves for SAPS-II, EHR-ML-SAPS-II, and EHR-ML-FULL, allowing for comparison of their predictive power243

across various thresholds. Further, figures 4-B, 4-C, and 4-D further depict the confusion matrices for these models at244

a calibrated threshold. Furthermore, the table 2 presents their TP, TN, FP, and FN values. This analysis was performed245
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to facilitate the comparison of the strengths and weaknesses of EHR-ML and the SAPS-II in identifying true and false246

predictions for the two target classes.247

Figure 4: The figure depicting a comparative analysis between the three methods - EHR-ML-FULL, the traditional scoring
scheme - SAPS II, and the EHR-ML-SAPS-II model. A) This figure shows an overlapping ROC plot for all three models
- EHR-ML-FULL, EHR-ML-SAPS-II, and SAPS-II. B-D) The confusion matrix is presented as a heatmap for SAPS-II,
EHR-ML trained on SAPS II variables - EHR-ML-SAPS-II, and EHR-ML trained on all the variables - EHR-ML-FULL. In
the confusion matrix, the vertical axis shows actual patient survival while the horizontal axis displays predicted outcomes.
Both axes use "0" for the negative class (survival), and "1" for the positive class (deceased). Each cell reveals the number
and percentage of patients falling into each category, with the total class counts displayed in the diagonal cells. The
variations in colour intensity visually highlights the percentage of observations in each cell.
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Model AUROC TP TN FP FN
SAPS II 0.5907 25.2 % 92.9 % 74.8 % 7.1 %
EHR-ML-SAPS-II 0.7040 48.1 % 92.7 % 51.7 % 7.3 %
EHR-ML-FULL 0.7217 51.4 % 93.0 % 48.6 % 7.0 %

Table 2
The table provides a comprehensive summary of performance metrics, including AUROC, TP, TN, FP, and FN for SAPS-II,
EHR-ML trained on SAPS II variables - EHR-ML-SAPS-II, and EHR-ML trained on all the variables - EHR-ML-FULL.
Higher values are desirable for TP, TN, and AUROC, while lower values are preferred for FP and FN. It can be seen that
the EHR-ML trained on full data displays highest performance across all the assessed metrics hence the corresponding row
is highlighted.

Figure 4-A reveals the superiority of both EHR-ML variants in predicting mortality risk as compared to248

conventional SAPS II scoring scheme across various thresholds. Further analysis of the confusion matrices presented249

in figures 4-B, 4-C, and 4-D reinforces this observation. In all three plots, both EHR-ML variants outperform SAPS250

II across all quadrants, showing a notable twofold increase in true positives while maintaining similar levels of false251

positives. This translates to a remarkable improvement, with EHR-ML variants correctly identifying mortality rates252

twice as often as SAPS II. Moreover, the comparison serves as compelling evidence for the effectiveness of EHR-ML’s253

two-tier ensemble architecture and the encompassing feature representation learning. The fact that both the models254

utilise the same data set, highlights the inherent advantage of the EHR-ML’s novel architecture. In conclusion, these255

findings demonstrate that EHR-ML offers significant improvements over traditional methods like SAPS II in terms of256

accurately identifying high-risk patients.257

3.3. Superior performance without the need for scaling258

To investigate the requirement of data scaling, we evaluated the model on three different datasets. The raw dataset259

contained the original, non-scaled features directly extracted from the EHR. Secondly, the standard-scaled data, utilised260

a standard scaler to transform each feature to have a mean of 0 and a standard deviation of 1. Third, the min-max261

scaled data, employed a min-max scaler to transform each feature to have a minimum value of 0 and a maximum262

value of 1. On these three datasets, we performed a 5-fold cross-validation for each dataset to assess the model’s263

performance in predicting in-hospital mortality (supplementary table S3). Next, we calculated the AUROC for each264

fold and subsequently generated a box plot summarising the distribution of these values over 5-fold cross-validation265

(supplementary figure S2).266

The EHR-ML model proposed shows excellent accuracy in predicting mortality risk, and it achieves this without267

needing data scaling. This is because the model’s initial layer generates feature representations that are inherently268

uniform, with each subset of features producing a risk score between 0 and 1. These scores act as inputs for the second269

layer of the model, which combines them to make final predictions. Because the inputs to the final model are already270

within a consistent range, traditional scaling methods are unnecessary. This is a significant advantage of EHR-ML, as271

it simplifies the model pipeline and reduces computational overhead. Additionally, the absence of data scaling ensures272

that the model’s predictions are not influenced by scaling parameters, making them more robust and generalizable273

across different datasets.274

3.4. EHR-ML excels with both narrow and extended data windows275

To determine the amount of data required for the model to make reliable predictions, we performed a data window276

analysis. The analysis involved varying the size of a temporal window around the anchor point by modifying two277

parameters namely window before and window after. In this analysis, the window before parameter spanned from 0 to278

3 days before the anchor point. Similarly, the window after parameter ranged from 1 to 14 days after the anchor point at279

the end of which the predictions were made. For each combination of the two parameters, we calculated the EHR-ML280

model’s performance in terms of average AUROC over 5-fold. These values are tabulated in table 3 and plotted as281

a heatmap in figure 5, providing a visual representation of the impact of the data window in predicting in-hospital282

mortality.283

The figure (Figure 5) reveals the impressive performance of EHR-ML even with limited data availability. Notably,284

the model achieves a good AUROC of 0.72 on day 1, using data from less than 24 hours post-admission. This is285

comparable to the performance of SAPS II (0.73) built using data collected for more than the first 24 hours. This286
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Figure 5: Heatmap displaying AUROC performance across varied data collection windows: Lower boundary initiated 3 days
prior to the anchor day (ICU admission) and concluding on the anchor day; upper boundary commencing 1 day post-anchor
point and concluding 14 days thereafter. The colour intensity for each cell corresponds to labelled average AUROC values.
A legend is provided on the right for reference.

(Days)\(Days)
Before \ After

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0.72 0.76 0.76 0.80 0.79 0.86 0.83 0.84 0.84 0.85 0.84 0.84 0.84 0.85
1 0.72 0.77 0.77 0.80 0.83 0.84 0.83 0.82 0.83 0.83 0.85 0.85 0.85 0.85
2 0.73 0.77 0.78 0.79 0.83 0.82 0.82 0.81 0.83 0.84 0.85 0.86 0.85 0.86
3 0.72 0.77 0.78 0.80 0.83 0.83 0.83 0.82 0.83 0.84 0.85 0.85 0.87 0.87

Table 3
The table presents average AUROC values across various time windows. The data collection window’s lower boundary
begins 3 days before the anchor day (ICU admission) and concludes on the anchor day. The upper boundary starts 1 day
post-anchor point and concludes 14 days afterward.

demonstrates the early predictive power of EHR-ML, potentially enabling timely interventions and improved patient287

outcomes. Furthermore, as the data window increases, providing more context, EHR-ML’s performance consistently288

improves, surpassing the benchmark of SAPS II by a significant margin on day 2 at which point there is data of a289

full 24-hour period. This trend continues as the data window expands, with performance steadily improving due to290

the model’s ability to capture and utilise temporal information from the time series. This analysis demonstrates EHR-291

ML’s dual strengths: achieving competitive performance at the very beginning of a patient’s admission and exhibiting292

continual improvement with longer data availability.293
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3.5. EHR-ML achieves high performance with limited data294

To evaluate the impact of sample size on EHR-ML’s performance, we conducted a sample size analysis. We295

randomly sampled the data from the eICU ICD Cohort, starting with 200 samples and incrementally increasing the296

size by 100 until reaching 1000. Beyond this point, the sample size increased in steps of 1000, culminating in the297

full dataset size of 11,146. For each sample size, we performed 5-fold cross-validation and calculated the average and298

standard error of the AUROC for predicting in-hospital mortality (S4 and figure 6).299

Figure 6: The figure displays a bar plot presenting the average AUROC obtained through 5-fold cross-validation across
various sample sizes. Error bars depict standard errors for each sample size. The sample sizes represent the number of
episodes used in the analysis, starting from 200 episodes with increments of 100 until 1000. Beyond this, the sample size
increases in steps of 1000 until reaching 10000, with the maximum available samples (11146) included at the end.

Figure 6 reveals a substantial initial performance gain as the sample size increases, reaching a plateau of around300

500 samples. This suggests that EHR-ML achieves significant performance even with a relatively small dataset, which301

is remarkable considering the high dimensionality of the data. This can be attributed to the model’s architecture,302

which divides features into various subsets. This approach allows EHR-ML to effectively handle high-dimensional303

data without affecting its predictive capabilities. Furthermore, the figure suggests that performance stabilises after304

3,000 samples, with minimal variation observed beyond this point. This indicates that 3,000 samples may represent an305

optimal sample size for achieving stable and reliable results for this analysis using EHR-ML. This insight can be used306

to improve research design and resource allocation in using this model for practical applications.307

3.6. Cautionary note on evaluating performance in the face of imbalance308

The next EHR-ML analysis explored the effect of class imbalance on standard performance metrics. Class ratio309

indicates the proportion of various classes in the dataset, like the ratio of positive to negative observations in binary310

classification. In EHR-based prediction tasks, encountering highly imbalanced classes is common. This analysis aimed311

to identify metrics better suited for highly imbalanced data and potentially misleading ones. To achieve this, we312

created datasets with varying class ratios, ranging from a perfect 50-50 balance to a highly skewed 95-5 ratio. We313

then calculated the average value of various performance measures for each class ratio and tabulated the results314

in supplementary table S5. Subsequently, a line plot (supplementary figure S3) presenting the trend lines for these315

measurements is plotted, providing a visual representation of the behaviour of different metrics under different levels316

of class imbalance.317

Ramamrishnaiah et al.: Preprint submitted to medRxiv Page 12 of 19



EHR-ML

The supplementary table S5 and supplementary figure S3 provide valuable insights into the impact of class318

imbalance on various performance metrics. Increasing class imbalance reveals notable discrepancies in metric319

behavior. AUROC remains relatively stable, while accuracy can be misleadingly inflated, potentially obscuring issues320

in minority class identification. Conversely, F1 score and MCC exhibit sensitivity to class imbalance, offering a more321

nuanced evaluation of model performance across all classes. Additionally, MCCF1 [72], combining F1 and MCC,322

emerges as a promising metric in highly imbalanced data scenarios. These findings underscore the importance of323

carefully selecting performance metrics for models trained on imbalanced data. Metrics like accuracy may appear324

intuitive but can be deceptive in such contexts. Instead, prioritizing metrics like MCCF1 provides a more dependable325

assessment of model performance across diverse classes.326

3.7. Robust LOS prediction with EHR-ML327

Another outcome that is considered in this study is predicting the LOS. Specifically, two separate EHR-ML328

classifiers were trained to predict whether an ICU admission would exceed 7 and 14 days. To that end, two new target329

attributes were derived from the existing patient admission records, each corresponding to the respective LOS cut-off.330

Next, the optimal configuration for both the targets we obtained by running benchmarking analysis. Figure 7 presents331

the results from this analysis.332

The results presented in supplementary tables S6, S7, and the figure 7 illustrate performance of the EHR-ML in333

predicting LOS exceeding 7 and 14 days. The supplementary table S6 reveals impressive performance for both models334

in predicting LOS. Notably, the high AUROC values consistently exceeding 0.95 and MCCF1 values over 0.8 indicate335

excellent discrimination between ICU admissions with long and short stays. Figure 7-A further reinforces these findings336

through the ROC curves for both models exhibiting excellent coverage. Figures 7-B and 7-C offer visual confirmation337

of the model’s ability to correctly identify both classes with high confidence. The confusion matrices reveal high338

percentages for both true positives and true negatives. Furthermore, by examining the diverse time windows and their339

influence on model performance in supplementary table S7, figures 7-D, and 7-E, researchers can make informed340

decisions regarding the most suitable window for their specific predictions.341

3.8. EHR-ML offers a user-friendly interface for clinical outcome prediction from EHR342

EHR-ML simplifies model building, performing prediction, running cross-validation evaluation, and performing343

analysis such as data window analysis, sample size analysis, class ratio analysis, and standardisation analysis. It offers344

two distinct access points - command line library and a web-portal to promote open research practice. The command345

line library empowers users with technical expertise to leverage EHR-ML’s functionalities through straightforward346

installation and execution. This option grants direct control over the analysis process using the command line, enabling347

customization and integration with existing workflows. In addition, to cater to the users with limited programming348

experience, the web-portal (refer to figure 8) is made available. It provides an web-based interface for accessing the349

full spectrum of EHR-ML’s capabilities. Both access points require data to be formatted in a specific manner. EHR-QC350

[69], our previously developed toolkit, conveniently aids in preprocessing as well as preparing data compatible with351

EHR-ML. Besides, the simple data representation format required by the utility is easy to construct without relying on352

any specific tools.353

4. Discussion354

The use of machine learning for predicting clinical outcomes shows significant potential in improving healthcare355

decision-making. However, this field faces limitations that hinder its impact. Our survey reveals a prevalent reliance on356

expert intuition in constructing predictive models, potentially resulting in suboptimal solutions and hinder automation.357

Additionally, majority of studies rely on one-time, inflexible codebases, limiting their applicability to various clinical358

outcomes. The lack of a standardized process impedes the comparison of different studies, hindering the generation of359

reliable knowledge. Moreover, the use of off-the-shelf models overlooks the complexities of health domain time series360

measurements and the challenge of class imbalance.361

The EHR-ML pipeline emerges as a compelling solution to the challenges encountered in clinical outcome362

prediction. Moreover, its adaptable interface allows for the customization of data windows, anchor points, and target363

variables, offering precise control over the modeling process. Additionally, it seamlessly integrates with our EHR-QC364

preprocessing tool [69], facilitating a streamlined and automated workflow, from data sourcing to outcome modelling.365

Its innovative approach, characterized by a data-driven methodology and a flexible open-source codebase, holds366
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Figure 7: This figure compares the performance of two models in predicting whether a patient’s LOS in the ICU will exceed
set durations of 7 and 14 days. A) The plots in Panel A display ROC curves for both the models. This visualisation helps
assess the trade-off between sensitivity and specificity across different thresholds. The AUC values are listed for each model
in the figure legend along with the corresponding label. B - C) The next two plots in panel B and C show the confusion
matrix of the two models. Analysing these values allows us to evaluate the models’ ability to identify both positive and
negative cases, as well as the rate of misclassification for each category. In the confusion matrix, the vertical axis represents
actual patient LOS status while the horizontal axis corresponds to the predicted outcomes. Both axes use "0" for the
negative class (stays below the set duration), and "1" for the positive class (stays over the set duration). Each cell reveals
the number and percentage of patients falling into each category, with the total class counts displayed on the diagonal
cells. The variation of the colour intensity visually highlights the percentage of observations in each cell. D - E) Panels D
and E present heat-maps illustrating the variation in AUROC performance for different data collection windows. Each cell
corresponds to an average AUROC value, with colour intensity reflecting the level of performance. The lower boundary of
each window starts 1 day before ICU admission (anchor day) and ends on the anchor day, while the upper boundary begins
1 day after the anchor point and concludes 7 days later. A legend for colour interpretation is provided on the right.

promise in addressing these hurdles. Through comprehensive benchmarking analysis, we anticipate that the EHR-ML367

pipeline will streamline the process of knowledge generation and facilitate process automation.One notable strength368

of the EHR-ML pipeline is its two-layered ensemble modelling approach which offers a proven machine learning369

model specifically designed for EHR data. This tailored approach enhances the accuracy and reliability of predictive370

models in healthcare settings. Additionally, the feature engineering functionalities provided by the EHR-ML excels371

at extracting and leveraging temporal signals from time-series data, a key challenge in this domain. Furthermore, the372

performance metrics offered by the EHR-ML pipeline provide comprehensive insights into model performance in373

real-world scenarios, even when dealing with skewed data distributions. This capability ensures that the models can374

be effectively evaluated and optimized for practical application in healthcare settings.375
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Figure 8: This figure provides a screenshot of the EHR-ML web utility interface. This user-friendly platform enables model
building, predicting prediction, running cross-validation, and performing several analyses such as data window analysis,
sample size analysis, class ratio analysis, and standardisation analysis. The intuitive interface allows users to upload
formatted data and readily conduct various analyses.

5. Conclusion376

EHR-ML represents a notable stride in democratizing and streamlining clinical outcome prediction with EHR377

data. By eliminating common obstacles and offering a straightforward route to dependable and replicable analyses,378

it facilitates accessibility. Available both as a command-line interface and a user-friendly web utility, it empowers379

researchers across various technical proficiencies to conduct predictive modeling for a wide range of clinical outcomes380

with ease. The open-source nature of the source code encourages community involvement, not only for utilization but381

also for active contribution. This contribution aims to propel the field forward, fostering reproducibility, comparability,382

and data-driven optimization in EHR-based clinical outcome studies.383
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