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Abstract  

Background: Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder 

characterized by persistent deficits in social communication and interaction, along with 

restricted and repetitive behaviour patterns, interests or activities. Its prevalence has risen 

over the past few years, being four times more common in boys than girls. The cause of ASD 

is unclear, its etiology involves genetic, environmental, and gene-environment interactions. 

While past studies highlighted clinical genetic risks, genetic complexity of ASD, with 

variants of diverse frequencies, type, and inheritance patterns, requires further exploration for 

better management of disease. Researches have shown that the whole exome sequencing can 

be used to identify genetic variants associated with genetically heterogeneous conditions. The 

purpose of this study is to identify genetic variants by employing whole exome sequencing in 

an Indian ASD patient. 

Methods: A female patient of age within 0-5 years, having characteristic features like 

hyperactivity and language impairment, was investigated and diagnosed using DSM-5 

criteria. Peripheral blood sample collection was done followed by DNA extraction and whole 

exome sequencing. Variants analysis, identification and annotation were done using 

bioinformatics tools and databases. Identified pathogenic variants were reconfirmed by 

Sanger sequencing. 

Results and conclusion: Our study uncover four genetic variations, comprising three 

missense variations in KIF1A (c.3839C>T), SETD5 (c.314A>C), MAPK81P3 (c.2849C>T), 
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and one-stop gain variation in ERMARD (c.1523G>A). The ERMARD stop gain variation, 

predicted to induce nonsense-mediated decay, alter normal protein function through 

truncation and classified as likely pathogenic based on the ACMG guidelines and current 

available scientific evidence. In conclusion, we identified a likely pathogenic variant in 

ERMARD along with three missense variants in KIF1A, SETD5 and MAPK81P3 respectively. 

These findings suggest the potential contribution of ERMARD mutations to ASD 

susceptibility, emphasizing the need for further validation through functional studies.   

Keywords: Autism spectrum disorder, neurodevelopmental disorder, whole exome 

sequencing, language impairment, bioinformatics, missense variation 

 

Introduction 

Autism Spectrum Disorder (ASD) is a common heterogenous lifelong neurodevelopmental 

condition ranging from mild to severe and characterized by persistent deficits in social 

communication and social interaction, restricted, repetitive patterns of behaviour, interests, or 

activities with unusual sensory-motor functions [1, 2]. Due to the absence of reliable 

biomarkers, the diagnosis most often is based upon the behaviour of the child. In recent years, 

its prevalence has gradually increased and become four times more common among boys 

than girls [3]. The estimated global prevalence of ASD is one in 100 [4]. The reported 

prevalence of ASD in South Asia is estimated to be one in 93 [5]. In India, the estimated 

prevalence of ASD in rural areas is 0.11% while in urban areas it is 0.09% (ages 1-18 years) 

[6]. ASD is clinically heterogeneous, some individuals presenting mild symptoms and others 

experiencing severe symptoms with a range of co-occurring physical and mental health 

conditions [7]. The etiology of ASD has not been understood, studies have shown that it may 

be multifactorial; genes, environment and gene- environment interactions play important role 

in the pathogenesis [8]. Large number of genes reported to be involved in the pathogenesis 

ASD, majority of which expressed in neuronal cells and enriched in maturing neurons 

[9,10,11,12] and thought to converge on common pathways affecting neuronal and synaptic 

homeostasis [13]. Pathway network analyses of gene ontologies suggest that, genes 

contributing to the core features of ASD may also contribute to other vulnerabilities, that is 

important molecular mechanisms leading to multiple systemic comorbidities that also overlap 

with other conditions [14]. Variations in multiple genes show the strong evidence of 

involvement of genetic factor in the pathogenesis of ASD [15]. Twin studies suggest the 
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heritability of ASD to be 64%-91% [16]. Previous studies show the chromosomal 

abnormalities, copy number variations (CNVs) and single nucleotide variations (SNV) have 

been associated with ASD [17]. Rare or de novo genetic variants are identified in 5%-20% of 

individuals with ASD, and more often associated with complex medical presentation [18]. 

Rare variants causing ASD risk collectively encompass hundreds of genes [19], while copy-

number variant and de novo protein-altering mutations show extreme locus heterogeneity 

[20]. In recent years development in genomic sequencing have transformed variant discovery, 

different approaches have been used to discover the genetic variants associated with ASD. 

Whole exome sequencing has been used to identify rare and novel genetic variation related to 

neurodevelopmental disorders [21] and have greatly improved the chance of identifying 

known as well as novel responsible genes [22, 23]. Studies has reported the combining 

clinical and molecular diagnosis is fundamental to deepen the knowledge of the pathogenic 

mechanisms of neurodevelopmental disorders underlying medical conditions and to develop 

personalized treatments [24].  

In the present study, WES was performed for a patient sample with a diagnosis of an ASD 

related phenotype. We identified four genetic variations, including three missense and one 

stop gain variation.  We select the variant which are predicted to alter normal protein function 

through protein truncation and classified as likely pathogenic for the reported phenotype 

based on current available scientific evidence using ACMG guideline [25]. 

In conclusion findings of this study provide valuable insights for pathogenicity of genetic 

variations and shed light on the underlying molecular process involved in ASD and confirm 

the efficacy of WES in detecting pathogenic variants in ASD candidate genes. 

Material and Methods 

Recruitment of patient and sample collection 

Patient was enrolled from West Bengal, India. The study protocol was approved by the 

Institutional Ethics Committee of Centre for Genetic Disorders, Institute of Science, Banaras 

Hindu University, Varanasi.  

The diagnosis of ASD was done according to the American Psychiatric Association’s 

Diagnostic and Statistical Manual of Mental Disorders (DSM-5) criteria [1] and ICD-10 

[International Classification of Diseases, Tenth Revision] [26], and also evaluation was done 

using standard scale, IASQ (The Indian Autism Screening Questionnaire) [27]. 
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As the proband was minor, peripheral blood sample was collected after obtaining the written 

informed consent from parents.  

DNA Extraction and Whole exome sequencing 

Genomic DNA was extracted using salting out method [28]. Whole exome sequencing was 

performed on genomic DNA sample of the proband. Sequencing of the protein coding 

regions of approximately 30 Mb of the human exome (targeting approximately 99% of the 

regions in CCDS and Refseq) was performed using Illumina next generation sequencing 

(NGS) systems at a mean depth of 50-60X and percentage of bases covered at 20X depth 

>90% in the target region.  

Variant filtration and identification 

Alignment of obtained sequences to human reference genome (GRCh37/hg19) was done 

using BWA-mem aligner. Variant calling was obtained using Genome Analysis ToolKit 

(GATK). Duplicate reads identification and removal, Base quality recalibration and re-

alignment of reads based on indels were done using inbuilt Sentieon modules [29]. Sention’s 

Haplotype caller module was used to identify the variants which were relevant to the clinical 

indications along with the Deep variant analysis pipeline on Google cloud platform which 

was used as a secondary pipeline to call genetic variants [30]. Quality checks (QC) were 

performed on all VCF files to exclude variants where sequencing was of poor quality. 

Additional QC metrics includes total homozygous and heterozygous calls (SNVs and indels), 

proportion of variant calls that were common, number of variants falling into different 

annotated consequence categories, number of extreme heterozygous (alternative allele 

proportion 0.8).  

Variant annotation and classification 

The following public databases were used for annotation of identified variants: OMIM, 

GWAS, GNOMAD, 1000 Genomes database [31, 32, 33]. For the interpretation of variants, 

the American College of Medical Genetics and Genomics (ACMG) 2015 guidelines were 

used [25]. 

Sanger sequencing 

To confirm the ERMARD variant, we performed Sanger sequencing of exon 16, including the 

flanking intron sequences of the gene (NM_018341.3) in the proband. PCR was done with 
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specific primer pairs to amplify DNA, followed by purification of the PCR product. 

Subsequently, the purified PCR product underwent Sanger sequencing using an ABI 3500 

Genetic Analyzer (Applied Biosystems, USA) according to the manufacturer’s protocol. The 

Sanger sequencing results were analysed with sequence scanner software 2 v2.0.  

Visualization of DNA sequences were performed by Finch TV v1.4.0 (Geospiza, 

PerkinElmer, USA) software. 

Results 

Clinical Description 

This study encompasses a single Indian family, with the proband being a female of age within 

0-5 years. She exhibited severe hyperactivity, speech regression, and an inability to articulate 

meaningful words.  

 She has no family history of ASD or other neurodevelopmental disorders.  

WES Analysis 

Whole exome sequencing data revealed a likely pathogenic stop-gain variant c.1523G>A in 

exon 16 of the ERMARD gene on chromosome 6 along with three missense variants; KIF1A 

(c.3839C>T), SETD5 (c.314A>C), MAPK81P3 (c.2849C>T), classified as variant of 

uncertain significance based on current available scientific evidence for the reported 

phenotype [Table 1]. 

Table 1 Findings related to phenotype 

Gene & transcript Variant Location Zygosity Inheritance Classification 

ERMARD 

NM_018341.3 

c.1523G>A  

(p.Trp508Ter) 

Exon 16 Heterozygous Autosomal 

Dominant 

Likely 

Pathogenic 

KIF1A 

NM_004321.8 

c.3839C>T 

(p.Pro1280Le) 

Exon 38 Heterozygous Autosomal 

Dominant 

Uncertain 

Significance 

SETD5 

NM_001080517.3 

c.314A>C 

(p.Asn105Thr) 

Exon 5 Heterozygous Autosomal 

Dominant 

Uncertain 

Significance 

MAPK8IP3 

NM_015133.5 

c.2849C>T 

(p.Thr950Ile) 

Exon 23 Heterozygous Autosomal 

Dominant 

Uncertain 

Significance 
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Sanger sequencing confirmed the heterozygous ERMARD c.1523G>A variant in the proband 

[Figure 1]. This stop gain variant has not been previously reported and it is not present in 

gnomAD and 1000 genomes databases. This variation occurs upstream in exon 16 of 

ERMARD is predicted to be a nonsense mediated decay which alter normal protein function 

through protein truncation. 

 

 

 

  

Figure 1. Confirmation of heterozygous variant c.1523G>A (denoted by arrow) by sanger 

sequencing. 

Discussion 

In present study, we identified a likely pathogenic variant c.1523G>A of ERMARD gene 

along with three variants of uncertain significance in genes; KIF1A (c.3839C>T), SETD5 

(c.314A>C) and MAPK8IP3 (c.2849C>T) for the reported phenotype of a patient having 

characteristic features of ASD. These variations have not been reported previously as a 

pathogenic or benign and also not present in gnomAD and 1000 genomes databases.  

ERMARD (ER membrane associated RNA degradation) gene encodes a protein with two 

transmembrane domains near the C-terminus and localised in the endoplasmic reticulum. 

Also known as C6ORF70, it is present on chromosome 6q27 [34]. According to previous 

studies the heterozygous mutations in the ERMARD have been associated with 

Periventricular nodular heterotopia-6 (PVNH6), a disease characterized by delayed 
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psychomotor development, delayed speech, strabismus, onset of seizures with 

hypsarrhythmia and brain MRI showing bilateral periventricular nodular heterotopia in the 

frontal horns [34].  

KIF1A encodes a motor protein that is involved in the anterograde transport of synaptic 

vesicle precursors along axons [35]. Mutations in KIF1A have been associated with a wide 

range of conditions including recessive mutations causing hereditary sensory neuropathy and 

hereditary spastic paraplegia [35,36] and de novo dominant mutations causing intellectual 

disability, cerebellar atrophy, spastic paraparesis, optic nerve atrophy, peripheral neuropathy, 

and epilepsy [37]. A de novo dominant missense variant has been reported in a patient 

presenting with ASD, spastic paraplegia and axonal neuropathy [38]. 

SETD5 is located on chromosome 3p25.3 and encodes the SETD5 protein composed of 1442 

amino acids [39], and consists of 31 exons and is ubiquitously expressed in human tissues 

such as the brain, thyroid, skin, ovary, lung and endometrium [40, 41]. SETD5 contains a 

SET domain and is thus annotated as a candidate protein of lysine methyltransferase, which 

methylates H3K36 up to the tri-methyl form (H3K36me3) [40, 42, 43]. Autosomal dominant 

mental retardation-23 (MRD23) is caused by heterozygous mutation in the SETD5 gene, 

characterized by moderate to severe intellectual disability, delayed psychomotor development 

in infancy, poor speech development, obsessive-compulsive behaviour, hand-flapping and 

features of autism [44]. 

MAPK8IP3 encodes a member of the kinesin superfamily of proteins and plays a role in 

axonal transport [45]. Heterozygous mutation in the MAPK8IP3 caused neurodevelopmental 

disorder with or without variable brain abnormalities (NEDBA) [46]. 

 In conclusion, findings of this study suggests that mutation in ERMARD with other reported 

variation in genes: KIF1A, SETD5 and MAPK8IP3 may cause the reported phenotype. 

Further functional studies in cell and animal models are needed to elucidate the role of 

variant in the pathogenesis of ASD.   
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