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2Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México,
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The Coronavirus Disease 2019 (COVID-19) pandemic constituted a public health crisis with a
devastating effect in terms of its death toll and effects on the world economy. Notably, machine
learning methods have played a pivotal role in devising novel technological solutions designed to
tackle challenges brought forth by this pandemic. In particular, tools for the rapid identification
of high-risk COVID-19 patients have been developed to aid in the effective allocation of hospital
resources and for containing the spread of the virus. A comprehensive validation of such intelligent
technological approaches is needed to ascertain their clinical utility; importantly, it may help develop
future strategies for efficient patient classification to be used in future viral outbreaks. Here
we present a prospective study to evaluate the performance of state-of-the-art machine-learning
models proposed in PloS one 16, e0257234 (2021), which we developed for the identification of high-
risk COVID-19 patients across four identified clinical stages. The model relies on artificial neural
networks trained with historical patient data from Mexico. To assess their predictive capabilities
across the six, registered, epidemiological waves of COVID-19 infection in Mexico, we measure
the accuracy within each wave without retraining the neural networks. We then compare their
performance against neural networks trained with cumulative historical data up to the end of each
wave. Our findings indicate that models trained using early historical data exhibit strong predictive
capabilities, which allows us to accurately identify high-risk patients in subsequent epidemiological
waves—under clearly varying vaccination, prevalent viral strain, and medical treatment conditions.
These results show that artificial intelligence-based methods for patient classification can be robust
throughout an extended period characterized by constantly evolving conditions, and represent a
potentially powerful tool for tackling future pandemic events, particularly for clinical outcome
prediction of individual patients.

I. Introduction

A report of several cases of viral pneumonia by
the Wuhan Municipal Health Commission in China on
12 December 2019 evolved into the declaration of the
COVID-19 pandemic by the World Health Organization
on 11 March 2020 [1, 2]. The profound impact of
COVID-19 on a global scale is attributed to its highly
contagious nature and substantial mortality rate. This
infectious disease has not only inflicted a severe toll on
the global population but has also imposed immense
challenges on governments and the world economy [3, 4].
The ensuing strain has compelled nations to navigate
unprecedented difficulties in their efforts to contain the
virus and mitigate its far-reaching consequences. The
crisis has underscored the inadequacies of healthcare
systems globally, revealing critical deficiencies in hospital
equipment, medical personnel, and overall healthcare
infrastructure. This has served as a testament to
the systemic vulnerabilities and the urgent need for
comprehensive emergency preparedness and response
strategies on a global scale [5–7].
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Several different strategies have been explored to
tackle challenges associated with logistics, supply chain
management, and the mathematical modeling of viral
spread [8–16]. These endeavors have been aimed at
preemptively addressing or alleviating deficiencies in
emergency-response systems and healthcare infrastruc-
tures. In particular, the identification of high-risk
patients is important because hospital resources and
capacities must be adequately managed to prevent the
collapse of healthcare systems [17]. In this direction,
several approaches based on machine-learning algorithms
have been proposed to identify, from the earliest stage
possible, patients who are likely to become ill or critically
ill. These approaches make predictions relying on basic
patient information [18–23], clinical symptoms [24, 25],
as well as travel history [26] and the discharge time of
hospitalized patients [27]. Some other efforts focus on
identifying patients that require specialized care, namely
hospitalization and/or special care units [28, 29], or
patients at a higher fatality risk [30].

Further studies have been reported that investigate
the dynamics of epidemiological waves, thus addressing
the complexity of viral spread [31, 32]. Despite
notable advances in the development of machine learning-
based algorithms for the early identification of high-risk
patients [33], it is crucial to highlight the importance
of conducting prospective studies that validate the

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 23, 2024. ; https://doi.org/10.1101/2024.02.21.24303159doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:maqj@fata.unam.mx
mailto:alfred.uren@correo.nucleares.unam.mx 
https://doi.org/10.1101/2024.02.21.24303159
http://creativecommons.org/licenses/by-nc-nd/4.0/


2

FIG. 1. (a) Epidemic curve of confirmed cases in Mexico from week 10 of 2020 to week 13 of 2023, spanning a total of
162 weeks. Blue regions correspond to epidemiological waves (EW), while gray regions indicate inter-pandemic periods (IP).
Additionally, vaccination records for persons who received at least one dose of complete treatment are indicated in the red
rectangles. The initials used in insets correspond to CEP: cumulative epidemic percentage, EWP: epidemic wave percentage,
and CPM: cumulative percentage in the Mexican population. (b) Recorded deaths in Mexico during the COVID-19 outbreak.

effectiveness and accuracy of these algorithms in real-
world situations. The application of prospective
approaches will thus significantly contribute to the
evaluation of the clinical utility of such tools, thus
ensuring their reliability in practical settings for the
improvement of medical decision-making during health
emergencies. The successful implementation of such
tools may improve resource management in hospitals and
healthcare units in the event of future health crises.

In this work, we present a prospective validation
study of the state-of-the-art machine-learning models
that we proposed in Ref. [17], designed for the
identification of high-risk COVID-19 patients, across
four clinical stages, in Mexico. Our study is based
on a patient database, publicly made available by
the Mexican federal government, covering the period
from the 10th week of 2020 to the 13th week of
2023, which includes i) demographic, ii) COVID-19
status, and iii) comorbidity information for patients
known or suspected to have been infected with COVID-
19, as reported from within the Mexican healthcare
system. Importantly, the treatment outcome (i.e.
recovery or death) is available for each patient on this
database. To evaluate the predictive performance of
our models through the six COVID-19 epidemiological
waves identified in Mexico, we determine the algorithm
accuracy for patients within each wave without any
retraining of the neural networks reported in Ref. [17].
Subsequently, we compare their effectiveness against
neural networks trained with cumulative historical data,
covering the period up to the end of each wave. Our
results indicate that models trained with early historical
data exhibit strong predictive capabilities throughout all
subsequent epidemiological waves. This demonstrates
that artificial intelligence algorithms can not only provide

accurate identification of high-risk patients based on
limited data, but may be robust despite a constantly
evolving set of conditions, particularly in terms of the
population vaccination status, the dominant viral strains,
and the available medical treatments. This paper is
structured as follows: Section II describes the database
used for this study, Section III presents a detailed
description of our findings, and Section IV is devoted
to our conclusions.

II. Materials and methods

A. Data

The prospective validation study was conducted using
the publicly available database of COVID-19 patients
in Mexico. This database, which includes all officially
reported confirmed and suspected cases of COVID-19 in
Mexico, is available in the Statistical Yearbook of Disease
(Anuario Estad́ısticos de Morbilidad) published by the
General Epidemiological Council (Dirección General de
Epidemioloǵıa) that is part of the Ministry of Health
(Secretaŕıa de Salud) of the Federal Government of
Mexico [34].

As described in Ref. [17], each patient profile in
the database comprises 28 characteristics. However,
for the sake of effectiveness and accuracy, only those
characteristics demonstrating sufficient predictive power
were included in our analysis. Consequently, in our
analysis the resulting input vector for neural networks
comprised 21 features, categorized into three groups:
1) medical history, 2) demographic data, and 3) recent
medical information. Category 1 includes diabetes,
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Stage 1

1. Diabetes
2. COPD
3. Immunosuppresive drugs
4. Hypertension
5. Chronic renal failure
6. Cardiovascular diseases
7. Obesity
8. Other chronic illnesses
9. Gender
10. State (birth)
11. State (residence)
12. Age
13. USMER designa�on
14. Sector (medical facility)
15. State (treatment)
16. Days symptoms-treatment

Stage 2

1. Diabetes
2. COPD
3. Immunosuppresive drugs
4. Hypertension
5. Chronic renal failure
6. Cardiovascular diseases
7. Obesity
8. Other chronic illnesses
9. Gender
10. State (birth)
11. State (residence)
12. Age
13. USMER designa�on
14. Sector (medical facility)
15. State (treatment)
16. Days symptoms-treatment
17. COVID-19 status
18. COVID-19-related pneumonia

Stage 3

1. Diabetes
2. COPD
3. Immunosuppresive drugs
4. Hypertension
5. Chronic renal failure
6. Cardiovascular diseases
7. Obesity
8. Other chronic illnesses
9. Gender
10. State (birth)
11. State (residence)
12. Age
13. USMER designa�on
14. Sector (medical facility)
15. State (treatment)
16. Days symptoms-treatment
17. COVID-19 status
18. COVID-19-related pneumonia
19. Hospitaliza�on status

Stage 4

1. Diabetes
2. COPD
3. Immunosuppresive drugs
4. Hypertension
5. Chronic renal failure
6. Cardiovascular diseases
7. Obesity
8. Other chronic illnesses
9. Gender
10. State (birth)
11. State (residence)
12. Age
13. USMER designa�on
14. Sector (medical facility)
15. State (treatment)
16. Days symptoms-treatment
17. COVID-19 status
18. COVID-19-related pneumonia
19. Hospitaliza�on status
20. Intuba�on
21. ITU

Epidemiological
Wave

Day 1 Day n

We selected Day 1 pa�ents who sa�sfied Stage 1
criteria for Prospec�ve Study

Epidemiological
Wave

Prospec�ve Study
(Real number of pa�ents)Pa�ent Evolu�on

EW-3

EW-6

EW-4

EW-5

65,123 1,712 41 1

144,874 903 40 3

140,816 743 25 2

83,914 1,699 38 0

EW-2 362,200 18,280 311 14

FIG. 2. The top panels present the four clinical stages that were identified in Ref. [17], for each of which we train a separate
neural network designed to identify high-risk COVID patients. The flow diagram in the bottom-left panel illustrates the
possible clinical history of a particular patient, for each of waves EW-2 to EW-6, ranging from Day 1 to the last day the wave
in question. The bottom-right panel presents the number of identified patients obtained from our patient tracking protocol in
each combination of clinical stage and epidemiological wave.

chronic obstructive pulmonary disease (COPD), use of
immunosuppressive drugs, hypertension, chronic renal
failure, and cardiovascular diseases. Category 2 includes
gender, age, state of birth, state of residence, and age.
Category 3 comprises health monitoring units of viral
respiratory disease (USMER) designation, type of health-
care facility where the patient is receiving treatment,
state of treatment, number of days between the onset
of symptoms and the beginning of treatment, COVID-
19 status, COVID-19-related pneumonia, hospitalization
status, intubation and admission into an intensive care
unit (ICU).

In this prospective study, we conduct patient tracking
through each epidemiological wave to assess the
predictive capabilities of the models proposed by Ref.

[17]. These models were trained using data covering the
period up to 31 January 2021. As of the present writing,
it has the following attributes:

a. Recorded dates.- The database covers the
period from May 12 2020 to April 4 2023. In this
period, it contains the historical record of 25,118,719
patients. Figure 1(a) shows an overview of the COVID-
19 pandemic in Mexico. For each wave, the cumulative
epidemic percentage (CEP), epidemic wave percentage
(EWP), and cumulative percentage in the Mexican
population (CPM) are presented.

b. Epidemiological waves.- During the pandemic
Mexico officially experienced six epidemiological waves
(EWs) with variable duration and four inter-pandemic
periods (IPs). Figure 1(a) illustrates each EW in blue,
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Event Period (weeks) Duration (weeks)

EW-1 10 to 39 of 2020 31
EW-2 39 of 2020 to 15 of 2021 28
IP-1 15 to 22 of 2021 07
EW-3 22 to 42 of 2021 20
IP-2 42 to 50 of 2021 08
EW-4 50 of 2021 to 09 of 2022 11
IP-3 09 to 21 of 2022 12
EW-5 21 to 33 of 2022 12
IP-4 33 to 48 of 2022 15
EW-6 48 of 2022 to 13 of 2023 18

TABLE I. Epidemiological waves (EW) and inter-pandemic
periods (IP) in Mexico from the 10th week of 2020 to the
13th week of 2023.

while IPs are highlighted in gray. The corresponding
periods and duration, expressed in weeks for both, EWs
and IPs, are presented in Table I.

c. Database sampling.- The database contains daily
record updates up to the period IP-4. Unfortunately,
in the beginning of this inter-pandemic period, the
sampling frequency became irregular —attributed to
the low prevalence of cases—until eventually updates to
the database ceased. This implies that when carrying
out a prospective study for patients in EW-5, there
is uncertainty as to the specific day when a patient
transitions from one stage to another.

e. Survivors and Death Tolls.- As of the date of
the last update to the database, 456,252 deaths had
been recorded among the 25,118,719 patients included
in the historical database. Figure 1(b) shows a
cumulative histogram depicting the total number of
deaths experienced within each epidemiological wave
during the entire COVID-19 outbreak.

It is important to comment on the COVID-19
vaccination campaign in Mexico, which formally started
on 24 december 2024. The latest vaccination record
is dated 7 October 2022, indicating that by that date
76.04% of the Mexican population had received at least
one vaccination dose. Thus, in the period encompassed
between midway through EW-2 (when the campaign
started) and the end of EW-5, slightly more than three-
quarters of the population received a vaccination [35].
By inspecting this information, one can obtain specific
dates corresponding to significant percentiles within
the vaccinated population. The 25th, 50th, and 75th
percentiles received their vaccinations on June 5, 2021,
November 15, 2021, and April 27, 2022, respectively.
Figure 1(a) illustrates this information in red rectangles,
together with the cumulative percentage with respect to
the country’s population who have received at least one
vaccination dose.

Stage
Training Data 1 2 3 4

Ref. [17] (January 31, 2021) 84.3% 90.5% 93.1% 93.5%
EW-2 (up to week 15 of 2021) 84.8% 91.0% 94.2% 94.2%
EW-3 (up to week 42 of 2021) 85.1% 91.6% 95.0% 95.1%
EW-4 (up to week 9 of 2022) 87.7% 91.6% 95.0% 95.1%
EW-5 (up to week 33 of 2022) 85.1% 91.6% 96.3% 96.4%
EW-6 (up to week 4 of 2023) 86.1% 91.5% 96.3% 95.5%

TABLE II. Overall accuracy of the five sets of neural
networks trained with cumulative historical data from each
epidemiological wave at different clinical stages. These
networks are tested during the second phase of the prospective
study, see Figs. 3 and 4.

B. Neural Network

Supervised machine learning provides computer algo-
rithms with the ability to learn from a known dataset
to identify features and generate predictions about the
outcome given a specific set of features, not included in
the learning stage. In this context, by making use of
the publicly available database of Mexican COVID-19
patients, reference [17] reported on an artificial neural
network capable of classifying patients into two classes:
a) patients who are more likely to recover than to
die or b) patients who are more likely to die than to
recover. We have identified four clinical stages of the
treatment process, each including a specific number of
characteristics, as illustrated in the top panels of Fig. 2.
Stage 1 involves patients undergoing an initial medical
evaluation and/or treatment. In Stage 2, patients have
a confirmed COVID-19 status as part of the medical
evaluation, and may already present COVID-19-related
pneumonia. Patients in stage 3 have either already been
admitted to a hospital, or have returned home after a
hospital stay. Patients in Stage 4 are those who have
been intubated or admitted into an ICU unit. This
categorization into clinical stages led to the training
of four separate neural networks, one for each stage,
using information dated up to 31 January 2021 from the
database described in subsection IIA.
All of our neural networks rely on a feed-forward

architecture with two layers. The hidden and output
layers comprise two sigmoid neurons and two softmax
neurons, respectively. Cross-entropy was selected as the
training cost [36–38], and the scaled conjugate gradient
back-propagation method was used as optimizer [39, 40].
In our prospective study, we employ two distinct phases.
In the first of these phases, we utilize the neural networks
trained in Ref. [17], for each of the four clinical stages.
We are then able to assess their performance when
applied to patients in epidemiological waves occurring
at dates later than those of the data used for training.
Subsequently, in the second phase, we have trained neural
networks using cumulative historical data covering the
period up to the end of each of the waves in turn, and

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 23, 2024. ; https://doi.org/10.1101/2024.02.21.24303159doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.21.24303159
http://creativecommons.org/licenses/by-nc-nd/4.0/


5

Stage

Wave 1 2 3 4

EW-2 78.0% 90.7% 54.6% 83.5%
EW-3 83.7% 92.3% 51.2% 0%
EW-4 71.7% 86.6% 62.5% 100%
EW-5 83.0% 94.8% 84.0% 50%
EW-6 80.1% 96.2% 69.3% N.A.%

TABLE III. Prospective overall accuracy of early-data-trained
neural networks. The networks, described in Ref. [17], are
tested with data obtained from the patient tracking process
for each of the four clinical stages within every epidemiological
wave.

evaluated them at EW-2 through EW-5, irrespective of
whether they lie within or outside the date span for the
training data. To ensure a fair comparison in all cases,
the neural network architecture is in all cases identical to
that reported in Ref. [17].

III. Results

As mentioned earlier, we have carried out our
prospective study in two phases. As part of the first
phase, we have conducted a patient-tracking protocol
within each of the epidemiological waves. Specifically,
we identify patients on day 1 of each of the waves who
meet the criteria for stage 1 (see bottom panel of Fig.
2), namely those who seek medical evaluation and/or
treatment and are suspected of harboring a COVID-19
infection, as yet unconfirmed either through a test or the
appearance of COVID-19-related pneumonia symptoms.
Note that this patient tracking procedure excludes any
patients who may fall ill later than day 1 of each
wave. These patients are then monitored day by day,
until reaching the last day of the wave, taking note of
any patients who may transition to stages 2,3, and 4.
Note that patients in Stage 2 already have a defined
COVID-19 status and may present COVID-19-related
pneumonia symptoms, so the list of features is expanded
accordingly. Those patients who transition to Stage
3 have been hospitalized, activating the hospitalization
status feature. Patients in Stage 4 are those who
unfortunaltey reach a critical state and have undergone
intubation or have been admitted to an ICU unit,
resulting in the activation of the corresponding features
in their profiles.

The number of patients who start off at stage 1 in
each wave (EW-2 through EW-5), as well as the number
transitioning to each of stages 2, 3, and 4 are shown in the
bottom panel of Fig. 2. Note that despite the severity of
the pandemic, the number of patients transitioning to the
higher stages is relatively low. Fortunately, the majority
of patients do not suffer complications to be registered,
and most remain at stage 1 until discharged. The fact
that this analysis is restricted to those at stage 1 on day 1

EW-3
Stg1: 81.50%
Stg2: 90.13%
Stg3: 58.54%
Stg4: 00.00% 

a)

EW-6
Stg1: 81.86%
Stg2: 96.29%
Stg3: 68.42%
Stg4: N.A.

EW-5
Stg1: 80.71%
Stg2: 93.54%
Stg3: 84.00%
Stg4: 50.00%

EW-4
Stg1: 71.91%
Stg2: 87.15%
Stg3: 65.00%
Stg4: 100.0%

EW-2
Stg1: 76.78%
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Stg4: 85.71% 

Training Region
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EW-6
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FIG. 3. Prediction accuracy of our neural networks,
calculated for patients in each of waves EW-2 through EW-6,
for each of the four clinical stages. The length of the training
period is progressively extended, adding one wave at a time,
as displayed in the five subpanels so that in (e) data from all
waves is used for training.
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of each wave, together with the low transition probability
to higher stages, makes the number of patients reaching
stage 4 quite small.

Note that our patient tracking protocol described
above reflects the sequence of events that could be
followed by a particular patient. Upon arrival of the
patient at a clinic or hospital he or she is inspected
at the triage, and from there transitions through some
or all of the four clinical stages, with either recovery
or death as the final outcome. It is at the triage
stage that a predictive tool such as our neural networks
becomes relevant: it can aid healthcare professionals to
identify patients who are at higher risk, thus helping
to more efficiently manage the hospital resources and
capacity, and to provide timely treatment. In this regard,
we utilized the neural networks trained in Ref. [17]
to assess their predictive power using the patient data
obtained during the tracking process. The resulting
accuracy of these neural networks at each clinical stage
and each epidemiological wave is recorded in Table III.
The accuracy is calculated as the sum of true negatives
and true positives divided by the total number of records.

Because the networks from Ref. [17] were trained using
data covering the period up to 31 January 2021, we have
tested them on patients ranging from waves EW-2 to
EW-6. The accuracies shown in Table III that correspond
to Stages 1 and 2 present high efficiencies due to the
large number of records in these stages. Stage 3 does
not contain a sufficient number of records for the neural
networks to detect patterns correctly, which leads to a
markedly lower accuracy. This difficulty is compounded
for stage 4, which exhibits a very small number of
cases leading to poor statistics and the inability to
correctly estimate the algorithm efficiency. The N.A.
value appearing for stage 4 of EW-6 refers to the absence
of records in this wave and stage.

In the second phase of our prospective study, we
train five sets of neural networks using cumulative
historical data covering the period up to the end of
each wave (EW-2 through EW-5). We then evaluate
their prediction effectiveness using data obtained from
the patient tracking process. Through this study, we aim
to ascertain the optimal number of waves to include in
the training of neural networks for predicting high-risk
COVID-19 patients with the highest accuracy possible.

We first describe how the second-phase neural
networks are prepared. As was the case in the first phase
of our study, we train a separate network for each of
the four stages. The first set of four networks is trained
with data covering the period up until the end of EW-2,
i.e. week 15 of 2021. The second set of four networks
is trained with data covering the period up to the end
of EW-3, i.e. week 42 of 2021. This process has been
repeated for data covering the periods up until the end
of EW-4, EW-5, and EW-6, corresponding to week 9 of
2022, week 33 of 2022, and week 13 of 2023, respectively.
As was done in Ref [17], 70% of the data was allocated
for training, 15% for validation, and 15% for testing. The

FIG. 4. Prediction accuracy plotted, for each of stages 1-
4 as labeled, vs the length of the training data date span,
indicated in the horizontal axis as the most recent wave
included. The accuracy values are obtained upon applying
our neural networks to testing data resulting from our patient
protocol tracking protocol; each subpanel indicates the use of
data corresponding to each of waves EW-2 through EW-6.
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accuracy of each set of neural networks is shown in Table
II.

To assess the predictive capabilities of our trained
network set, we have tested it on the dataset obtained
through the patient tracking protocol, for each wave,
used in the first phase of our study. In figure 3 we
plot the number of new confirmed patients plotted vs
date throughout the date span covered by the database,
as was also done in Fig, 1a. For each wave EW-2
through EW-5, and each of the four stages, we display
the resulting accuracies of our networks in the gray
boxes. In the five subpanels, (a) through (e), we
employ for neural network training a progressively larger
fraction of the total date span, colored in red (note
that we have colored in blue the excluded data). Note
that despite the enlargement of the training region, the
accuracies remain remarkably consistent in all cases.
More importantly, these accuracies are comparable to
those achieved with the neural network proposed in
Ref. [17]. These findings suggest that neural networks
trained with historical data during the early stages of the
pandemic exhibit strong predictive capabilities, which
permits precise identification of high-risk patients in
subsequent epidemiological waves.

For the sake of completeness, and to explicitly show
the robustness of early-data-trained neural networks,
Figure 4 shows the accuracy of neural networks trained
with increasingly larger datasets (including an increasing
number of waves) when predicting patient clinical
outcomes for patients in each of the stages, and in each
of waves EW-2 through EW-6. Each subpanel, (a)
to (e), shows the prediction accuracies of the neural
network, with a structure identical to that used in
Ref.[17], trained with data up to the epidemiological
wave number indicated in the horizontal axis. The
subpanel labels shown in the upper right corner denote
the epidemiological waves to which the patient tracking
protocol is applied to obtain the testing data. Note that
Stage 4 (red line) of waves EW-3, 4, and 5 presents
fluctuations, i.e. very high or very low prediction
accuracies, which follows from the limited size of the
respective dataset. Moreover, for Stage 4 of EW-6 we
have no predictive value since no patient in the dataset
reached this stage.

Upon inspection of figure 4, it is apparent that (overall)
the neural network efficiencies remain stable, for each of
the stages, as one extends the date span of the training
data. There are some notable exceptions, for example, in
extending the date span from waves 2 to 4, for patients in
our tracking protocol belonging to EW-2, an important
fluctuation is observed. We believe that this may be
related to the fact that the peak of EW-3 coincides
with reaching the milestone of half of the population
being vaccinated. Similarly, among patients in each of
waves EW-2 through EW-6, those in stage 1 and EW-
4 exhibit an abnormally low (compared to the other
waves) prediction efficiency. We believe that this may be
related to the appearance of the Omicron variant (with

a higher infection rate but generally milder symptoms as
compared to previous strains), which coincides with the
onset of wave EW-4.

Finally, we remark that Figure 4 allows us to conclude
that early-data-trained neural networks, such as the
one used in Ref. [17], can predict with a precision
greater than 84.5% the clinical outcome for patients
who are tracked from Stage 2, i.e., patients with a
confirmed diagnosis of COVID-19 who do not yet present
respiratory complications. This may certainly allow for
a more efficient allocation of resources for such patients.
We believe that the results of this prospective study
provide the building blocks for novel strategies to predict
outcomes in clinical settings. Moreover, they provide
new tools to be exploited for clinical decision-making in
the context of future large-scale epidemic or pandemic
events.

IV. Conclusions

Although the COVID-19 crisis has by now taken
a backseat in current world affairs, it is of utmost
importance to provide health-sector professionals with
technological tools that allow them to effectively
manage available clinical resources during possible future
pandemics or large-scale epidemic events. In Ref. [17] we
proposed state-of-the-art machine-learning models that
can, with high efficiency, identify high-risk COVID-19
patients across four clearly-identified clinical stages. In
this work, we have presented a prospective validation
study, based on tracking individual patients day-to-day in
each of the latter five COVID-19 epidemiological waves,
among the six officially recognized waves in Mexico. We
apply our machine-learning models from Ref. [17] to the
patients in datasets obtained from our patient tracking
protocol. On the one hand, we employ the same networks
reported in [17] (without any retraining), and apply them
prospectively to patients in each of waves EW-2 through
EW-6. On the other hand, we retrain the networks
with data covering an increasing date span to include a
successively larger number of epidemiological waves and
apply prospectively these re-trained networks to patients
in each of waves EW-2 through EW-6. Our results
show that models trained with early historical data
demonstrate significant predictive capabilities permitting
precise identification of high-risk patients in subsequent
epidemiological waves, with efficiencies in line with
those obtained with networks trained with data from
an extended date span. We are certain that these
results establish the grounds for innovative strategies
in predicting individual clinical outcomes in the context
of epidemiology, providing valuable insights for possible
future health crises.
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