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Abstract 

When conducting genome-wide association studies, improper handling of medication status that is 

relevant to the trait of interest can induce biases by opening up different pathways that distort 

estimates of the true effect. Here, we propose the genetic empirical medication reduction adjustment 

(GEMRA) method which uses a heuristic search for an empirical adjustment to be applied to 

phenotypic values of participants reporting medication use. Through simulations we show that the 

direct genetic effect estimates in the GEMRA approach exhibited less bias and greater statistical 

power than either restricting the sample to unmedicated users, or including all samples without 

adjustment. We then applied the GEMRA approach to estimate statin medication adjustment for 

analysis of LDL cholesterol levels, using multi ancestry data from UK Biobank and the Uganda 

Genome Resource. We found that a relative rather than an absolute adjustment better modelled the 

effect of medication on LDL cholesterol, with an effect of 40% reduction appearing to be consistent 

across ancestral groups. These findings are consistent with the current clinical guidelines.  

Introduction 

Inclusion of participants taking medication in genome-wide association studies (GWAS) of a 

phenotype affected by that medication is challenging as it introduces heterogeneity in the analyses. 

This is due to medicated participants having an observed phenotype value that is not reflective of their 

true, unmedicated phenotype value included in the analyses with unmedicated participants, resulting 

in findings that don’t represent either group (1-3). For example, participants taking LDL-lowering 

medication will have a lower observed LDL cholesterol (LDLc) value due to the effect of medication 

use. This issue has been previously explored by Bell et al. 2022(4) and Fang et al. 2022(5), with both 

findings showing the misleading apparent effects of BMI on lowering LDLc when the effects of statin 

use is not addressed. However, when medication use is considered, these results can be attributable to 

people with higher BMI being more likely to be given statins.   

To date, there is no approach to correct for medication status that would result in an adjustment that 

reliably restores the medication-adjusted phenotype value to the unmedicated value. In previous 

literature, approximations of the unmedicated phenotypic value have been applied for phenotypes 

such as blood pressure(6-8), lipid traits(9-12), and type 2 diabetes(7, 9, 13) with studies accounting 

for treatment effect using a plausible constant, censored normal regression, or a non-parametric 

method(6, 14). However, for LDLc, studies have commonly excluded participants based on 

medication status (15-23), and there are several concerns that can occur due to this approach. As 

shown in Figure 1, in the example involving LDL-lowering medication and LDLc, the exclusion or 

inclusion of participants based on medication status or stratifying by bi-medication status opens a 

causal pathway through medication status to the observed phenotype value. This can introduce bias to 

the estimated causal effect (i.e. collider bias)(24). Furthermore, additional collider bias can also be 
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introduced as prescription of medication may be influenced by other factors other than high LDLc 

such as a cardiovascular event or a family history of high cholesterol (i.e., genetic variants associated 

with other risk factors in Figure 1). Therefore, selection by medication status could induce an 

association between genetic variants associated with non-LDLc risk factors and LDLc. In addition, by 

excluding participants by medication status, this approach could be ignoring participants that could 

better inform analyses of potential genetic variants associated with dyslipidemia(25). Exclusion would 

also decrease the sample size, reducing the statistical power of the GWAS which, in some instances, 

could be substantial. Without adequate statistical power, analyses may be unable to detect genetic 

signals at the genome-wide threshold(26). In contrast, not adjusting for medication status would 

introduce heterogeneity into the analyses as the observed value would be different from the 

unmedicated value. This could then result in a bias that either overestimates or underestimates the true 

effect, or opens a path for genetic variants affecting other factors influencing medication use.  

Therefore, to account for medication status, a relative or absolute adjustment of medication reduction 

could be applied. We propose the genetic empirical medication reduction adjustment (GEMRA) 

method that would heuristically search for an optimal adjustment value to approximately correct the 

medication-biased phenotype measurements to a value that better reflects the unmedicated phenotypic 

value in participants taking medication. Relative adjustment would be a percentage reduction in 

medication effect that is applied to the observed value. Absolute adjustment would be a specific 

medication reduction value that is applied to the observed value. In a cross-ancestry setting, 

differences in prevalence of medication use and phenotype distribution may contribute to differences 

in the optimum adjustment for each population.  

In this study, we applied the GEMRA approach to LDLc and LDL-lowering medication status. We 

first employed a simulation framework to examine the impact of this approach on direct and indirect 

genetic associations for LDLc. We then conducted the analyses using real-world data from UK 

Biobank (UKB) and the Uganda Genome Resource (UGR) to evaluate the adjustment approach in 

different populations.   
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Figure 1. Directed acyclic graph (DAG) illustrating how selection of samples based on LDL-lowering 

medication use can introduce collider bias (indicated by the dashed red line), as conditioning on or 

adjusting for medication use can induce an association between non-LDLc genetic factors and LDLc. 

This is because non-genetic factors that influence LDLc will become related to genetic variants when 

adjusted and stratified for these non-genetic factors or medication status. Similarly, using a complete 

sample, including both users and non-users of medication, effectively introduces the same collider 

bias path by lowering LDLc levels amongst medication users only.  

Methods 

GEMRA 

We developed the genetic empirical medication reduction adjustment (GEMRA) approach to adjust 

the observed LDLc phenotype value in participants taking statins and restoring it to an LDLc value 

that is more reflective of the underlying, unmedicated value. This approach applies medication 

reduction adjustments (i.e., absolute and relative) to the observed phenotypic values of medicated 

participants. Genome-wide association analyses is conducted using unmedicated and medicated 

participants adjusted for medication status for each model, and R2 is then calculated as a measure of 

goodness of fit for each independent, genome-wide SNP identified in the model. R2 is calculated by: 

1) Calculating the t-statistic using the equation, tstat = β2/βSE
2, where β is the beta effect estimate of 

the SNP and βSE is the standard error of the beta effect estimate of the SNP; 2) Then calculating R2 

using the equation, R2 = tstat2/(tstat2 + (n+1)), where n is the sample size. The model is determined to 

be the ‘best’ model for adjusting for the effect of statins on LDLc if the summed R2 value is the 

highest.  
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Simulation study 

We implemented a simulation study on 100,000 individuals with genetic effects associated with LDLc 

(Gdirect) and genetic effects associated with non-LDLc factors (Gindirect). The LDLc phenotype 

distribution was modelled on measured LDLc values in UK Biobank (UKB) with a phenotypic mean 

of 3.55 mmol/L and a standard deviation of 0.87 mmol/L. Furthermore, we applied a medication use 

prevalence of 14%, as previously reported in UKB(27), and a medication effect of 0.8 (i.e., a relative 

LDL-lowering medication reduction of 20%). We then repeated the simulations 1,000 times with 

parameters of the direct and indirect genetic effects on LDLc and the beta effect estimate for LDLc 

resampled in each simulation.  

For each simulation, we applied five approaches: 1) True effect; 2) Unadjusted observation approach 

(No medication status adjustment); 3) Medication only approach (Restricted to individuals taking 

statin medication); 4) Medication excluded approach (Restricted to individuals not taking any statin 

medication); 5) Approximate medication adjustment approach (GEMRA).   

Empirical analysis: UK Biobank and Ugandan Genome Resource 

Cohort profiles  

UKB is a population-based health research resource consisting of approximately 500,000 people, aged 

between 38 years and 73 years, who were recruited between the years 2006 and 2010 from across the 

UK(28). Particularly focused on identifying determinants of human diseases in middle aged and older 

individuals, participants provided a range of information (such as demographics, health status, 

lifestyle measures, cognitive testing, personality self-report, and physical and mental health measures) 

via questionnaires and interviews; anthropometric measures, blood pressure readings and samples of 

blood, urine and saliva were also taken (data available at www.ukbiobank.ac.uk). A full description of 

the study design, participants and quality control (QC) methods have been described in detail 

previously(29). UK Biobank received ethical approval from the Research Ethics Committee (REC 

reference for UK Biobank is 11/NW/0382). 

The Ugandan Genome Resource (UGR) is a population-based cohort which comprises of 

approximately 22,000 individuals from 12 ethno-linguistic groups recruited from rural south-western 

Uganda(30). The initial purpose of the cohort was to study human immunodeficiency viruses in the 

general population. However, since 2011, this cohort has extended its scope to also focus on 

understanding the epidemiology and genetics of communicable and non-communicable diseases with 

a wide range of phenotypic data collected (such as anthropometric measurements, demographic and 

lifestyle measurements through self-reported questionnaires, as well as blood specimens)(30). The 

Ugandan Genome Resource was approved by the Science and Ethics Committee of the UVRI 

Research and Ethics Committee (UVRI-REC #HS 1978), the Uganda National Council for Science 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted February 20, 2024. ; https://doi.org/10.1101/2024.02.19.24303028doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.19.24303028


6 

 

and Technology (UNCST #SS 4283), and the East of England-Cambridge South (formerly 

Cambridgeshire 4) NHS Research Ethics Committee UK. 

Genotyping, imputation and quality control  

A full description of the genotype generation, quality control and imputation methods have been 

previously reported in detail for UKB(31) and UGR(30).   

In brief, for UKB, 488,377 participants were successfully genotyped with 438,427 participants 

genotyped using the Affymetrix UK Biobank Axiom Array and 49,950 participants genotyped using 

the UK BiLEVE Axiom Array. Multiallelic single-nucleotide polymorphisms (SNPs), SNPs with a 

minor allele frequency less than or equal to 1%, and samples that were classified as outliers for 

missing rate and heterozygosity were removed prior to phasing. Phasing was conducted using a 

modified version of the SHAPEIT2 algorithm(32), and genotype imputation to a reference set 

consisting of the Haplotype Reference Consortium reference panel merged with the UK10K and 1000 

Genomes phase 3 reference panels(33) was performed using IMPUTE2 algorithms(34).     

For UGR, the 3.5M Illumina chip array was used to genotype 5,000 participants at the Wellcome 

Trust Sanger Institute. Pre-phasing protocols removed samples due to sex mismatch, high relatedness, 

call rate, and heterozygosity. Phasing was implemented using SHAPEIT2(35). Genotype imputation 

was conducted using IMPUTE2(36) with a reference set combining Uganda 2000 Genomes reference 

panel and the 1000 Genomes phase 3 reference panel(30).   

Phenotype data  

In UKB, venous blood samples were collected from participants in a non-fasting state at their baseline 

clinical visit between 2006 and 2010. Circulating LDLc was directly measured using an enzymatic 

selective protection method on a Beckman Coulter AU5800. Further details of the phenotype 

collection and analysis have been previously reported 

(https://biobank.ndph.ox.ac.uk/showcase/ukb/docs/serum_biochemistry.pdf). In addition, medication 

data (Data Field: 20003; Data coding 4) were collected through verbal interviews conducted by 

trained members of staff during the baseline assessment visit and subsequently during follow-up 

visits. Duration, dosage and compliance of medication treatments were not recorded.  

In UGR, participants provided venous blood samples in a non-fasting state with circulating LDLc 

measured using homogenous enzymatic colorimetric assays on a Cobas Integra 400 Plus Chemistry 

analyser (Roche Diagnostics)(37). Protocol describing the biochemical analyses has been previous 

reported elsewhere(38, 39). Medication data for UGR was obtained from participants during 

enrolment through an interview. The participants would be asked if they had taken any medication for 

high cholesterol as prescribed by a professional health worker in the last two weeks. The responses 

would then be coded as per study interview codes. 
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Statistical analyses 

GWAS were performed in UGR and all ancestries in UKB using an ancestry-specific approach. 

GWAS was conducted using a linear mixed model association method in BOLT-LMM(v2.3)(40) for 

participants of European ancestry in UKB and GENESIS(v3.17)(41) for all other ancestries and 

cohorts. All analyses were conducted using an additive genetic model and were adjusted for age 

(defined as the year of the survey minus participant year of birth), sex, and the first 20 principal 

components. Analyses were limited to genetic variants that were genotyped and imputed with a minor 

allele frequency >0.1% and an INFO score >0.8.  

To evaluate the performance of each model, we firstly filtered the genetic variants in the GWAS 

output using the genome-wide threshold (p < 5×10-8) and conducted linkage disequilibrium (LD) 

clumping (r2 < 0.001) to identify independent genetic variants for each model using PLINK(v1.90) 

(www.cog-genomics.org/plink/1.9/)(42). We then determined the best model by calculating the R2 for 

each SNP as a metric for goodness of fit for the model. We then summed the R2 values for each model 

to evaluate which model was the ‘best’ by identifying the model with the highest summed R2 value. 

Results 

Simulation study  

We conducted 1,000 simulations to evaluate the direct and indirect genetic effects associated with 

LDLc. We used 100,000 individuals with simulated phenotypic data based on the LDLc distribution 

and prevalence of LDL-lowering medication use in UKB, and a medication effect of 0.8 which 

corresponds to a relative LDL-lowering medication reduction of 20%. In each simulation, we applied 

and compared five approaches: 1) True effect; 2) Unadjusted observational approach, which did not 

adjustment for medication status; 3) Medication only approach, which was restricted on individuals 

taking statin medication; 4) Medication excluded approach, which was restricted to individuals not 

taking any statin medication; and 5) Approximate medication adjustment approach using the GEMRA 

method.    

For the direct effects, we observed stronger attenuated genetic effect estimates for the medication-only 

and observational methods compared to the methods adjusting for and excluding medication status 

(Figure 2). The genetic effect estimates for the methods excluding medication status and adjusting for 

medication status (GEMRA) were strengthened and closer to the true effect estimates (Figure 2). 

Furthermore, with the exception of the medication-only group, power across the methods were 

consistent (p ≤ 7.1×10-190).   

For the indirect effects, the GEMRA method to approximately adjust for medication showed low false 

positive rate (p > 0.01) similar to the true effect estimate results in comparison to the other methods 

(Figure 2). In addition, we observed that collider bias induced a negative association between the 
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unadjusted LDLc phenotype and non-LDLc genetic factors for the observational, medication-only and 

medication-excluded methods.  

 

Figure 2. A comparison of the true genetic effect estimate precisely adjusting for medication status 

compared to the genetic effect estimates of the direct and indirect genotype-LDLc association when: 

(1) Medication status is not accounted for (Observational); (2) Restricted to individuals taking 

medication (Medication-only); (3) Restricted to individuals without medication (Medication-

excluded); (4) Medication use is adjusted for (Approximate adjustment for medication). For the 

indirect effect, the blue points denote a p-value threshold < 0.01 indicating false-positive results and 

the red points indicate a p-value threshold > 0.01 indicating no evidence of false-positive results.  

Empirical analysis: UK Biobank and Ugandan Genome Resource  

We then applied these approaches to real-world data from two data sources (UKB and UGR) to 

evaluate the best model in each population. This was determined by the highest summed R2 value 

when applying different thresholds to adjust for medication reduction in observed LDL values. 

Descriptive characteristics of LDLc and statin use in UKB across ancestries and UGR are shown in 

Table 1.    

 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted February 20, 2024. ; https://doi.org/10.1101/2024.02.19.24303028doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.19.24303028


9 

 

Table 1. Description of LDL cholesterol and statin use across different ancestries in UK Biobank and 

Ugandan Genome Resource.  

Data source Ancestry LDLc  

 (Median (IQR)) mmol/L 

Statin use 

(Medicated/Unmedicated; 

%) 

UKB African 3.2 (2.7-3.8) 573/3,231; 18% 

East Asian 3.4 (2.9-3.9) 171/1,415; 12% 

European 3.5 (2.9-4.1) 31,547/219,151; 14% 

South Asian  3.3 (2.7-3.9) 273/1,057; 26% 

UGR Ugandan  2.0 (1.5-2.5) 24/6,144; 0.4% 

 

For the relative medication adjustment approach, findings were consistent amongst all populations 

with the highest summed R2 value at the threshold adjusting for either 30% or 40% reduction in 

observed LDL due to medication (Figure 3A). Overall, the distribution in summed R2 values were 

similar across populations.  

For the absolute medication adjustment approach, the best models were similar amongst the East 

Asian, European and South Asian populations with the summed R2 values increasing until they peaked 

at either the 1.6 or 1.8 mmol/L adjustment threshold (Figure 3B). In comparison, the African 

population showed an undulating distribution in the summed R2 values with the best model at the 1.2 

mmol/L adjustment threshold (Figure 3B). Furthermore, the Ugandan population showed a decreasing 

distribution in summed R2 values with the best model at the 0.3 mmol/L adjustment threshold (Figure 

3B).  
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Figure 3. Comparison of relative (A) and absolute (B) adjustment of statins (mmol/L) in different 

populations using the GEMRA approach. In UKB (i.e., African, East Asian, European, and South 

Asian) and UGR (i.e., Ugandan), for each ancestry, the points represent the summed R2 value for each 

model, with the large square highlighting the model with the highest summed R2 value.     

Discussion 

In this study, we aimed to evaluate the effects of adjusting for medication status when conducting 

genome-wide association analyses using the GEMRA approach. When performing simulations, our 

findings suggested that the direct effects of adjusting for medication use and excluding medication use 

strengthened the effect estimates compared to the unadjusted, observational approach and were closer 

to the true effect estimates. Furthermore, our simulations illustrated that the indirect effects of 

approximately adjusting for medication status resulted in low false positive results (similar to the true 

effect) and results for this method were shown to, in part, resolve the collider bias issue, although 

some bias remains.  

In addition, we used real-world data to evaluate the best model (determined by the largest summed R2 

value) when applying different thresholds to adjust observed LDLc values affected by medication use 

across different populations. Overall, the best model for the relative adjustment approach was 

consistent across all populations (30-40% threshold). In contrast, the best model in the absolute 

adjustment approach was less consistent with only the East Asian, European and South Asian 

populations showing similar thresholds as the best model (1.6-1.8 mmol/L threshold). For the African 

and Ugandan population, the best models were attenuated with an adjustment threshold of 1.2 mmol/L 

and 0.3 mmol/L, respectively.  

Difference in medication adjustments required across populations may be a result of the difference in 

age distribution of the individuals. This could have contributed to the heterogeneity in the absolute 

best model thresholds as individuals of European descent in UKB had a median age of 72 years 

(Interquartile range (IQR): 64-77), whilst individuals in the UGR cohort had a median age of 30 years 

(IQR: 18-46). As a result, the mean observed LDLc would be low due to the age distribution of the 

UGR cohort being younger. Therefore, a 40% reduction in medication effect of a small value is a 

smaller absolute change, compared to a 40% reduction of a larger value. This difference can also be 

seen when comparing the number of individuals taking LDLc-lowering medication (UKB EUR: 14%; 

UGR: <1%) (Table 1).  

In addition, the type of LDLc-lowering therapy prescribed to individuals may have contributed to the 

heterogeneity of best models. Randomized controlled trials (RCTs) have been conducted to evaluate 

the efficacy of these drug regimens with studies showing varying degrees of serum LDLc 

reduction(43-48). In a meta-analysis of RCTs, statin treatment was associated with a 28% reduction in 

LDLc levels(43) which is similar to the anticipated 30-50% reduction in LDLc levels for moderate-
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intensity statin therapy outlined by the 2018 US blood cholesterol treatment guidelines(49). This is 

also comparable to the best model thresholds identified in the relative approach across populations.  

Furthermore, when statin therapy is used in combination with other non-statin drugs (e.g., Ezetimibe, 

Evacetrapib or Evolocumab), RCTs showed a decrease in LDLc levels between 0.9-2.4 mmol/L(46-

48), which is within the range of best model thresholds identified when applying the absolute 

approach to adjust for medication status, with the exception of the Ugandan population finding. 

However, as UKB and UGR did not report the dose, duration of treatment and level of compliance 

towards the statin treatment, the GEMRA approach is liable to over- or under adjusting for the stain 

effect on LDLc without this additional context. As a result, some heterogeneity can be introduced into 

the analyses.  

In addition, this study was limited by the sample size of the data sources applied in the empirical 

analysis. The non-European demographic groups in UKB were limited by their sample size compared 

to the European group (Non-European: N < 6,200; Europeans: N = 219,151). As a result, the 

statistical power to detect genetic variants associated with LDLc in these groups, and subsequently to 

evaluate the best model using the summed R2 values, may have affected the precision of the findings. 

This can be observed when using absolute values to adjust for statin use (Figure 3B), which suggest 

that the average statin reduces LDLc to a greater extent in East Asians than in Europeans. However, 

this finding is likely a result of imprecision due to large confidence intervals surrounding the R2 

values, as the mean population levels of LDLc tend to be notably lower in East Asian populations than 

in European populations.  

Overall, our study has illustrated the technical challenges that can arise when analysing phenotypes 

altered by medication status in genome-wide association analyses, and we have proposed the GEMRA 

approach to approximately adjust the observed values using LDLc and statin use. Findings using this 

approach suggest that statins have a relative effect of 40% on LDLc values which is consistent across 

ancestries.  
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