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Abstract 
 Mammography is used as secondary prevention for breast cancer. Computer-aided detection 
and image-based short-term risk estimation were developed to improve the accuracy of mammography. 
However, most approaches inherently lack the ability to connect observations at the mammography 
level to observations of cancer onset and progression seen at a smaller scale, which can occur years 
before imageable cancer and lead to primary prevention. The Hurst exponent (H) can quantify 
mammographic tissue into regions of dense tissue undergoing active restructuring and regions that 
remain passive, with amounts of active and passive dense tissue that differ between cancer and 
controls at diagnosis. A longitudinal retrospective case-control study was conducted to test the 
hypothesis that differences can be detected before diagnosis and changes could signal developing 
cancer. Mammograms and reports were collected from 50 patients from Maine Medical Center in 2015 
with at least a 5-year screening history.  Age-matching patients within 2 years created a primary 
dataset, and within 5 years, a secondary dataset was created to test for sensitivity. The amount of 
passive (𝐻 ≥ 0.55) and active dense tissue (0.45 < 𝐻 < 0.55) was calculated for each breast and was 
predicted by creating a linear mixed-effects model. Cancer status was a predictor for passive (𝑝 =
0.036) and active (𝑝 = 0.025) dense tissue using the primary dataset. However, when increasing the 
power, cancer status was a predictor for active dense tissue (𝑝 = 0.013), while breast status (𝑝 =
0.004), time (𝑝 = 0.009), and interaction (𝑝 = 0.038) were predictors for passive dense tissue. This 
suggests active dense tissue is a risk for cancer and passive dense tissue is an indication of developing 
cancer.  
 
Required Key Messages 

• Mammographic dense breast tissue can be separated into regions of active and passive. 
• There is more active dense breast tissue in pathology-confirmed cancer cases than controls. 
• Increases in passive dense tissue in a breast could indicate a developing tumor. 
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INTRODUCTION 
Breast cancer stands as the most diagnosed cancer globally and is the second leading cause of 

cancer-related fatalities among women [1]. Addressing the high incidence rates of this disease through 
preventive measures can enhance patient outcomes and alleviate the burden of breast cancer on both 
public health and the economy. Cancer prevention is achieved through interventions, categorized as 
primary, secondary, and tertiary [2]. Considerable research has been devoted to secondary prevention 
strategies for breast cancer, aimed at advancing early detection, diagnosis, and removal of cancer and 
pre-cancerous conditions before they progress beyond their initial site through screening when 
treatment is most likely successful [3]. Screening guidelines are provided by entities such as the US 
Preventive Task Force [4], the American Cancer Society Field [5], the American College of Obstetrics 
& Gynecology [6], and the American College of Radiology [5, 6]. These guidelines recommend 
mammography, the only modality shown to decrease mortality [7], as the imaging modality for most 
women. Nevertheless, the extent of mortality reduction attributed to mammography screening ranges 
from 19% to 40%, contingent on age and breast density [7], with sensitivity varying from 86% to 89% 
in women with minimal dense breast tissue to 62-68% in those with highly dense breasts [8]. 

Recently, potentially modifiable risk factors have been causally linked to a wide range of cancers 
[9], and approximately 40% of cancers can be prevented by reducing risk factors and implementing 
primary prevention strategies [10]. Taken with the continued increase in incidence rates and with breast 
cancer becoming more common among younger women [11, 12], there is a growing emphasis on the 
primary prevention of breast cancer to hinder the start of the carcinogenic process. Risk models and 
genetic testing can help identify individuals at an increased risk of developing breast cancer [13]. 
However, known genetic predisposition or heredity plays a limited role in cancer, accounting for only 
5% to 10% of all cancer cases [10]. Traditional risk models, such as the Tyrer-Cuzick, Gail, and Breast 
Cancer Surveillance Consortium (BCSC) models, are based on varying familial and personal health 
histories and some models are not calibrated for all populations [14].  

Breast density has recently been recognized as one of the strongest independent risk factors for 
breast cancer, with women with dense breasts having a higher risk of developing breast cancer than 
women with non-dense breasts [15]. Incorporating breast density measurements has marginally 
improved some models' predictive performance to ~70% [16].  However, the association between 
breast density and its link to cancer remains unclear. In addition, the World Health Organization 
estimates that 50% of breast cancer cases do not have known identifiable risk factors [17], which 
creates a missed opportunity to provide enhanced surveillance or risk reduction methods to women at 
elevated risk to reduce both the societal and economic impact of breast cancer. 

New efforts involve applying artificial intelligence to screening mammography to overcome the 
limitations of traditional approaches to breast cancer risk assessments. Several models that estimate 
breast cancer risk scores have been developed, including Mirai, Globally-Aware Multiple Instance 
Classifier, MammoScreen, ProFound AI, and Mia, and these models have better predictive 
performance at 0 to 5 years than the BCSC risk model that includes traditional risk factors (BCSC area 
under the receiver operator curve (AUC) = 0.61, AI algorithms’ AUCs= 0.63-0.67) [18]. Furthermore, 
advancements in radiomics have allowed for improved quantification and inclusion of parenchymal 
textural complexity and patterns into models to improve risk estimation beyond breast density [19]. 
However, AI approaches are not always generalizable to new settings and populations, such as races, 
ethnicities, and mammography equipment outside of the training set [20]. Furthermore, their 
generalizability has yet to be robustly demonstrated, with one study showing recall rates increased by 
3-fold following mammography equipment software upgrades [20]. 

 In addition, AI’s inherent lack of explainability and inability to link to known cancer dynamics plays 
a role in the hesitancy to adopt it in a clinical setting. The biophysical processes of tumor onset have 
been studied extensively at the cellular level [21-24]. Still, limited research has been done to explore 
which, if any, of these processes can lead to large-scale features that could be captured on screening 
mammograms. The development and progression of malignant tumors are intricately influenced by the 
cancer cells and the surrounding tissues and cells collectively known as the tumor microenvironment 
[7]. Comprising stromal cells, immune cells, extracellular matrix, and blood vessels, the tumor 
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microenvironment interacts with cancer cells, crucial in promoting or inhibiting tumor growth and 
invasion. In breast cancer, the tumor microenvironment assumes particular significance, as events 
during breast development and exposure to various risk factors can reshape the breast 
microenvironment, establishing a permissive setting for cancer initiation and progression. It has been 
established that tumor onset and progression lead to disorganization and begin approximately 8 years 
before an imageable tumor [25]. Changes in breast tissue seen in mammography, including increased 
mammographic breast density, may be associated with elevated collagen levels and the structural 
organization of stroma, which influences tumor invasion dynamics [11, 14]. Therefore, a metric that can 
quantify subtle signs of dense breast tissue that is undergoing active restructuring vs passive dense 
breast tissue could provide further insights into developing abnormalities and the associated risk for 
breast cancer. 

The 2D Wavelet-Transform Modulus Maxima (WTMM) method has been used in several fields 
to analyze complex signals to extract features and quantify spatial structure to gain insights into the 
underlying mechanisms of complex organizations [26-31]. In previous studies, the 2D WTMM method 
was employed to capture the structural organization of mammographic tissue, via the Hurst exponent 
(H), and the calculated organization was inferred to be linked to the structure of the tumor 
microenvironment at the time of diagnosis [32, 33]. The method allows for segmenting dense breast 
tissue into regions of active dense tissue, i.e., regions that show structural reorganization occurring and 
are inferred to be linked to the dynamics of cancer onset and progression, and regions of passive dense 
tissue. This research aims to computationally quantify mammographic breast tissue composition by 
detecting active and passive dense tissue regions and assess if longitudinal changes in the tissue differ 
between cancer cases and controls. 
 
METHODS 

This study received IRB Approval with Waiver of Informed Consent/Authorization (IRB #4664) 
from Maine Medical Center (Portland, ME) on September 6, 2015, and was compliant with the Health 
Insurance Portability and Accountability Act (HIPAA). 
 
Cohort Description: “FOR PRESENTATION” mammographic images of the standard bilateral 
mammographic views, i.e. right and left mediolateral oblique (MLO) and cranial caudal (CC), from full-
field digital mammography were retrospectively collected from Maine Medical Center (Portland, ME, 
USA) in 2015 from women with at least a 5-year screening exam history. Screen-detected breast cancer 
cases were confirmed to be malignant by biopsy within 12 months of the last screening exam. Controls 
had no history of cancer or benign breast disease. The tumorous breast, i.e. the breast that contained 
the pathology-confirmed malignancy, and the contralateral breast were identified in the accompanying 
pathology reports for the malignant cases. Breast density scores of A: almost entirely fatty, B: scattered 
areas of fibroglandular density, C: heterogeneously dense, or D: extremely dense, were assigned to 
mammogram exams by two expert breast radiologists (AH and CC) following the BI-RADS 5th edition 
[34].  

The primary dataset was created by age-matching patients using their age at the time of the last 
screening before diagnosis for malignant cases and the time of the last visit for controls. Using nearest 
neighbor logistic regression propensity score matching, eligible matches were restricted to be within 2 
years of each other. Up to two controls were matched to each malignant case using the MatchIt function 
in R  [35]. To test sensitivity and explore the outcomes associated with increasing the power, a second 
dataset was created with eligible matches being restricted within 5 years of each other. 
 
Analysis of Mammographic Images (Figure 1): The analysis used the four standard bilateral 
mammographic views: right MLO, left MLO, right CC, and left CC. As a preprocessing step, black and 
white binary masks were generated through visual inspection. The breast tissue was contoured 
manually using the polygon feature in Fiji [36] to eliminate the image background, label, and pectoral 
muscle, and a mask that segmented the breast tissue was produced, which was then utilized for 
subsequent analysis (Fig 1A-C). A 360x360 pixel sliding window was positioned at the top left of the 
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segmented breast tissue. The sliding window shifted from left to right and top to bottom with a step size 
of 32 pixels between subregions. If the central 256x256 of each subregion was entirely contained inside 
the mask, the subregion was accepted for further analysis (Fig. 1D-H). Each subimage was wavelet 
transformed across 50 different size scales. The corresponding maxima chains and their maxima, 
maxima lines, partition functions, ℎ(𝑎, 𝑞) and 𝐷(𝑎, 𝑞) were generated following the methods described 
by Marin et al. [15] and Gerasimova-Chechkina [16]. Following these calculations only the central 
256x256 pixels of each subimage was kept to mitigate edge effects (Fig. 1I-K). 

To objectively determine the optimal scale range for fitting power-law curves in 𝐷(𝑞, 𝑎)	vs.  
log!(𝑎) and ℎ(𝑞, 𝑎)	vs. log!(𝑎) plots, a window was varied along log!(𝑎)	.The window was defined by 
a lower bound (𝑎"#$) and an upper bound (𝑎"%&) of 𝑎, varying from log!𝑎"%& = 	0, 0.1, . . . , 2.1 and from 
log!𝑎"#$ 	= 	2.0, 2.1, . . . , 4.9 respectively, in 𝜎' units, where 𝜎' = 7 pixels. All possible combinations of 
𝑎"%& and 𝑎"#$with a window width being at least log!𝑎"#$ − log!𝑎"%& 	= 	1.0 wide, were considered. 
For each such (𝑎"%& , 𝑎"#$) window, ℎ(𝑞	) and 𝐷(𝑞) were calculated, along with the goodness of fit R2 
of ℎ(𝑞 = 0), denoted R2h(q=0). Additionally, the weighted standard deviation of ℎ across all 𝑞 values, 
denoted sdw, and the weighted average of R2 of ℎ(𝑞) over all values of q, denoted <R2w>, were also 
calculated, according to the weights in Marin, et al. [15]. The further consideration of (𝑎"%& , 𝑎"#$) 
windows was subject to the fulfillment of several conditions. The first requirement was that the support 
dimension, represented by 𝐷(𝑞 = 0), fell within the range of 1.7 to 2.5, considering the potential impact 
of finite size effects on the multiplication of maxima lines as the scale parameter 𝑎	approached 0. A 
window was only considered if it had an R2h(0) value exceeding 0.90, ensuring that the ℎ(𝑞 = 0) curve 
was linear enough to provide a dependable exponent. A low weighted standard deviation for ℎ, 
specifically sdw < 0.06, was also essential to exclude subregions demonstrating multifractal scaling. 
Finally, the condition <R2w> > 0.90 was imposed to guarantee that all ℎ(𝑞, 𝑎) curves were sufficiently 
linear, with greater weight allocated to those closer to 𝑞 = 0. 

Based on the resulting H, each subregion was classified into one of three groups: fatty tissue 
(𝐻	 ≤ 	0.45, Fig. 1I5), active dense tissue (0.45<H<0.55, Fig. 1J5), or passive dense tissue (𝐻	 ≥ 	0.55, 
Fig. 1K5). The area (cm2) of each tissue type was estimated for all four mammographic views (Fig. 1L, 
1M). The right and left MLO and CC views were used to calculate both breasts' maximum area of 
passive and active dense tissue to obtain a score for each breast. 
 
Statistical Methods: The amount of passive and active dense tissue was predicted by creating linear 
mixed-effects (LME) models. The fixed effects for this model included time (to diagnosis for cancer 
cases and to the last visit for controls), cancer status, and breast status. An interaction term between 
time and breast status was fitted to test the hypothesis of changes occurring in dense breast tissue in 
tumorous breasts vs non-tumorous breasts (Table 1). Random effects included breast (left or right) 
nested within participant nested within case control strata obtained from age-matching. The correlation 
between repeated visits was modeled using autocorrelation of order 1. All statistical analyses were 
performed in R [37]. 
 
RESULTS 

Mammogram data and accompanying pathology reports were collected from 50 patients (27 
controls and 23 malignant cases), with mammograms obtained using Hologic's Selena Lorad 
(Malborough, MA).  The patients’ age at the last screening for malignant cases and the time of the last 
visit for controls ranges from 40 to 85, with a mean age of 65.39 ± 10.03 for malignant cases and 
59.56 ± 10.84 for controls. Age-matching with 2 years resulted in keeping 83.7% (24/27 controls and 
17/23 malignant cases) of the data and within 5-years, resulted in keeping % (26/27 controls and 20/23 
malignant cases) of the data (Table 2). Fatty, active, and passive dense tissue were identified in the 
four bilateral standardized mammographic views for both controls and malignant cases at each time 
point (Fig. 2). 
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Figure 1: Overview of the 2D WTMM multifractal sliding window approach (Marin et al. 
[15] and Gerasimova-Chechkina [16]). Sliding window approach to divide mammographic 
images into subregions. A mammographic image (A) is used to create a mask (B). The mask 
is used to segment the breast tissue (C). A 360 pixels by 360 pixels box (D) is placed in the 
upper left corner of the image. The box is then moved by a step size of 32 pixels horizontally 
and vertically. If the box contained breast tissue and no background, the 360 pixels x 360 pixels 
subimage is kept for the analysis (E-H). To identify sub-types of mammographic breast tissue, 
subimages containing fatty tissue (I1), active dense tissue (J1) and passive dense tissue (K1) 
were wavelet transformed at 50 different size scales with scale a = 10 (I2, J2, K2) and scale a 
= 30 (I3, J3, K3) shown with the corresponding WTMM and WTMMM. The WTMMM were used 
to construct the WT skeletons (I4, J4, K4). The subimages were then colored coded (I5, J5, 
K5). To visualize mammographic tissue structure, a small RGB image was created where each 
pixel represents the 360 pixel by 360 pixel subimage that was analyzed (L). A semi-transparent 
overlay was also constructed to highlight mammographic tissue subtypes on the mammogram 
(M).  

Table 1: Description of dependent variables and fixed effects used in the linear mixed 
effects model. 

 
Table 2: Cohort description of the primary dataset age-matched within 2 years and the secondary 
dataset age-matched within 5 years. 
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Figure 2: Boxplots of the area of active dense tissue (top row) and passive dense tissue (bottom row) for controls left and right 

breasts and cancer cases tumorous and contralateral breasts over time using the primary dataset. 
  

Using the primary dataset, which includes controls and cancer cases age-matched within 2 
years, the amount of passive and active dense tissue differed between cancer and controls (Table 3A). 
Cancer cases showed 10.30 cm2 (CI = 0.75 − 19.85) more passive dense tissue than the average 20.46 
cm2 found in controls (𝑝 = 0.036), and 6.34 cm2 (, CI = 0.88 − 11.79) more active dense tissue than the 
18.55 cm2 found in controls (𝑝 = 0.025). The amount of passive dense tissue also was affected by the 
breast status (i.e. tumor or no tumor). Breasts that contained a tumor had t 4.16 cm2 (CI = 0.61 − 7.70) 
more passive dense tissue than breasts without tumors (𝑝	 = 	0.023). No time effect was detected for 
the amounts of passive or active dense tissue in the primary dataset. 
 The model constructed using the secondary dataset, which included patients age-matched 
within 5 years and increased the power, showed similar estimates for the main effects and interaction 
terms in the model (Table 3B). Like the results using the primary dataset, the model showed that cancer 
cases had more active dense tissue than controls (𝑝 = 0.013), with cancer cases having 8.15	cm! (CI =
1.84 − 14.44) than controls and that breast that contained a tumor had more passive dense tissue than 
breasts that did not contain a tumor (𝑝 = 0.004). However, the amount of passive dense tissue was 
only suggestive of differing between cancer cases and controls (𝑝 = 0.074). In addition, there was a 
time effect detected for the amount of passive dense tissue, with the amount of passive dense tissue 
decreasing by 0.40 cm2 (CI	 = 	−0.69	 −	−0.10) per year over time for cancer cases and controls (𝑝 =
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0.009). Furthermore, the amount of passive dense tissue in breasts that contained a tumor increased 
0.67 cm2 (CI = 0.04 − 1.30) per year more than breasts that did not contain a tumor (𝑝 = 0.038). 
 

Table 3: Results from linear mixed-effects model using A) the primary dataset with patients age-matched 
within 2 years and B) the secondary dataset with patients age-matched within 5 years. 

A)  

 
B) 

 
 
CONCLUSION 
 Computer-aided detection and technologies that estimate short-term risk have improved the 
secondary prevention of breast cancer. However, there has been limited research to determine how 
the changes in breast tissue structure on mammograms connect to the smaller-scale biophysical 
processes of cancer onset and progression. In prior work, mammographic breast tissue was classified 
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into subtypes (i.e., fatty, passive dense, and active dense) using H obtained from the 2D WTMM method 
and showed that cancer cases had more passive and active dense tissue at the time of diagnosis. 
Using a LME model with time, cancer status, breast status, and the interaction between time and breast 
status to predict the amount of passive and active dense tissue has provided insights into a possible 
new risk factor for breast cancer. Cancer status was a predictor for passive (𝑝 = 0.036) and active (𝑝 =
0.025) dense tissue using the primary dataset. However, when increasing the power, cancer status was 
a predictor for active dense tissue (𝑝 = 0.013), while breast status (𝑝 = 0.004), time (𝑝 = 0.009), and 
interaction (𝑝 = 0.038) were predictors for passive dense tissue. This suggests active dense tissue is 
a risk for cancer and passive dense tissue is an indication of developing cancer.  
 One limitation of this study was the small sample size, with no information on race or ethnicity. 
Furthermore, the mammograms used were “FOR PRESENTATION” images from a single vendor. 
Since algorithms to produce “FOR PRESENTATION” image from “FOR PROCESSING” image vary by 
vendor, these results must be validated on images obtained from different vendors. In addition to 
validating our results on a larger and more diverse data set to overcome the limitations discussed, next 
steps would be to incorporate passive and active dense tissue measurements into a risk model and 
explore using images obtained from tomosynthesis and “FOR PROCESSING” images. 
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